Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-17T04:57:00.618Z Has data issue: false hasContentIssue false

Chapter 16 - Fission-Track Dating

Published online by Cambridge University Press:  01 February 2018

Alan P. Dickin
Affiliation:
McMaster University, Ontario
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbarand, J., Carter, A., Wood, I. and Hurford, T. (2003a). Compositional and structural control of fission-track annealing in apatite. Chem. Geol. 198, 107–37.CrossRefGoogle Scholar
Barbarand, J., Hurford, T. and Carter, A. (2003b). Variation in apatite fission-track length measurement: implications for thermal history modelling. Chem. Geol. 198, 77106.Google Scholar
Bhandari, N. Bhat, S. G., Rajogopalan, G., Tamhane, A. S. and Venkatavaradan, V. S. (1971). Fission fragment lengths in apatite: recordable track lengths. Earth Planet. Sci. Lett. 13, 191–9.CrossRefGoogle Scholar
Bigazzi, G. (1967). Length of fission tracks and age of muscovite samples. Earth Planet. Sci. Lett. 3, 434–8.Google Scholar
Briggs, N. D., Naeser, C. W. and McCulloh, T. H. (1981). Thermal history of sedimentary basins by fission-track dating. Nucl. Tracks 5, 235–7 (abstract).Google Scholar
Burtner, R. L., Nigrini, A. and Donelick, R. A. (1994). Thermochronology of Lower Cretaceous source rocks in the Idaho–Wyoming thrust belt. AAPG Bull. 78, 1613–36.Google Scholar
Carlson, W. D., Donelick, R. A. and Ketcham, R. A. (1999). Variability of apatite fission-track annealing kinetics: I. Experimental results. Amer. Mineral. 84, 1213–23.Google Scholar
Carter, A. and Moss, S. J. (1999). Combined detrital-zircon fission-track and U–Pb dating: A new approach to understanding hinterland evolution. Geology 27, 235–8.2.3.CO;2>CrossRefGoogle Scholar
Corrigan, J. (1991). Inversion of apatite fission track data for thermal history information. J. Geophys. Res. 96, 10 347–60.Google Scholar
Corson, D. R. and Thornton, R. L. (1939). Disintegration of uranium. Phys. Rev. 55, 509.CrossRefGoogle Scholar
Dakowski, M. (1978). Length distributions of fission tracks in thick crystals. Nucl. Track Det. 2, 181–9.CrossRefGoogle Scholar
Donelick, R. A. (1991). Crystallographic orientation dependence of mean etchable fission track length in apatite: An empirical model and experimental observations. Amer. Mineral. 76, 8391.Google Scholar
Donelick, R., Farley, K., O'Sullivan, P. and Asimow, P. (2003). Experimental evidence concerning the pressure dependence of He diffusion and fission-track annealing kinetics in apatite. On Track 26, 1921.Google Scholar
Donelick, R. A., Ketcham, R. A. and Carlson, W. D. (1999). Variability of apatite fission-track annealing kinetics: II. Crystallographic orientation effects. Amer. Mineral. 84, 1224–34.CrossRefGoogle Scholar
Donelick, R. A. and Miller, D. S. (1991). Enhanced TINT fission track densities in low spontaneous track density apatites using 252Cf-derived fission fragment tracks: A model and experimental observations. Int. J. Rad. App. Instrum. 18, 301–7.Google Scholar
Donelick, R. A., O'Sullivan, P. B. and Ketcham, R. A. (2005). Apatite fission-track analysis. Rev. Mineral. Geochem. 58, 4994.Google Scholar
Duddy, I. R., Green, P. F. and Laslett, G. M. (1988). Thermal annealing of fission tracks in apatite 3. Variable temperature behaviour. Chem. Geol. (Isot. Geosci. Sect.) 73, 2538.Google Scholar
Enkelmann, E., Ehlers, T. A., Buck, G. and Schatz, A. K. (2012). Advantages and challenges of automated apatite fission track counting. Chem. Geol. 322, 278–89.Google Scholar
