Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-16T01:51:13.539Z Has data issue: false hasContentIssue false

Chapter 13 - U-Series Geochemistry of Igneous Systems

Published online by Cambridge University Press:  01 February 2018

Alan P. Dickin
Affiliation:
McMaster University, Ontario
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allegre, C. J. (1968). 230Th dating of volcanic rocks. Earth Planet. Sci. Lett. 5, 209–10.CrossRefGoogle Scholar
Allegre, C. J. and Condomines, M. (1976). Fine chronology of volcanic processes using 238U–230Th systematics. Earth Planet. Sci. Lett. 28, 395406.CrossRefGoogle Scholar
Allegre, C. J. and Condomines, M. (1982). Basalt genesis and mantle structure studied through Th–isotopic geochemistry. Nature 299, 21–4.CrossRefGoogle Scholar
Asmerom, Y., Cheng, H., Thomas, R., Hirschmann, M. and Edwards, R. L. (2000). Melting of the Earth's lithospheric mantle inferred from protactinium thorium uranium isotopic data. Nature 406, 293–6.CrossRefGoogle ScholarPubMed
Asmerom, Y. and Edwards, R. L. (1995). U-series isotope evidence for the origin of continental basalts. Earth Planet. Sci. Lett. 134, 17.CrossRefGoogle Scholar
Beattie, P. (1993a). The generation of uranium series disequilibria by partial melting of spinel peridotite: constraints from partitioning studies. Earth Planet. Sci. Lett. 117, 379–91.CrossRefGoogle Scholar
Beattie, P. (1993b). Uranium–thorium disequilibria and partitioning on melting of garnet peridotite. Nature 363, 63–5.Google Scholar
Bourdon, B., Joron, J.-L., Claude-Ivanaj, C. and Allegre, C. J. (1998). U–Th–Pa–Ra systematics for the Grande Comore volcanics: melting processes in an upwelling plume. Earth Planet. Sci. Lett. 164, 119–33.Google Scholar
Bourdon, B., Langmuir, C. H. and Zindler, A. (1996a). Ridgehotspot interaction along the Mid-Atlantic Ridge between 37° 30' and 40° 30' N: the UTh disequilibrium evidence. Earth Planet. Sci. Lett. 142, 175–89.CrossRefGoogle Scholar
Bourdon, B. and Sims, K. W. (2003). U-series constraints on intraplate basaltic magmatism. Reviews in Mineralogy and Geochemistry 52, 215–54.CrossRefGoogle Scholar
Bourdon, B., Turner, S. and Allègre, C. (1999). Melting dynamics beneath the Tonga-Kermadec island arc inferred from 231Pa-235U systematics. Science 286, 2491–3.CrossRefGoogle Scholar
Bourdon, B., Turner, S. P. and Ribe, N. M. (2005). Partial melting and upwelling rates beneath the Azores from a U-series isotope perspective. Earth Planet. Sci. Lett. 239, 4256.CrossRefGoogle Scholar
Bourdon, B., Zindler, A., Elliot, T. and Langmuir, C. H. (1996b). Constraints on mantle melting at mid-ocean ridges from global 238U230Th disequilibrium data. Nature 384, 231–5.Google Scholar
Branca, S., Condomines, M. and Tanguy, J. C. (2015). Flank eruptions of Mt Etna during the Greek–Roman and Early Medieval periods: New data from 226Ra–230Th dating and archaeomagnetism. J. Volcanol. Geotherm. Res. 304, 265–71.Google Scholar
Capaldi, G., Cortini, M., Gasparini, P. and Pece, R. (1976). Short-lived radioactive disequilibria in freshly erupted volcanic rocks and their implications for the pre-eruption history of a magma. J. Geophys. Res. 81, 350–8.Google Scholar
