Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-17T05:47:19.217Z Has data issue: false hasContentIssue false

Chapter 1 - Nucleosynthesis and Nuclear Decay

Published online by Cambridge University Press:  01 February 2018

Alan P. Dickin
Affiliation:
McMaster University, Ontario
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkinson, R. and Houtermans, F. G. (1929). Zur frage der aufbaumoglichkeit der elemente in sternen. Z. Physik 54, 656–65.CrossRefGoogle Scholar
Bateman, H. (1910). Solution of a system of differential equations occurring in the theory of radio-active transformations. Proc. Cambridge Phil. Soc. 15, 423–7.Google Scholar
Begemann, F., Ludwig, K. R., Lugmair, G. W., et al. (2001). Call for an improved set of decay constants for geochronological use. Geochim. Cosmochim. Acta 65, 111–21.CrossRefGoogle Scholar
Bethe, H. A. (1939). Energy production in stars. Phys. Rev. 55, 434–56.CrossRefGoogle Scholar
Blake, J. B. and Schramm, D. N. (1976). A possible alternative to the r-process. Astrophys. J. 209, 846–9.Google Scholar
Brandon, A. D., Norman, M. D., Walker, R. J. and Morgan, J. W. (1999). 186Os–187Os systematics of Hawaiian picrites. Earth Planet. Sci. Lett. 174, 2542.Google Scholar
Burbidge, E. M., Burbidge, G. R., Fowler, W. A. and Hoyle, F. (1957). Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547647.Google Scholar
Burrows, A. (2000). Supernova explosions in the Universe. Nature 403, 727–33.CrossRefGoogle ScholarPubMed
Casse, M., Lehoucq, R. and Vangloni-Flam, E. (1995). Production and evolution of light elements in active star-forming regions. Nature 373, 318–19.CrossRefGoogle ScholarPubMed
Catchen, G. L. (1984). Application of the equations of radioactive growth and decay to geochronological models and explicit solution of the equations by Laplace transformation. Isot. Geosci. 2, 181–95.Google Scholar
Cheng, H., Edwards, R. L., Shen, C. C., et al. (2013). Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet. Sci. Lett. 371, 8291.Google Scholar
Cowan, G. A. (1976). A natural fission reactor. Sci. Amer. 235 (1), 3647.CrossRefGoogle Scholar
Fermi, E. (1934). Versuch einer theorie der β-strahlen. Z. Physik 88, 161–77.CrossRefGoogle Scholar
Geissel, H., Weick, H., Winkler, M., et al. (2003). The Super-FRS project at GSI. Nucl. Instrum. Meth. in Phys. Res. B. 204, 7185.CrossRefGoogle Scholar
Hanna, G. C. (1959). Alpha-radioactivity. In: Segre, E. (Ed.) Experimental Nuclear Physics, Vol. 3, Wiley, pp. 54257.Google Scholar
Hansen, P. G. (1987). Beyond the neutron drip line. Nature 328, 476–7.CrossRefGoogle Scholar
Heirtzler, J. R., Dickson, G. O., Herron, E. M., Pitman, W. C. and LePichon, X. (1968) Marine magnetic anomalies, geomagnetic field reversals, and motions of the ocean floor and continents. J. Geophys. Res. 73, 2119–36.Google Scholar
Hensley, W. K., Basset, W. A. and Huizenga, J. R. (1973). Pressure dependence of the radioactive decay constant of beryllium – 7. Science 181, 1164–5.CrossRefGoogle ScholarPubMed
Hutton, J. (1788). Theory of the Earth; or an investigation of the laws observable in the composition, dissolution, and restoration of land upon the globe. Trans. Roy. Soc. Edin. 1, 209304.Google Scholar
Iben, I. (1967). Stellar evolution within and off the Main Sequence. Ann. Rev. Astron. Astrophys. 5, 571626.Google Scholar
Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. T. and Essling, A. M. (1971). Precision measurement of half-lives and specific activities of U-235 and U-238. Phys. Rev. C. 4, 1889.Google Scholar
Lederer, C. M. and Shirley, V. S. (1978). Table of Isotopes (7th Edn), Wiley.Google Scholar
Lugmair, G. W. and Marti, K. (1978). Lunar initial 143Nd/144Nd: differential evolution of the lunar crust and mantle. Earth Planet. Sci. Lett. 39, 349–57.Google Scholar
