Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T21:30:54.409Z Has data issue: false hasContentIssue false

Chapter 2 - Mass Spectrometry

Published online by Cambridge University Press:  01 February 2018

Alan P. Dickin
Affiliation:
McMaster University, Ontario
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albarede, F., Telouk, P., Blichert-Toft, J. et al. (2004). Precise and accurate isotopic measurements using multiple-collector ICPMS. Geochim. Cosmochim. Acta, 68, 2725–44.CrossRefGoogle Scholar
Aldrich, L. T., Doak, J. B. and Davis, G. L. (1953). The use of ion exchange columns in mineral analysis for age determination. American J. Sci. 251, 377–87.Google Scholar
Allen, C. M. and Campbell, I. H. (2012). Identification and elimination of a matrix-induced systematic error in LA–ICP–MS 206Pb/238U dating of zircon. Chem. Geol. 332, 157–65.Google Scholar
Aston, F. W. (1919). A positive ray spectrograph. Philos. Mag. 38, 707–14.Google Scholar
Aston, F. W. (1927). The constitution of ordinary lead. Nature 120, 224.CrossRefGoogle Scholar
Barovich, K. M., Beard, B. L., Cappel, J. B. et al. (1995). A chemical method for hafnium separation from high-Ti whole-rock and zircon samples. Chem. Geol. (Isot. Geosci. Sect.) 121, 303–8.Google Scholar
Belshaw, N. S., Freedman, P. A., O'nions, R. K., Frank, M. and Guo, Y. (1998). A new variable dispersion double-focusing plasma mass spectrometer with performance illustrated for Pb isotopes. Int. J. Mass Spec. 181, 51–8.CrossRefGoogle Scholar
Blichert-Toft, J., Chauvel, C. and Albarede, F. (1997). Separation of Hf and Lu for high-precision isotope analysis by magnetic sector-multiple collector ICP–MS. Contrib. Mineral. Petrol. 127, 248–60.CrossRefGoogle Scholar
Boyet, M., Blichert-Toft, J., Rosing, M. et al. (2003). 142Nd evidence for early Earth differentiation. Earth Planet. Sci. Lett. 214, 427–42.Google Scholar
Boyet, M. and Carlson, R. W. (2006). A new geochemical model for the Earth's mantle inferred from 146 Sm–142 Nd systematics. Earth Planet. Sci. Lett. 250, 254–68.Google Scholar
Brooks, C., Hart, S. R. and Wendt, I. (1972). Realistic use of two-error regression treatments as applied to rubidium–strontium data. Rev. Geophys. Space Phys. 10, 551–77.CrossRefGoogle Scholar
Brooks, C., Wendt, I. and Harre, W. (1968). A two-error regression treatment and its application to Rb–Sr and initial Sr87/Sr86 ratios of younger Variscan granitic rocks from the Schwarzwald massif, Southwest Germany. J. Geophys. Res. 73, 6071–84.Google Scholar
Burgoyne, T. W. and Hieftje, G. M. (1996). An introduction to ion optics for the mass spectrograph. Mass Spec. Rev. 15, 241–59.Google Scholar
Cameron, A. E., Smith, D. H. and Walker, R. L. (1969). Mass spectrometry of nanogram-size samples of lead. Anal. Chem. 41, 525–6.Google Scholar
Caro, G., Bourdon, B., Birck, J. L. and Moorbath, S. (2006). High-precision 142Nd/144Nd measurements in terrestrial rocks: constraints on the early differentiation of the Earth's mantle. Geochim. Cosmochim. Acta 70, 164–91.Google Scholar
Cassidy, R. M. and Chauvel, C. (1989). Modern liquid chromatographic techniques for the separation of Nd and Sr for isotopic analyses. Chem. Geol. 74, 189200.CrossRefGoogle Scholar
Catanzaro, E. J. and Kulp, J. L. (1964). Discordant zircons from the Little Butte (Montana), Beartooth (Montana) and Santa Catalina (Arizona) Mountains. Geochim. Cosmochim. Acta 28, 87124.CrossRefGoogle Scholar