Fleischer, R. L. and Hart, H. R. (1972). Fission track dating: techniques and problems. In: Bishop, W., Miller, J. and Cole, S. (Eds) Calibration of Hominoid Evolution. Scottish Academic Press, pp. 135–70.Google Scholar
Fleischer, R. L. and Price, P. B. (1964a). Techniques for geological dating of minerals by chemical etching of fission fragment tracks. Geochim. Cosmochim. Acta 28, 1705–14.Google Scholar
Fleischer, R. L. and Price, P. B. (1964b). Glass dating by fission fragment tracks. J. Geophys. Res. 69, 331–9.Google Scholar
Fleischer, R. L., Price, P. B., Symes, E. M. and Miller, D. S. (1964). Fission track ages and track-annealing behaviour of some micas. Science 143, 349–51.Google Scholar
Fleischer, R. L., Price, P. B. and Walker, R. M. (1965a). Tracks of charged particles in solids. Science 149, 383–93.Google Scholar
Fleischer, R. L., Price, P. B. and Walker, R. M. (1965b). Effects of temperature, pressure, and ionization on the formation and stability of fission tracks in minerals and glasses. J. Geophys. Res. 70, 1497–502.Google Scholar
Fleischer, R. L., Price, P. B. and Walker, R. M. (1968). Charged particle tracks: tools for geochronology and meteor studies. In: Hamilton, E. and Farquhar, R. M. (Eds) Radiometric Dating for Geologists. Wiley Interscience, pp. 417–35.Google Scholar
Fleischer, R. L., Price, P. B. and Walker, R. M. (1975). Nuclear Tracks in Solids. University of California Press, 605 pp.Google Scholar
Galbraith, R. F. (1988). Graphical display of estimates having differing standard errors. Tectonometrics 30, 271–81.Google Scholar
Galbraith, R. F. and Laslett, G. M. (1988). Some calculations relevant to thermal annealing of fission tracks in apatite. Proc. Roy. Soc. Lond. A. 419, 305–21.Google Scholar
Galbraith, R. F., Laslett, G. M., Green, P. F. and Duddy, I. R. (1990). Apatite fission track analysis: geological thermal history analysis based on a three-dimensional random process of linear radiation damage. Phil. Trans. Roy. Soc. Lond. A 332, 419–38.Google Scholar
Gleadow, A. J., Belton, D. X., Kohn, B. P. and Brown, R. W. (2002). Fission track dating of phosphate minerals and the thermochronology of apatite. Rev. Mineral. Geochem. 48, 579630.Google Scholar
Gleadow, A. J. W. and Duddy, I. R. (1981). A natural long-term track annealing experiment for apatite. Nucl. Tracks 5, 169–74.Google Scholar
Gleadow, A. J. W., Duddy, I. R., Green, P. F. and Lovering, J. F. (1986). Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis. Contrib. Mineral. Petrol. 94, 405–15.CrossRefGoogle Scholar
Gleadow, A. J. W., Duddy, I. R. and Lovering, J. F. (1983). Apatite fission-track analysis as a paleotemperature indicator for hydrocarbon exploration. Aust. Petrol. Explor. Soc. J. 23, 93102.Google Scholar
Gleadow, A. J., Gleadow, S. J., Belton, D. X. et al. (2009). Coincidence mapping – a key strategy for the automatic counting of fission tracks in natural minerals. Geol. Soc. Lond. Spec. Pub. 324, 2536.Google Scholar
Gleadow, A. J. and Seiler, C. (2015). Fission track dating and thermochronology. In: Rink, W. J. and Thompson, J. W. (Eds) Encyclopedia of Scientific Dating Methods. Springer, pp. 285–96.Google Scholar
Green, P. F. (1981). ‘Track-in track’ length measurements in annealed apatites. Nucl. Tracks 5, 121–8.Google Scholar
Green, P. F., Duddy, I. R., Gleadow, A. J. W. and Tingate, P. R. (1985). Fission-track annealing in apatite: track length measurements and the form of the Arrhenius plot. Nucl. Tracks 10, 323–8.Google Scholar