Mattauch, J. (1934). Zur systematiek der isotopen. Z. Physik 91, 361–71.Google Scholar
Mattinson, J. M. (2010). Analysis of the relative decay constants of 235U and 238U by multi-step CA-TIMS measurements of closed-system natural zircon samples. Chem. Geol. 275, 186–98.Google Scholar
Meyer, B. S. (2005). Synthesis of short-lived radioactivities in a massive star. In: Krot, A.N. et al. (Eds) Chondrites and the Protoplanetary Disk, 341, 515.Google Scholar
Naudet, R. (1976). The Oklo nuclear reactors: 1800 million years ago. Interd. Sci. 1, 7284.Google Scholar
Nir-El, Y. and Lavi, N. (1998). Measurement of the half-life of 176Lu. Applied Rad. Isot. 49, 1653–5.Google Scholar
O'Nions, R. K., Carter, S. R., Evensen, N. M. and Hamilton, P. J. (1979). Geochemical and cosmochemical applications of Nd isotope analysis. Ann. Rev. Earth Planet. Sci. 7, 1138.Google Scholar
Panov, I. V. and Janka, H. T. (2009). On the dynamics of proto-neutron star winds and r-process nucleosynthesis. Astron. Astrophys. 494, 829–44.CrossRefGoogle Scholar
Raffenach, J. C., Menes, J., Devillers, C., Lucas, M. and Hagemann, R. (1976). Etudes chimiques et isotopiques de l'uranium, du plomb et de plusieurs produits de fission dans un echantillon de mineral du reacteur naturel d'Oklo. Earth Planet. Sci. Lett. 30, 94108.Google Scholar
Reeves, H. (1974). Origin of the light elements. Ann. Rev. Astron. Astrophys. 12, 437–69.Google Scholar
Renne, P. R., Mundil, R., Balco, G., Min, K. and Ludwig, K. R. (2010). Joint determination of 40K decay constants and 40Ar/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochim. Cosmochim. Acta, 74, 5349–67.CrossRefGoogle Scholar
Ringwood, A. E. (1979). Composition and origin of the Earth. In: McElhinny, M. W. (Ed.) The Earth: its Origin, Structure and Evolution. Academic Press, pp. 158.Google Scholar
Robert, J., Miranda, C. F. and Muxart, R. (1969). Mesure de la periode du protactinium-231 par microcalorimetrie. Radiochimica Acta 11, 104–8.CrossRefGoogle Scholar
Rose, H. J. and Jones, G. A. (1984). A new kind of radioactivity. Nature 307, 245–7.Google Scholar
Ross, J. E. and Aller, L. H. (1976). The chemical composition of the Sun. Science 191, 1223–9.CrossRefGoogle ScholarPubMed
Rutherford, E. and Soddy, F. (1902). The radioactivity of thorium compounds II. The cause and nature of radioactivity. J. Chem. Soc. Lond. 81, 837–60.Google Scholar
Seeger, P. A., Fowler, W. A. and Clayton, D. D. (1965). Nucleosynthesis of heavy elements by neutron capture. Astrophys. J. Supp. 11, 121–66.Google Scholar
Shlyakhter, A. I. (1976). Direct test of the constancy of fundamental nuclear constants. Nature 264, 340.CrossRefGoogle Scholar
Smoliar, M. I., Walker, R. J. and Morgan, J. W. (1996). Re–Os ages of group IIA, IIIA, IVA, and IVB iron meteorites. Science 271, 1099.Google Scholar
Steiger, R. H. and Jager, E. (1977). Subcommission on geochronology: convention on the use of decay constants in geo- and cosmo-chronology. Earth Planet. Sci. Lett. 36, 359–62.CrossRefGoogle Scholar
Thoennessen, M. (2013). Current status and future potential of nuclide discoveries. Rep. Prog. Phys. 76, 056301.CrossRefGoogle ScholarPubMed
Thoennessen, M. and Sherrill, B. (2011). From isotopes to the stars. Nature 473, 25–6.Google Scholar
Villa, I. M., De Bièvre, P., Holden, N. E. and Renne, P. R. (2015). IUPAC-IUGS recommendation on the half life of 87 Rb. Geochim. Cosmochim. Acta 164, 382–5.Google Scholar
Wanajo, S. (2007). Cold r-process in neutrino-driven winds. Astrophys. J. Lett. 666, L77.Google Scholar
Weinberg, S. (1977). The First Three Minutes. Andre Deutsch, 190 pp.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×