Chen, J. H. and Wasserburg, G. J. (1981). Isotopic determination of uranium in picomole and sub-picomole quantities. Anal. Chem. 53, 2060–7.Google Scholar
Cheng, H., Edwards, R. L., Shen, C. C. et al. (2013). Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet. Sci. Lett. 371, 8291.Google Scholar
Christensen, J. N., Halliday, A. N., Godfrey, L. V., Hein, J. R. and Rea, D. K. (1997). Climate and ocean dynamics and the lead isotopic records in Pacific ferromanganese crusts. Science 277, 913–18.Google Scholar
Clayton, D. D. (1978). On strontium isotopic anomalies and odd-A p-process abundances. Astrophys. J. 224, L93–5.Google Scholar
Compston, W. and Oversby, V. M. (1969). Lead isotopic analysis using a double spike. J. Geophys. Res. 74, 4338–48.Google Scholar
Cotte, M. (1938). Recherches sur l'optique electronique. Ann. Physique 10, 333405.Google Scholar
Crock, J. G., Lichte, F. E. and Wildeman, T. R. (1984). The group separation of the rare-earth elements and yttrium from geological materials by cation-exchange chromatography. Chem. Geol. 45, 149–63.Google Scholar
Croudace, I. W. (1980). A possible error source in silicate wet-chemistry caused by insoluble fluorides. Chem. Geol. 31, 153–5.Google Scholar
Crowley, Q. G., Heron, K., Riggs, N. et al. (2014). Chemical abrasion applied to LA–ICP–MS U–Pb zircon geochronology. Minerals 4, 503–18.CrossRefGoogle Scholar
Crumpler, T. B. and Yoe, J. H. (1940). Chemical Computations and Errors, Wiley, pp. 189–90.Google Scholar
Daly, N. R. (1960). Scintillation type mass spectrometer ion detector. Rev. Sci. Instrum. 31, 264–7.CrossRefGoogle Scholar
David, K., Birch, J. L., Telouk, P. and Allegre, C. J. (1999). Application of isotope dilution for precise measurement of Zr/Hf and 176Hf/177Hf ratios by mass spectrometry (ID–TIMS/ID–ICP–MS). Chem. Geol. 157, 112.CrossRefGoogle Scholar
Davis, D. W. (1982). Optimum linear regression and error estimation applied to U–Pb data. Can. J. Earth Sci. 19, 2141–9.Google Scholar
Dawson, P. H. (1976). (Ed.) Quadrupole Mass Spectrometry and its Applications. Elsevier, 349 p.Google Scholar
DeBievre, P. J. and Debus, G. H. (1965). Precision mass spectrometric isotope dilution analysis. Nucl. Instrum. Meth. 32, 224–8.Google Scholar
Dempster, A. J. (1918). A new method of positive ray analysis. Phys. Rev. 11, 316–24.CrossRefGoogle Scholar
DePaolo, D. J. and Wasserburg, G. J. (1976). Nd isotopic variations and petrogenetic models. Geophys. Res. Lett. 3, 249–52.CrossRefGoogle Scholar
Dickin, A. P., Jones, N. W., Thirlwall, M. and Thompson, R. N. (1987). A Ce/Nd isotope study of crustal contamination processes affecting Palaeocene magmas in Skye, NW Scotland. Contrib. Mineral. Petrol. 96, 455–64.Google Scholar
Dodson, M. H. (1978). A linear method for second-degree interpolation in cyclical data collection. J. Phys. E (Sci. Instrum.) 11, 296.CrossRefGoogle Scholar
Dodson, M. H. (1963). A theoretical study of the use of internal standards for precise isotopic analysis by the surface ionisation technique: Part I – General first-order algebraic solutions. J. Sci. Instrum. 40, 289–95.Google Scholar
Dodson, M. H., Compston, W., Williams, I. S. and Wilson, J. F. (1988). A search for ancient detrital zircons in Zimbabwean sediments. J. Geol. Soc. Lond. 145, 977–83.CrossRefGoogle Scholar
Dosso, L. and Murthy, V. R. (1980). A Nd isotope study of the Kerguelen islands: inferences on enriched oceanic mantle sources. Earth Planet. Sci. Lett. 48, 268–76.CrossRefGoogle Scholar