Capaldi, G., Cortini, M. and Pece, R. (1982). Th isotopes at Vesuvius: evidence for open system behaviour of magma-forming processes. J. Volc. Geotherm. Res. 14, 247–60.Google Scholar
Capaldi, G., Cortini, M. and Pece, R. (1985). On the reliability of the 230Th–238U dating method applied to young volcanic rocks – (reply). J. Volc. Geotherm. Res. 26, 369–76.CrossRefGoogle Scholar
Capaldi, G. and Pece, R. (1981). On the reliability of the 230Th–238U dating method applied to young volcanic rocks. J. Volc. Geotherm. Res. 11, 367–72.Google Scholar
Cerrai, E., Dugnani Lonati, R., Gazzarini, F. and Tongiorgi, E. (1965). Il methodo iono–uranio per la determinazione dell'eta dei minerali vulcanici recenti. Rend. Soc. Mineral. Ital. 21, 4762Google Scholar
Chabaux, F. and Allegre, C. J. (1994). 238U230Th226Ra disequilibria in volcanics: a new insight into melting conditions. Earth Planet. Sci. Lett. 126, 6174.Google Scholar
Chabaux, F., Hemond, C. and Allegre, C. J. (1999). 238U 230Th 226Ra disequilibria in the Lesser Antilles arc: implications for mantle metasomatism. Chem. Geol. 153, 171–85.Google Scholar
Charlier, B. L., Peate, D. W., Wilson, C. J. et al. (2003). Crystallisation ages in coeval silicic magma bodies: 238U–230Th disequilibrium evidence from the Rotoiti and Earthquake Flat eruption deposits, Taupo Volcanic Zone, New Zealand. Earth Planet. Sci. Lett. 206, 441–57.CrossRefGoogle Scholar
Charlier, B. L. A., Wilson, C. J. N., Lowenstern, J. B. et al. (2005). Magma generation at a large, hyperactive silicic volcano (Taupo, New Zealand) revealed by U–Th and U–Pb systematics in zircons. J. Petrol. 46, 332.Google Scholar
Cohen, A. S., Belshaw, N. S. and O'Nions, R. K. (1992). High precision uranium, thorium and radium isotope ratio measurements by high dynamic range thermal ionisation mass spectrometry. Int. J. Mass Spec. Ion Proc. 116, 7181.CrossRefGoogle Scholar
Cohen, A. S. and O'Nions, R. K. (1991). Precise determination of femtogram quantities of radium by thermal ionization mass spectrometry. Anal. Chem. 63, 2705–8.Google Scholar
Cohen, R. S., Evensen, N. M., Hamilton, P. J. and O'Nions, R. K. (1980). U–Pb, Sm–Nd and Rb–Sr systematics of mid-ocean ridge basalt glasses. Nature 283, 149–53.Google Scholar
Condomines, M. (1997). Dating recent volcanic rocks through 230Th238U disequilibrium in accessory minerals: example of the Puy de Dome (French Massif Central). Geology 25, 375–8.2.3.CO;2>CrossRefGoogle Scholar
Condomines, M. and Allegre, C. J. (1980). Age and magmatic evolution of Stromboli volcano from 230Th–238U disequilibrium data. Nature 288, 354–7.Google Scholar
Condomines, M., Bouchez, R., Ma, J. L. et al. (1987). Short-lived radioactive disequilibria and magma dynamics in Etna volcano. Nature 325, 607–9.Google Scholar
Condomines, M., Gauthier, P. J. and Sigmarsson, O. (2003). Timescales of magma chamber processes and dating of young volcanic rocks. Reviews in Mineralogy and Geochemistry, 52, 125–74.CrossRefGoogle Scholar
Condomines, M., Gauthier, P. J., Tanguy, J. C. et al. (2005). 226Ra or 226Ra/Ba dating of Holocene volcanic rocks: application to Mt. Etna and Merapi volcanoes. Earth Planet. Sci. Lett. 230, 289300.Google Scholar