Green, P. F., Duddy, I. R., Gleadow, A. J. W., Tingate, P. R. and Laslett, G. M. (1986). Thermal annealing of fission tracks in apatite. 1. A qualitative description. Chem. Geol. (Isot. Geosci. Sect.) 59, 237–53.Google Scholar
Green, P. F., Duddy, I. R., Laslett, G. M. et al. (1989). Thermal annealing of fission tracks in apatite 4. Quantitative modelling techniques and extension to geological timescales. Chem. Geol. (Isot. Geosci. Sect.) 79, 155–82.CrossRefGoogle Scholar
Green, P. F. and Durrani, S. A. (1977). Annealing studies of tracks in crystals. Nucl. Track Det. 1, 33–9.CrossRefGoogle Scholar
Hasebe, N., Barbarand, J., Jarvis, K., Carter, A. and Hurford, A. J. (2004). Apatite fission-track chronometry using laser ablation ICP–MS. Chem. Geol. 207, 135–45.Google Scholar
Holden, N. E. and Hoffman, D. C. (2000). Spontaneous fission half-lives for ground-state nuclide (Technical report). Pure Appl. Chem. 72, 1525–62.CrossRefGoogle Scholar
Hurford, A. J. (1990). Standardization of fission track calibration: recommendation by the Fission Track Working Group of the I.U.G.S. Subcommission on Geochronology. Chem. Geol. (Isot. Geosci. Sect.) 80, 171–8.CrossRefGoogle Scholar
Hurford, A. J. and Carter, A. (1991). The role of fission track dating in discrimination of provenance. In: Morton, A. C., Todd, S. P. and Haughton, P. D. W. (Eds) Developments in Sedimentary Provenance Studies. Geol. Soc. Spec. Pub. 57, pp. 6778.CrossRefGoogle Scholar
Hurford, A. J., Fitch, F. J. and Clarke, A. (1984). Resolution of the age structure of the detrital zircon populations of two Lower Cretaceous sandstones from the Weald of England by fission track dating. Geol. Mag. 121, 269–77.Google Scholar
Hurford, A. J. and Green, P. F. (1982). A users’ guide to fission track dating calibration. Earth Planet. Sci. Lett. 59, 343–54.CrossRefGoogle Scholar
Hurford, A. J. and Green, P. F. (1983). The ζ age calibration of fission-track dating. Isot. Geosci. 1, 285317.Google Scholar
Jonckheere, R., Enkelmann, E., Min, M., Trautmann, C. and Ratschbacher, L. (2007). Confined fission tracks in ion-irradiated and step-etched prismatic sections of Durango apatite. Chem. Geol. 242, 202–17.CrossRefGoogle Scholar
Jonckheere, R. and Ratschbacher, L. (2015). Standardless fission-track dating of the Durango apatite age standard. Chem. Geol. 417, 4457.Google Scholar
Ketcham, R. A. (2003). Observations on the relationship between crystallographic orientation and biasing in apatite fission-track measurements. Amer. Mineral. 88, 817–29.CrossRefGoogle Scholar
Ketcham, R. A. (2005). Forward and inverse modeling of low-temperature thermochronometry data. Rev. Mineral. Geochem. 58, 275314.CrossRefGoogle Scholar
Ketcham, R. A., Carter, A., Donelick, R. A., Barbarand, J. and Hurford, A. J. (2007). Improved modeling of fission-track annealing in apatite. Amer. Mineral. 92, 799810.Google Scholar
Ketcham, R. A., Donelick, R. A. and Carlson, W. D. (1999). Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales. Amer. Mineral. 84, 1235–55.Google Scholar
Kimura, J. I., Danhara, T. and Iwano, H. (2000). A preliminary report on trace element determinations in zircon and apatite crystals using excimer laser ablation-inductively coupled plasma mass spectrometry (ExLA-ICPMS). Fission Track News Lett. 13, 1120.Google Scholar