Eberhardt, A., Delwiche, R. and Geiss, Z. (1964). Isotopic effects in single filament thermal ion sources. Z. Natur. 19a, 736–40.Google Scholar
Edwards, R. L., Chen, J. H. and Wasserburg, G. J. (1987). 238U)234U)230Th)232Th systematics and the precise measurement of time over the past 500,000 years. Earth Planet. Sci. Lett. 81, 175–92.Google Scholar
Eugster, O., Tera, F., Burnett, D. S. and Wasserburg, G. J. (1970). The isotopic composition of gadolinium and neutron capture effects in some meteorites. J. Geophys. Res. 75, 2753–68.Google Scholar
Faul, H. (1966). Ages of Rocks, Planets, and Stars. McGraw-Hill, 109 pp.Google Scholar
Feng, R., Machado, N. and Ludden, J. (1993). Lead geochronology of zircon by LaserProbe-Inductively coupled plasma mass spectrometry (LP–ICPMS). Geochim. Cosmochim. Acta 57, 3479–86.Google Scholar
Fisher, C. M., Vervoort, J. D. and DuFrane, S. A. (2014a). Accurate Hf isotope determinations of complex zircons using the “laser ablation split stream” method. Geochem. Geophys. Geosys. 15, 121–39.CrossRefGoogle Scholar
Fisher, C. M., Vervoort, J. D. and Hanchar, J. M. (2014b). Guidelines for reporting zircon Hf isotopic data by LA–MC–ICPMS and potential pitfalls in the interpretation of these data. Chem. Geol. 363, 125–33.Google Scholar
Gale, N. H. (1970). A solution in closed form for lead isotopic analysis using a double spike. Chem. Geol. 6, 305–10.Google Scholar
Galer, S. J. G. (1999). Optimal double and triple spiking for high precision lead isotopic measurement. Chem. Geol. 157, 255–74.Google Scholar
Gillson, G. R., Douglas, D. J., Fulford, J. E., Halligan, K. W. and Tanner, S. D. (1988). Nonspectroscopic interelement interferences in inductively coupled plasma mass spectrometry. Anal. Chem. 60, 1472–4.Google Scholar
Habfast, K. (1983). Fractionation in the thermal ionization source. Int. J. Mass Spectrom. Ion Phys. 51, 165–89.Google Scholar
Halliday, A. N., Christensen, J. N., Der-Chuen, L. et al. (2000). Multiple-collector inductively coupled plasma mass spectrometry. Practical Spectroscopy Series 23, 291328.Google Scholar
Halliday, A. N., Lee, D.-C., Christensen, J. N. et al. (1998). Applications of multiple collector- ICPMS to cosmochemistry, geochemistry, and paleoclimatology. Geochim. Cosmochim. Acta 62, 919–40.CrossRefGoogle Scholar
Hamelin, B., Manhes, G., Albarede, F. and Allegre, C. J. (1985). Precise lead isotope measurements by the double spike technique: a reconsideration. Geochim. Cosmochim. Acta 49, 173–82.Google Scholar
Hirata, T. (1997). Ablation technique for laser ablation–inductively coupled plasma mass spectrometry. J. Anal. Atom. Spec. 12, 1337–42.Google Scholar
Hirata, T. and Nesbitt, R. W. (1995). U–Pb isotope geochronology of zircon: Evaluation of the laser probe-inductively coupled plasma mass spectrometry technique. Geochim. Cosmochim. Acta 59, 2491–500.Google Scholar
Hooker, P., O'Nions, R. K. and Pankhurst, R. J. (1975). Determination of rare-earth elements in U.S.G.S. standard rocks by mixed-solvent ion exchange and mass spectrometric isotope dilution. Chem. Geol. 16, 189–96.CrossRefGoogle Scholar
Horn, I., Rudnick, R. L. and McDonough, W. F. (2000). Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP–MS: application to U–Pb geochronology. Chem. Geol. 164, 281301. (Erratum = vol. 167, 405–25.)Google Scholar