Condomines, M., Hemond, Ch. and Allegre, C. J. (1988). U–Th–Ra radioactive disequilibria and magmatic processes. Earth Planet. Sci. Lett. 90, 243–62.Google Scholar
Condomines, M., Morand, P. and Allegre, C. J. (1981). 230Th–238U radioactive disequilibria in tholeiites from the FAMOUS zones (Mid-Atlantic Ridge, 36° 50' N): Th and Sr isotopic geochemistry. Earth Planet. Sci. Lett. 55, 247–56.Google Scholar
Condomines, M. and Sigmarsson, O. (2000). 238U–230Th disequilibria and mantle melting processes: a discussion. Chem. Geol. 162, 95104.Google Scholar
Condomines, M., Tanguy, J. C. and Michaud, V. (1995). Magma dynamics at Mt Etna: constraints from U–Th–Ra–Pb radioactive disequilibria and Sr isotopes in historical lavas. Earth Planet. Sci. Lett. 132, 2541.Google Scholar
Condomines, M., Tanguy, J. C., Kieffer, G. and Allegre, C. J. (1982). Magmatic evolution of a volcano studied by 230Th–238U disequilibrium and trace elements systematics: the Etna case. Geochim. Cosmochim. Acta 46, 1397–416.CrossRefGoogle Scholar
Elkins, L. J., Sims, K. W. W., Prytulak, J. et al. (2014). Melt generation beneath Arctic Ridges: Implications from U decay series disequilibria in the Mohns, Knipovich, and Gakkel Ridges. Geochim. Cosmochim. Acta 127, 140–70.CrossRefGoogle Scholar
Elliott, T. (1997). Fractionation of U and Th during mantle melting: a reprise. Chem. Geol. 139, 165–83.Google Scholar
Elliott, T., Plank, T., Zindler, A., White, W. and Bourdon, B. (1997). Element transport from slab to volcanic front at the Mariana arc. J. Geophys. Res. 102, 14 991–5 019.Google Scholar
Fornari, D. J., Perfit, M. R., Allan, J. F. and Batiza, R. (1988). Small-scale heterogeneities in depleted mantle sources: near-ridge seamount lava geochemistry and implications for mid-ocean-ridge magmatic processes. Nature 331, 511–13.Google Scholar
Forsyth, D. W., Scheirer, D. S., Webb, S. C. et al. (1998). Imaging the deep seismic structure beneath a Mid-Ocean Ridge: the MELT experiment. Science 280, 1215–18.Google Scholar
Galer, S. J. G. and O'Nions, R. K. (1986). Magma genesis and the mapping of chemical and isotopic variations in the mantle. Chem. Geol. 56, 4561.Google Scholar
Gill, J. and Condomines, M. (1992). Short-lived radioactivity and magma genesis. Science 257, 1368–76.Google Scholar
Gill, J. B. and Williams, R. W. (1990). Th isotope and U-series studies of subduction-related volcanic rocks. Geochim. Cosmochim. Acta 54, 1427–42.Google Scholar
Goldstein, S. J., Murrell, M. T. and Janecky, D. R. (1989). Th and U isotopic systematics of basalts from the Juan de Fuca and Gorda Ridges by mass spectrometry. Earth Planet. Sci. Lett. 96, 134–46.Google Scholar
Goldstein, S. J., Murrell, M. T. and Williams, R. W. (1993). 231Pa and 230Th chronology of mid-ocean ridge basalts. Earth Planet. Sci. Lett. 115, 151–9.Google Scholar
Guillong, M., Sliwinski, J. T., Schmitt, A., Forni, F. and Bachmann, O. (2016). U–Th zircon dating by laser ablation single collector inductively coupled plasma–mass spectrometry (LA-ICP-MS). Geostand. Geoanal. Res. 40, 377–87.Google Scholar
Hawkesworth, C. J., Hergt, J. M., McDermott, F. and Ellam, R. M. (1991). Destructive margin magmatism and the contributions from the mantle wedge and subducted crust. Australian J. Earth Sci. 38, 577–94.Google Scholar