Kohn, B. P., Belton, D. X., Brown, R. W. et al. (2003). Comment on: “Experimental evidence for the pressure dependence of fission track annealing in apatite” by A. S. Wendt et al. [Earth Planet. Sci. Lett. 201 (2002) 593–607]. Earth Planet. Sci. Lett. 215, 299306.Google Scholar
Kowallis, B. J., Heaton, J. S. and Bringhurst, K. (1986). Fission-track dating of volcanically derived sedimentary rocks. Geology 14, 1922.Google Scholar
Lal, D., Rajan, R. S. and Tamhane, A. S. (1969). Chemical composition of nuclei of Z >22 in cosmic rays using meteoritic minerals as detectors. Nature 221, 33–7.CrossRefGoogle Scholar
Laslett, G. M., Galbraith, R. F. and Green, P. F. (1994). The analysis of projected fission track lengths. Rad. Meas. 23, 103–23.CrossRefGoogle Scholar
Laslett, G. M., Gleadow, A. J. W. and Duddy, I. R. (1984). The relationship between fission track length and track density in apatite. Nucl. Tracks 9, 2937.Google Scholar
Laslett, G. M., Green, P. F., Duddy, I. R. and Gleadow, A. J. W. (1987). Thermal annealing of fission tracks in apatite, 2. A quantitative analysis. Chem. Geol. (Isot. Geosci. Sect.) 65, 113.Google Scholar
Laslett, G. M., Kendall, W. S., Gleadow, A. J. W. and Duddy, I. R. (1982). Bias in measurement of fission-track length distributions. Nucl. Tracks 6, 7985.Google Scholar
Maurette, M., Pellas, P. and Walker, R. M. (1964). Etude des traces fission fossiles dans le mica. Bull. Soc. Franc. Miner. Cryst. 87, 617.Google Scholar
Naeser, C. W. (1979a). Fission-track dating and geological annealing of fission tracks. In: Jager, E. and Hunziker, J. C. (Eds) Lectures in Isotope Geology. Springer-Verlag, pp. 154–69.Google Scholar
Naeser, C. W. (1979b). Thermal history of sedimentary basins: Fission-track dating of subsurface rocks. In: Scholle, P. A., and Schluger, P. R. (Eds) Aspects of Diagenesis. Soc. Econ. Paleontol. Mineral. Spec. Pub. 26, pp. 109–12.Google Scholar
Naeser, C. W. (1981). The fading of fission tracks in the geologic environment – data from deep drill holes. Nucl. Tracks. 5, 248–50 (abs).Google Scholar
Naeser, C. W. and Faul, H. (1969). Fission track annealing in apatite and sphene. J. Geophys. Res. 74, 705–10.Google Scholar
Naeser, C. W., Zimmermann, R. A. and Cebula, G. T. (1981). Fission-track dating of apatite and zircon: an inter-laboratory comparison. Nucl. Tracks 5, 6572.CrossRefGoogle Scholar
Naeser, N. D. and Naeser, C. W. (1984). Fission-track dating. In: Mahaney, W. C. (Ed.), Quaternary Dating Methods. Developments in Paleontology and Stratigraphy 7. Elsevier, pp. 87100.Google Scholar
Naeser, N. D., Naeser, C. W. and McCulloh, T. H. (1989). The application of fission-track dating to the depositional and thermal history of rocks in sedimentary basins. In: Naeser, N. D. and McCulloh, T. H. (Eds) Thermal History of Sedimentary Basins. Springer-Verlag, pp. 157–80.Google Scholar
Petford, N., Miller, J. A. and Briggs, J. (1993). The automated counting of fission tracks in an external detector by image analysis. Comput. Geosci. 19, 585–91.CrossRefGoogle Scholar
Price, P. B. and Walker, R. M. (1962a). Chemical etching of charged particle tracks in solids. J. Appl. Phys. 33, 3407–12.Google Scholar
Price, P. B. and Walker, R. M. (1962b). Observation of fossil particle tracks in natural micas. Nature 196, 732–4.Google Scholar
Price, P. B. and Walker, R. M. (1963). Fossil tracks of charged particles in mica and the age of minerals. J. Geophys. Res. 68, 4847–62.Google Scholar
Rahl, J. M., Reiners, P. W., Campbell, I. H., Nicolescu, S. and Allen, C. M. (2003). Combined single-grain (U–Th)/He and U/Pb dating of detrital zircons from the Navajo Sandstone, Utah. Geology 31, 761–4.Google Scholar