Horwitz, E. P., Chiarizia, R. and Dietz, M. L. (1992). A novel strontium-selective extraction chromatographic resin. Solvent Extract. Ion Exchange 10, 313–36.Google Scholar
Houk, R. S. (1986). Mass spectrometry of inductively coupled plasmas. Anal. Chem. 58, 97A105A.Google Scholar
Houk, R. S., Fassel, V. A., Flesch, G. D. et al. (1980). Inductively coupled argon plasma for mass spectrometric determination of trace elements. Anal. Chem. 52, 2283–9.Google Scholar
Ingram, M. G. and Chupka, P. (1953). Surface ionisation source using multiple filaments. Rev. Sci. Instrum. 24, 518–20.Google Scholar
Kalsbeek, F. and Hansen, M. (1989). Statistical analysis of Rb)Sr isotope data by the ‘bootstrap’ method. Chem. Geol. (Isot. Geosci. Sect.) 73, 289–97.Google Scholar
Klotzli, U., Klotzli, E., Gunes, Z. and Kosler, J. (2009). Accuracy of laser ablation U–Pb zircon dating: Results from a test using five different reference zircons. Geostand. Geoanal. Res. 33, 515.CrossRefGoogle Scholar
Kosler, J., Slama, J., Belousova, E. et al. (2013). U–Pb detrital zircon analysis–results of an inter-laboratory comparison. Geostand. Geoanal. Res. 37, 243–59.CrossRefGoogle Scholar
Krogh, T. E. (1973). A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination. Geochim. Cosmochim. Acta 37, 485–94.Google Scholar
Krogh, T. E. (1982). Improved accuracy of U–Pb zircon ages by the creation of more concordant systems using the air abrasion technique. Geochim. Cosmochim. Acta 46, 637–49.Google Scholar
Kuritani, T. and Nakamura, E. (2002). Precise isotope analysis of nanogram-level Pb for natural rock samples without use of double spikes. Chem. Geol. 186, 3143.Google Scholar
Kurz, E. A. (1979). Channel electron multipliers. Amer. Lab. 11 (3), 6774.Google Scholar
Lee, D.-C. and Halliday, A. N. (1995). Precise determinations of the isotopic compositions and atomic weights of molybdenum, tellurium, tin and tungsten using ICP source magnetic sector multiple collector mass spectrometry. Int. J. Mass Spec. Ion Process. 146 /147, 3546.CrossRefGoogle Scholar
Li, W. X., Lundberg, J., Dickin, A. P. et al. (1989). High-precision mass spectrometric uranium-series dating of cave deposits and implications for paleoclimate studies. Nature 339, 534–6.Google Scholar
Luais, B., Telouk, P. and Albarede, F. (1997). Precise and accurate neodymium isotopic measurements by plasma-source mass spectrometry. Geochim. Cosmochim. Acta 61, 4847–54.Google Scholar
Ludwig, K. R. (1980). Calculation of uncertainties of U–Pb isotope data. Earth Planet. Sci. Lett. 46, 212–20.Google Scholar
Ludwig, K. R. (1991). ISOPLOT for MS-DOS, version 2.50. US Geol. Surv. Open-File Report, (88–557), 164.Google Scholar
Ludwig, K. R. (1997a). Optimization of multicollector isotope-ratio measurement of strontium and neodymium. Chem. Geol. 135, 325–34.Google Scholar
Ludwig, K. R. (1997b). Isoplot. Program and documentation, version 2.95. Revised edition of U.S. Geol. Surv. Open-File Report, 91445.Google Scholar
Ludwig, K. L. (2000). User's manual for Isoplot/Ex version 2.2: A geochronological toolkit for Microsoft Excel. Berkley Geochronology Center Spec. Pub. 1a, 153.Google Scholar
Ludwig, K. (2012). User's manual for Isoplot version 3.75–4.15: A geochronological toolkit for Microsoft Excel. Berkley Geochronological Center Spec. Pub. 5, 175.Google Scholar