Hemond, Ch. (1986). Geochimie Isotopique du Thorium et du Strontium dans la Serie Tholeiitique d'Islande et dans des Series Calco-alcalines Diverses. These 3eme Cycle, Universite Paris VII, 151 pp.Google Scholar
Hemond, Ch. and Condomines, M. (1985). On the reliability of the 230Th–238U dating method applied to young volcanic rocks – discussion. J. Volc. Geotherm. Res. 26, 365–9.Google Scholar
Hemond, Ch., Condomines, M., Fourcade, S. et al. (1988). Thorium, strontium and oxygen isotopic geochemistry in recent tholeiites from Iceland: crustal influence on mantle-derived magmas. Earth Planet. Sci. Lett. 87, 273–85.Google Scholar
Huang, F. and Lundstrom, C. C. (2007). 231Pa excesses in arc volcanic rocks: Constraint on melting rates at convergent margins. Geology 35, 1007–10.CrossRefGoogle Scholar
Huang, F., Lundstrom, C. C., Sigurdsson, H. and Zhang, Z. (2011). U-series disequilibria in Kick'em Jenny submarine volcano lavas: A new view of time-scales of magmatism in convergent margins. Geochim. Cosmochim. Acta 75, 195212.Google Scholar
Ickert, R. B., Mundil, R., Magee, C. W. and Mulcahy, S. R. (2015). The U–Th–Pb systematics of zircon from the Bishop Tuff: A case study in challenges to high-precision Pb/U geochronology at the millennial scale. Geochim. Cosmochim Acta 168, 88110.Google Scholar
Jakes, P. and Gill, J. B. (1970). Rare earth elements and the island arc tholeiitic series. Earth Planet. Sci. Lett. 9, 1728.Google Scholar
Joly., J. (1909). On the radioactivity of certain lavas. Phil. Mag. 18, 577.Google Scholar
Kelemen, P. B., Hirth, G., Shimizu, N., Spiegelman, M. and Dick, H. J. B. (1997). A review of melt migration processes in the adiabatically upwelling mantle beneath spreading ridges. Phil. Trans. Roy. Soc. Lond. A 355, 283318.Google Scholar
Kigoshi, K. (1967). Ionium dating of igneous rocks. Science 156, 932–4.CrossRefGoogle ScholarPubMed
Kokfelt, T. F., Hoernle, K. and Hauff, F. (2003). Upwelling and melting of the Iceland plume from radial variation of 238U–230Th disequilibria in postglacial volcanic rocks. Earth Planet. Sci. Lett. 214, 167–86.Google Scholar
Landwehr, D., Blundy, J., Chamorro-Perez, E. M., Hill, E. and Wood, B. (2001). U-series disequilibria generated by partial melting of spinel lherzolite. Earth Planet. Sci. Lett. 188, 329–48.Google Scholar
Langmuir, C. H., Bender, J. F., Bence, A. E. and Hanson, G. N. (1977). Petrogenesis of basalts from the FAMOUS area: Mid-Atlantic Ridge. Earth Planet. Sci. Lett. 36, 133–56.Google Scholar
LaTourrette, T. Z., Kennedy, A. K. and Wasserburg, G. J. (1993). Thorium–uranium fractionation by garnet: evidence for a deep source and rapid rise of oceanic basalts. Science 261, 739–42.Google Scholar
Lundstrom, C. C., Gill, J., Williams, Q. and Perfit, M. R. (1995). Mantle melting and basalt extraction by equilibrium porous flow. Science 270, 1958–61.Google Scholar
Lundstrom, C. C., Sampson, D. E., Perfit, M. R., Gill, J. and Williams, Q. (1999). Insights into mid-ocean ridge basalt petrogenesis: U-series disequilibria from Siqueiros Transform, Lamont Seamounts, and East Pacific Rise. J. Geophys. Res. 104, 13 035–48.Google Scholar