Reimer, G. M., Storzer, D. and Wagner, G. A. (1970). Geometry factor in fission track counting. Earth Planet. Sci. Lett. 9, 401–4.Google Scholar
Reiners, P. W., Campbell, I. H., Nicolescu, S. et al. (2005). (U–Th)/(He–Pb) double dating of detrital zircons. Amer. J. Sci. 305, 259311.Google Scholar
Schmidt, J. S., Lelarge, M. L. M. V., Conceicao, R. V. and Balzaretti, N. M. (2014). Experimental evidence regarding the pressure dependence of fission track annealing in apatite. Earth Planet. Sci. Lett. 390, 17.Google Scholar
Silk, E. C. H. and Barnes, R. S. (1959). Examination of fission fragment tracks with an electron microscope. Phil. Mag. 4, 970–2.Google Scholar
Storzer, D. and Poupeau, G. (1973). Ages plateaux de mineraux et verres par la methode des traces de fission. C. R. Acad. Sci. Paris 276, 137–9.Google Scholar
Storzer, D. and Wagner, G. A. (1969). Correction of thermally lowered fission track ages of tektites. Earth Planet. Sci. Lett. 5, 463–8.Google Scholar
Storzer, D. and Wagner, G. A. (1982). The application of fission track dating in stratigraphy: a critical review. In: Odin, G. S. (Ed.) Numerical Dating in Stratigraphy. Wiley, pp. 199221.Google Scholar
Wagner, G. A. (1978). Archaeological applications of fission-track dating. Nucl. Track Det. 2, 5163.CrossRefGoogle Scholar
Wagner, G. A. (1988). Apatite fission-track geochrono-thermometer to 60°C: projected length studies. Chem. Geol. (Isot. Geosci. Sect.) 72, 145–53.Google Scholar
Wagner, G. A., Coyle, D. A., Duyster, J. et al. (1997). Post-Variscan thermal and tectonic evolution of the KTB site and its surroundings. J. Geophys. Res. 102 (B8), 18 221–32.Google Scholar
Wagner, G. A. and Reimer, G. M. (1972). Fission-track tectonics: the tectonic interpretation of fission track apatite ages. Earth Planet. Sci. Lett. 14, 263–8.Google Scholar
Wagner, G. A., Reimer, G. M. and Jager, E. (1977). Cooling ages derived by apatite fission-track, mica Rb–Sr and K–Ar dating: the uplift and cooling history of the Central Alps. Mem. Inst. Geol. Min. Univ. Padova 30, 127.Google Scholar
Walter, R. C. (1989). Application and limitation of fission-track geochronology to Quaternary tephras. Quat. Int. 1, 3546.Google Scholar
Wendt, A. S., Vidal, O. and Chadderton, L. T. (2002). Experimental evidence for the pressure dependence of fission track annealing in apatite. Earth Planet. Sci. Lett. 201, 593607.Google Scholar
Yoshioka, T., Tsuruta, T., Iwano, H. and Danhara, T. (2005). Spontaneous fission decay constant of 238U determined by SSNTD method using CR-39 and DAP plates. Nucl. Instrum. Meth. Phys. Res. A 555, 386–95.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Fission-Track Dating
  • Alan P. Dickin, McMaster University, Ontario
  • Book: Radiogenic Isotope Geology
  • Online publication: 01 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781316163009.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Fission-Track Dating
  • Alan P. Dickin, McMaster University, Ontario
  • Book: Radiogenic Isotope Geology
  • Online publication: 01 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781316163009.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Fission-Track Dating
  • Alan P. Dickin, McMaster University, Ontario
  • Book: Radiogenic Isotope Geology
  • Online publication: 01 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781316163009.017
Available formats
×