Lugmair, G. W., Scheinin, N. B. and Marti, K. (1975). Search for extinct 146Sm, 1. The isotopic abundance of 142Nd in the Juvinas meteorite. Earth Planet. Sci. Lett. 27, 7984.Google Scholar
Luo, X., Rehkamper, M., Lee, D.-C. and Halliday, A. N. (1997). High precision 230Th/232Th and 234U/238U measurements using energy-filtered ICP magnetic sector multiple collector mass spectrometry. Int. J. Mass Spec. Ion Process. 171, 105–17.Google Scholar
Marechal, C. N., Telouk, P. and Albarede, F. (1999). Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem. Geol. 156, 251–73.Google Scholar
Marillo-Sialer, E., Woodhead, J., Hanchar, J. M. et al. (2016). An investigation of the laser-induced zircon ‘matrix effect’. Chem. Geol. 438, 1124.Google Scholar
Marillo-Sialer, E., Woodhead, J., Hergt, J. et al. (2014). The zircon ‘matrix effect’: evidence for an ablation rate control on the accuracy of U–Pb age determinations by LA–ICP–MS. J. Anal. Atom. Spec. 29, 981–9.CrossRefGoogle Scholar
Mattinson, J. M. (2005). Zircon U–Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem. Geol. 220, 4766.Google Scholar
McIntyre, G. A., Brooks, A. C. Compston, W and Turek, A. (1966). The statistical assessment of Rb)Sr isochrons. J. Geophys. Res. 71, 5459–68.CrossRefGoogle Scholar
Manton, W. I. (1988). Separation of Pb from young zircons by single-bead ion exchange. Chem. Geol. (Isot. Geosci. Sect.) 73, 147–52.Google Scholar
Nicolaysen, L. O. (1961). Graphic interpretation of discordant age measurements on metamorphic rocks. Ann. N. Y. Acad. Sci. 91, 198206.Google Scholar
Nier, A. O. (1940). A mass spectrometer for routine isotope abundance measurements. Rev. Sci. Instrum. 11, 212–16.Google Scholar
Niu, H. and Houk, R. S. (1996). Fundamental aspects of ion extraction in inductively coupled plasma mass spectrometry. Spectrochim. Acta B. 51, 779815.Google Scholar
O'Nions, R. K., Carter, S. R., Evensen, N. M. and Hamilton, P. J. (1979). Geochemical and cosmochemical applications of Nd isotope analysis. Ann. Rev. Earth Planet. Sci. 7, 1138.Google Scholar
Parrish, R. R. (1987). An improved micro-capsule for zircon dissolution in U–Pb geochronology. Chem. Geol. (Isot. Geosci. Sect.) 66, 99102.Google Scholar
Parrish, R. R. and Krogh, T. E. (1987). Synthesis and purification of 205Pb for U)Pb geochronology. Chem. Geol. (Isot. Geosci. Sect.) 66, 103–10.Google Scholar
Patchett, P. J. (1980). Sr isotopic fractionation in Ca)Al inclusions from the Allende meteorite. Nature 283, 438–41.Google Scholar
Patchett, P. J. and Tatsumoto, M. (1980). A routine high-precision method for Lu)Hf isotope geochemistry and chronology. Contrib. Mineral. Petrol. 75, 263–7.Google Scholar
Pin, C., Briot, D., Bassin, C. and Poitrasson, F. (1994). Concomitant separation of strontium and samarium–neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography. Analytica Chimica Acta, 298, 209–17.Google Scholar
Potts, P. J. (1987). Handbook of Silicate Rock Analysis. Blackie, 622 pp.Google Scholar
Powell, R., Hergt, J. and Woodhead, J. (2002). Improving isochron calculations with robust statistics and the bootstrap. Chem. Geol. 185, 191204.Google Scholar
Powell, R., Woodhead, J. and Hergt, J. (1998). Uncertainties on lead isotope analyses: deconvolution in the double-spike method. Chem. Geol. 148, 95104.Google Scholar
Rehkamper, M., Gartner, M., Galer, S. J. G. and Goldstein, S. L. (1996). Separation of Ce from other rare-earth elements with application to Sm–Nd and La–Ce chronometry. Chem. Geol. 129, 201–8.Google Scholar