McDermott, F., Elliott, T. R., van Calsteren, P. and Hawkesworth, C. J. (1993). Measurement of 230Th/232Th ratios in young volcanic rocks by single-sector thermal ionisation mass spectrometry. Chem. Geol. (Isot. Geosci. Sect.) 103, 283–92.Google Scholar
McDermott, F. and Hawkesworth, C. (1991). Th, Pb, and Sr isotope variations in young island arc volcanics and oceanic sediments. Earth Planet. Sci. Lett. 104, 115.Google Scholar
McKenzie, D. (1985a). 230Th–238U disequilibrium and the melting processes beneath ridge axes. Earth Planet. Sci. Lett. 72, 149–57.Google Scholar
McKenzie, D. (1985b). The extraction of magma from the crust and mantle. Earth Planet. Sci. Lett. 74, 8191.Google Scholar
Newman, S., Finkel, R. C. and Macdougall, J. D. (1983). 230Th–238U disequilibrium systematics in oceanic tholeiites from 21 °N on the East Pacific Rise. Earth Planet. Sci. Lett. 65, 1733.Google Scholar
Newman, S., Finkel, R. C. and Macdougall, J. D. (1984). Comparison of 230Th–238U disequilibrium systematics in lavas from three hot spot regions: Hawaii, Prince Edward and Samoa. Geochim. Cosmochim. Acta 48, 315–24.Google Scholar
O'Hara, M. J. and Mathews, R. E. (1981). Geochemical evolution in an advancing, periodically replenished, periodically tapped, continuously fractionated magma chamber. J. Geol. Soc. Lond. 138, 237–77.Google Scholar
O'Nions, R. K. and McKenzie, D. (1993). Estimates of mantle thorium/uranium ratios from Th, U and Pb isotope abundances in basaltic melts. Phil. Trans. Roy. Soc. Lond. A 342, 6577.Google Scholar
Oversby, V. M. and Gast, P. W. (1968). Lead isotope compositions and uranium decay series disequilibrium in recent volcanic rocks. Earth Planet. Sci. Lett. 5, 199206.Google Scholar
Pickett, D. A. and Murrell, M. T. (1997). Observations of 231Pa/235U disequilibrium in volcanic rocks. Earth Planet. Sci. Lett. 148, 259–71.Google Scholar
Pyle, D. M., Dawson, J. B. and Ivanovich, M. (1991). Short-lived decay series disequilibria in the natrocarbonatite lavas of Oldoinyo Lengai, Tanzania: constraints on the timing of magma genesis. Earth Planet. Sci. Lett. 105, 378–96.Google Scholar
Qin, Z. (1992). Disequilibrium partial melting model and its implications for trace element fractionations during mantle melting. Earth Planet. Sci. Lett. 112, 7590.Google Scholar
Reagan, M. K., Volpe, A. M. and Cashman, K. V. (1992). 238U- and 232Th-series chronology of phonolite fractionation at Mount Erebus, Antarctica. Geochim. Cosmochim. Acta 56, 1401–7.Google Scholar
Reid, M. R., Coath, C. D., Harrison, T. M. and McKeegan, K. D. (1997). Prolonged residence times for the youngest rhyolites associated with Long Valley Caldera: 230Th238U ion microprobe dating of young zircons. Earth Planet. Sci. Lett. 150, 2739.Google Scholar
Rubin, K. H. and Macdougall, J. D. (1988). 226Ra excesses in mid-ocean-ridge basalts and mantle melting. Nature 335, 158–61.CrossRefGoogle Scholar
Rubin, K. H. and Macdougall, J. D. (1990). Dating of neovolcanic MORB using (226Ra/230Th) disequilibrium. Earth Planet. Sci. Lett. 101, 313–22.Google Scholar
Rubin, K. H., Macdougall, J. D. and Perfit, M. R. (1994). 210Po–210Pb dating of recent volcanic eruptions on the sea floor. Nature 368, 841–4.Google Scholar
Russo, C. J., Rubin, K. H. and Graham, D. W. (2009). Mantle melting and magma supply to the Southeast Indian Ridge: The roles of lithology and melting conditions from U-series disequilibria. Earth Planet. Sci. Lett. 278, 5566.Google Scholar
Schaefer, S. J., Sturchio, N. C., Murrell, M. T. and Williams, S. N. (1993). Internal 238U-series systematics of pumice from the November 13, 1985, eruption of Nevado del Ruiz, Colombia. Geochim. Cosmochim. Acta 57, 1215–19.Google Scholar
Sigmarsson, O., Carn, S. and Carracedo, J. C. (1998). Systematics of U-series nuclides in primitive lavas from the 1730–36 eruption of Lanzarote, Canary island, and implications for the role of garnet pyroxenites during oceanic basalt formations. Earth Planet. Sci. Lett. 162, 137–51.Google Scholar
Sigmarsson, O., Chmeleff, J., Morris, J. and Lopez-Escobar, L. (2002). Origin of 226Ra–230Th disequilibria in arc lavas from southern Chile and implications for magma transfer time. Earth Planet. Sci. Lett. 196, 189–96.Google Scholar
Sigmarsson, O., Condomines, M. and Fourcade, S. (1992). Mantle and crustal contribution in the genesis of Recent basalts from off-rift zones in Iceland: constraints from Th, Sr and O isotopes. Earth Planet. Sci. Lett. 110, 149–62.CrossRefGoogle Scholar
Sigmarsson, O., Condomines, M., Morris, J. D. and Harmon, R. S. (1990). Uranium and 10Be enrichments by fluids in Andean arc magmas. Nature 346, 163–5.Google Scholar
Sigmarsson, O., Hemond, Ch., Condomines, M., Fourcade, S. and Oskarsson, N. (1991). Origin of silicic magma in Iceland revealed by Th isotopes. Geology 19, 621–4.Google Scholar
Simon, J. I. and Reid, M. R. (2005). The pace of rhyolite differentiation and storage in an ‘archetypical’ silicic magma system, Long Valley, California. Earth Planet. Sci. Lett. 235, 123–40.Google Scholar
Sims, K. W., DePaolo, D. J., Murrell, M. T. and Baldridge, W. S. (1995). Mechanisms of magma generation beneath Hawaii and mid-ocean ridges: uranium/thorium and samarium/neodymium isotopic evidence. Science 267, 508–12.Google Scholar
Sims, K. W. W., DePaolo, D. J., Murrell, M. T. et al. (1999). Porosity of the melting zone and variations in the solid mantle upwelling rate beneath Hawaii: inferences from 238U230Th226Ra and 235U231Pa disequilibria. Geochim. Cosmochim. Acta 64, 4119–38.Google Scholar
Sims, K. W. W., Goldstein, S. J., Blichert-Toft, J. et al. (2002). Chemical and isotopic constraints on the generation and transport of magma beneath the East Pacific Rise. Geochim. Cosmochim. Acta 66, 3481–504.Google Scholar
Sims, K. W. W. and Hart, S. R. (2006). Comparison of Th, Sr, Nd and Pb isotopes in oceanic basalts: implications for mantle heterogeneity and magma genesis. Earth Planet. Sci. Lett. 245, 743–61.Google Scholar
Sims, K. W., Hart, S. R., Reagan, M. K. et al. (2008). 238U–230Th–226Ra–210Pb–210Po, 232Th–228Ra, and 235U–231Pa constraints on the ages and petrogenesis of Vailulu'u and Malumalu Lavas, Samoa. Geochem. Geophys. Geosys. 9 (4), 130.Google Scholar
Spiegelman, M. and Elliott, T. (1993). Consequences of melt transport for uranium series disequilibrium in young lavas. Earth Planet. Sci. Lett. 118, 120.Google Scholar