Richard, P., Shimizu, N. and Allegre, C. J. (1976). 143Nd/146Nd, a natural tracer: an application to oceanic basalts. Earth Planet. Sci. Lett. 31, 269–78.Google Scholar
Roddick, J. C., Loveridge, W. D. and Parrish, R. R. (1987). Precise U/Pb dating of zircon at the sub-nanogram Pb level. Chem. Geol. (Isot. Geosci. Sect.) 66, 111–21.CrossRefGoogle Scholar
Russell, W. A., Papanastassiou, D. A. and Tombrello, T. A. (1978). Ca isotope fractionation on the Earth and other solar system materials. Geochim. Cosmochim. Acta 42, 1075–90.Google Scholar
Schoene, B. (2014). 4.10 U–Th–Pb Geochronology. Treatise on Geochemistry, Second Edn. Elsevier, 341–78.Google Scholar
Shen, C. C., Wu, C. C., Cheng, H. et al. (2012). High-precision and high-resolution carbonate 230Th dating by MC–ICP–MS with SEM protocols. Geochim. Cosmochim. Acta 99, 7186.Google Scholar
Smyth, W. R. and Mattauch, J. (1932). A new mass spectrometer. Phys. Rev. 40, 429.Google Scholar
Solari, L. A., Ortega-Obregón, C. and Bernal, J. P. (2015). U–Pb zircon geochronology by LAICPMS combined with thermal annealing: achievements in precision and accuracy on dating standard and unknown samples. Chem. Geol. 414, 109–23.Google Scholar
Tanaka, T. and Masuda, A. (1982). The La–Ce geochronometer: a new dating method, Nature 300, 515–18.Google Scholar
Thirlwall, M. F. (1982). A triple-filament method for rapid and precise analysis of rare-earth elements by isotope dilution. Chem. Geol. 35, 155–66.Google Scholar
Thirlwall, M. F. (1991a). High-precision multicollector isotopic analysis of low levels of Nd as oxide. Chem. Geol. (Isot. Geosci. Sect.) 94, 1322.Google Scholar
Thirlwall, M. F. (1991b). Long-term reproducibility of multicollector Sr and Nd isotope ratio analyses. Chem. Geol. (Isot. Geosci. Sect.) 94, 85104.Google Scholar
Thirlwall, M. F. (2000). Inter-laboratory and other errors in Pb isotope analyses investigated using a 207Pb–204Pb double spike. Chem. Geol. 163, 299322.Google Scholar
Thirlwall, M. F. (2002). Multicollector ICP–MS analysis of Pb isotopes using a 207Pb–204Pb double spike demonstrates up to 400 ppm/amu systematic errors in Tl-normalization. Chem. Geol. 184, 255–79.Google Scholar
Thirlwall, M. F. and Walder, A. J. (1995). In situ hafnium isotope ratio analysis of zircon by inductively coupled plasma multiple collector mass spectrometry. Chem. Geol. 122, 241–7.Google Scholar
Thompson, J. J. (1913). Rays of Positive Electricity and their Application to Chemical Analysis, Longmans, Green and Co. Ltd.Google Scholar
Titterington, D. M. and Halliday, A. N. (1979). On the fitting of parallel isochrons and the method of maximum likelihood. Chem. Geol. 26, 183–95.Google Scholar
Todt, W., Cliff, R. A., Hanser, A. and Hofmann, A. W. (1996). Evaluation of a 202Pb–205Pb double spike for high-precision lead isotopic analysis. In: Basu, A. and Harts, S. R. (Eds) Earth Processes: Reading the Isotopic Code. Geophys. Monograph 95, American Geophysical Union, pp. 429–37.Google Scholar
Tompkins, E. R., Khym, J. X. and Cohn, W. E. (1947). Ion-Exchange as a separation method. I. The separation of fission-produced radioisotopes, including individual rare earths, by complexing elution from Amberlite resin. J. American Chem. Soc. 69, 2769–77.Google Scholar
Trinquier, A. and Komander, P. (2016). Precise and accurate uranium isotope analysis by modified total evaporation using 1013 ohm current amplifiers. J. Radioanal. Nucl. Chem. 307, 1927–32.Google Scholar