Stracke, A., Bourdon, B. and McKenzie, D. (2006). Melt extraction in the Earth's mantle: constraints from U–Th–Pa–Ra studies in oceanic basalts. Earth Planet. Sci. Lett. 244, 97112.Google Scholar
Taddeucci, A., Broecker, W. S. and Thurber, D. L. (1967). 230Th dating of volcanic rocks. Earth Planet. Sci. Lett. 3, 338–42.Google Scholar
Tanguy, J. C., Condomines, M., Le Goff, M. et al. (2007). Mount Etna eruptions of the last 2,750 years: revised chronology and location through archeomagnetic and 226Ra–230Th dating. Bull. Volcanol. 70, 5583.CrossRefGoogle Scholar
Thomas, R. B., Hirschmann, M. M., Cheng, H., Reagan, M. K. and Edwards, R. L. (2002). (231Pa/235U)–(230Th/238U) of young mafic volcanic rocks from Nicaragua and Costa Rica and the influence of flux melting on U-series systematics of arc lavas. Geochim. Cosmochim. Acta 66, 4287–309.Google Scholar
Thompson, R. N., Morrison, M. A., Hendry, G. L. and Parry, S. J. (1984). An assessment of the relative roles of crust and mantle in magma genesis: an elemental approach. Phil. Trans. Roy. Soc. Lond. A 310, 549–99.Google Scholar
Turner, S., Bourdon, B., Hawkesworth, C. J. and Evans, P. (2000). 226Ra230Th evidence for multiple dehydration events, rapid melt ascent and the time scales of differentiation beneath the Tonga Kermadec island arc. Earth Planet. Sci. Lett. 179, 581–93.Google Scholar
Turner, S., Evans, P. and Hawkesworth, C. (2001). Ultra-fast source-to-surface movement of melt at island arcs from 226Ra–230Th systematics. Nature 292, 1363–6.Google Scholar
Turner, S., Hawkesworth, C., Rogers, N. et al. (1997). 238U–230Th disequilibria, magma petrogenesis, and flux rates beneath the depleted TongaKermadec island arc. Geochim. Cosmochim. Acta 61, 4855–84.Google Scholar
Turner, S., Kokfelt, T., Hauff, F. et al. (2015). Mid-ocean ridge basalt generation along the slow-spreading, South Mid-Atlantic Ridge (5–11 S): Inferences from 238U–230Th–226Ra disequilibria. Geochim. Cosmochim. Acta 169, 152–66.Google Scholar
Turner, S., Regelous, M., Hawkesworth, C. and Rostami, K. (2006). Partial melting processes above subducting plates: constraints from 231Pa–235U disequilibria. Geochim. Cosmochim. Acta 70, 480503.CrossRefGoogle Scholar
Volpe, A. M. and Goldstein, S. J. (1993). 226Ra–230Th disequilibrium in axial and off-axis mid-ocean ridge basalts. Geochim. Cosmochim. Acta 57, 1233–41.Google Scholar
Williams, R. W. and Gill, J. B. (1989). Effects of partial melting on the uranium decay series. Geochim. Cosmochim. Acta 53, 1607–19.Google Scholar
Williams, R. W., Gill, J. B. and Bruland, K. W. (1986). Ra–Th disequilibria systematics: timescale of carbonatite magma formation at Oldoinyo Lengai volcano, Tanzania. Geochim. Cosmochim. Acta 50, 1249–59.Google Scholar
Wilson, C. J. N. amd Charlier, B. L. A. (2009). Rapid rates of magma generation at contemporaneous magma systems, Taupo Volcano, New Zealand: insights from U–Th model-age spectra in zircons. J. Petrol. 50, 875907.Google Scholar
Wood, B. J., Blundy, J. D. and Robinson, J. A. C. (1999). The role of clinopyroxene in generating U-series disequilibrium during mantle melting. Geochim. Cosmochim. Acta 63, 1613–20.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×