Vance, D. and Thirlwall, M. (2002). An assessment of mass discrimination in MC–ICPMS using Nd isotopes. Chem. Geol. 185, 227–40.Google Scholar
Vermeesch, P. (2012). On the visualisation of detrital age distributions. Chem. Geol. 312, 190–4.Google Scholar
Von Quadt, A., Gallhofer, D., Guillong, M. et al. (2014). U–Pb dating of CA/non-CA treated zircons obtained by LA–ICP–MS and CA-TIMS techniques: impact for their geological interpretation. J. Anal. Atom. Spec. 29, 1618–29.Google Scholar
Walder, A. J., Abell, I. D., Freedman, P. A. and Platzner, I. (1993a). Lead isotopic ratio measurement of NIST 610 glass by laser ablation-inductively coupled plasma-mass spectrometry. Spectrochim. Acta 48B, 397402.Google Scholar
Walder, A. J. and Freedman, P. A. (1992). Isotopic ratio measurement using a double focusing magnetic sector mass analyser with an inductively coupled plasma as an ion source. J. Anal. Atom. Spec. 7, 571–5.CrossRefGoogle Scholar
Walder, A. J. and Furuta, N. (1993). High precision lead isotope ratio measurement by inductively coupled plasma multiple collector mass spectrometry. Anal. Sci. 9, 675–80.CrossRefGoogle Scholar
Walder, A. J., Platzner, I. and Freedman, P. A. (1993b). Isotope ratio measurement of lead, neodymium and neodymium–samarium mixtures, hafnium and hafnium–lutetium mixtures with a double focussing multiple collector inductively coupled plasma mass spectrometer. J. Anal. Atomic. Spectrom. 8, 1923.Google Scholar
Wasserburg, G. J., Jacobsen, S. B., DePaolo, D. J. McCulloch, M. T. and Wen, T. (1981). Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions. Geochim. Cosmochim. Acta 45, 2311–23.Google Scholar
Wendt, I. and Carl, C. (1991). The statistical distribution of the mean squared weighted deviation. Chem. Geol. (Isot. Geosci. Sect.) 86, 275–85.Google Scholar
White, W. M., Albarede, F. and Telouk, P. (2000). High-precision analysis of Pb isotope ratios by multi-collector ICP–MS. Chem. Geol. 167, 257–70.Google Scholar
Woodhead, J. (2002). A simple method for obtaining highly accurate Pb isotope data by MC–ICP–MS. J. Anal. Atom. Spec. 17, 1381–5.Google Scholar
Woodhead, J., Hergt, J., Shelley, M., Eggins, S. and Kemp, R. (2004). Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chem. Geol. 209, 121–35.Google Scholar
York, D. (1966). Least-squares fitting of a straight line. Can. J. Phys. 44, 1079–86.Google Scholar
York, D. (1967). The best isochron. Earth Planet. Sci. Lett. 2, 479–82.CrossRefGoogle Scholar
York, D. (1969). Least-squares fitting of a straight line with correlated errors. Earth Planet. Sci. Lett. 5, 320–4.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Mass Spectrometry
  • Alan P. Dickin, McMaster University, Ontario
  • Book: Radiogenic Isotope Geology
  • Online publication: 01 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781316163009.003
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Mass Spectrometry
  • Alan P. Dickin, McMaster University, Ontario
  • Book: Radiogenic Isotope Geology
  • Online publication: 01 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781316163009.003
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Mass Spectrometry
  • Alan P. Dickin, McMaster University, Ontario
  • Book: Radiogenic Isotope Geology
  • Online publication: 01 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781316163009.003
Available formats
×