Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-17T05:00:23.207Z Has data issue: false hasContentIssue false

Chapter 11 - Noble Gas Geochemistry

Published online by Cambridge University Press:  01 February 2018

Alan P. Dickin
Affiliation:
McMaster University, Ontario
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldrich, L. T. and Nier, A. O. (1948). The occurrence of He3 in natural sources of helium. Phys. Rev. 74, 1590–4.CrossRefGoogle Scholar
Allegre, C. J., Sarda, P. and Staudacher, T. (1993). Speculations about the cosmic origin of He and Ne in the interior of the Earth. Earth Planet. Sci. Lett. 117, 229–33.CrossRefGoogle Scholar
Allegre, C. J., Staudacher, T. and Sarda, P. (1986). Rare gas systematics: formation of the atmosphere, evolution and structure of the Earth's mantle. Earth Planet. Sci. Lett. 81, 127–50.Google Scholar
Allegre, C. J., Staudacher, T., Sarda, P. and Kurz, M. (1983). Constraints on evolution of Earth's mantle from rare gas systematics. Nature 303, 762–6.CrossRefGoogle Scholar
Alvarez, L. W. and Cornog, R. (1939). Helium and hydrogen of mass 3. Phys. Rev. 56, 613.Google Scholar
Anderson, D. L. (1993). Helium-3 from the mantle: primordial signal or cosmic dust? Science 261, 170–6.Google Scholar
Anderson, D. L. (1998). The helium paradoxes. Proc. Nat. Acad. Sci. 95, 4822–7.Google Scholar
Anderson, D. L. (2001). A statistical test of the two reservoir model for helium isotopes. Earth Planet. Sci. Lett. 193, 7782.Google Scholar
Armytage, R. M., Jephcoat, A. P., Bouhifd, M. A. and Porcelli, D. (2013). Metal–silicate partitioning of iodine at high pressures and temperatures: Implications for the Earth's core and 129Xe budgets. Earth Planet. Sci. Lett. 373, 140–9.Google Scholar
Ballentine, C. J. and Holland, G. (2008). What CO2 well gases tell us about the origin of noble gases in the mantle and their relationship to the atmosphere. Phil. Trans. Roy. Soc. Lond. A 366, 4183–203.Google Scholar
Ballentine, C. J., Marty, B., Sherwood Lollar, B. and Cassidy, M. (2005). Neon isotopes constrain convection and volatile origin in the Earth's mantle. Nature 433, 33–8.CrossRefGoogle ScholarPubMed
Bernatowicz, T., Brannon, J., Brazzle, R. et al. (1992). Neutrino mass limits from a precise determination of ββ-decay rates of 128Te and 130Te. Phys. Rev. Lett. 69, 2341–4.Google Scholar
Black, D. C. (1972). On the origins of trapped helium, neon and argon isotopic variations in meteorites – I. Gas-rich meteorites, lunar soil and breccia. Geochim. Cosmochim. Acta 36, 347–75.Google Scholar
Bouhifd, M. A., Jephcoat, A. P., Heber, V. S. and Kelley, S. P. (2013). Helium in Earth's early core. Nature Geosci. 6, 982–6.Google Scholar
Butler, W. A., Jeffery, P. M., Reynolds, J. H. and Wasserburg, G. J. (1963). Isotopic variations in terrestrial xenon. J. Geophys. Res. 68, 3283–91.CrossRefGoogle Scholar
Caffee, M. W., Hudson, G. B., Velsko, C. et al. (1988). Non-atmospheric noble gases from CO2 well gases. Lunar Planet. Sci. XIX, 154–5 (abs).Google Scholar
Caffee, M. W., Hudson, G. B., Velsko, C. et al. (1999). Primordial noble gases from Earth's mantle: identification of a primitive volatile component. Science 285, 2115–18.Google Scholar
Cerling, T. E. (1989). Dating geomorphologic surfaces using cosmogenic 3He. Quaternary Res. 33, 148–56.Google Scholar
Clarke, W. B., Beg, M. A. and Craig, H. (1969). Excess 3He in the sea: evidence for terrestrial primordial helium. Earth Planet. Sci. Lett. 6, 213–20.CrossRefGoogle Scholar
Clarke, W. B., Jenkins, W. J. and Top, Z. (1976). Determination of tritium by mass-spectrometric measurement of 3He. Int. J. Appl. Rad. Isot. 27, 515–22.CrossRefGoogle Scholar
Class, C. and Goldstein, S. L. (2005). Evolution of helium isotopes in the Earth's mantle. Nature 436, 1107–12.CrossRefGoogle ScholarPubMed
Colin, A., Moreira, M., Gautheron, C. and Burnard, P. (2015). Constraints on the noble gas composition of the deep mantle by bubble-by-bubble analysis of a volcanic glass sample from Iceland. Chem. Geol. 417, 173–83.Google Scholar
Crabb, J. and Anders, E. (1981). Noble gases in E-chondrites. Geochim. Cosmochim. Acta 45, 2443–64.Google Scholar
Craig, H. and Lupton, J. E. (1976). Primordial neon, helium, and hydrogen in oceanic basalts. Earth Planet. Sci. Lett. 31, 369–85.Google Scholar
Craig, H. and Poreda, R. J. (1986). Cosmogenic 3He in terrestrial rocks: the summit lavas of Maui. Proc. Natl. Acad. Sci. USA 83, 1970–4.Google Scholar
Damon, P. E. and Kulp, L. (1958). Excess helium and argon in beryl and other minerals. Amer. Miner. 43, 433–59.Google Scholar
Ellam, R. M. and Stuart, F. M. (2004). Coherent He–Nd–Sr isotope trends in high 3He/4He basalts: implications for a common reservoir, mantle heterogeneity and convection. Earth Planet. Sci. Lett. 228, 511–23.CrossRefGoogle Scholar
Eugster, O., Eberhardt, P. and Geiss, J. (1967). 81Kr in meteorites and 81Kr radiation ages. Earth Planet. Sci. Lett. 2, 7782.Google Scholar
Fanale, F. P. (1971). A case for catastrophic early degassing of the Earth. Chem. Geol. 8, 79105.CrossRefGoogle Scholar
Farley, K. A. (1995a). Rapid cycling of subducted sediments into the Samoan mantle plume. Geology 23, 531–4.Google Scholar
Farley, K. A. (1995b). Cenozoic variations in the flux of interplanetary dust recorded by 3He in a deep-sea sediment. Nature 376, 153–6.CrossRefGoogle Scholar
Farley, K. A. and Craig, H. (1994). Atmospheric argon contamination of ocean island basalt olivine phenocrysts. Geochim. Cosmochim. Acta 58, 2509–17.Google Scholar
Farley, K. A. and Eltgroth, S. F. (2003). An alternative age model for the Paleocene–Eocene thermal maximum using extraterrestrial 3 He. Earth Planet. Sci. Lett. 208, 135–48.Google Scholar
Farley, K. A., Montanari, A., Shoemaker, E. M. and Shoemaker, C. S. (1998). Geochemical evidence for a comet shower in the late Eocene. Science 280, 1250–3.CrossRefGoogle ScholarPubMed
Farley, K. A. and Patterson, D. B. (1995). A 100-ka periodicity in the flux of extraterrestrial 3He to the sea floor. Nature 378, 600–3.Google Scholar
Farley, K. A. and Poreda, R. J. (1993). Mantle neon and atmospheric contamination. Earth Planet. Sci. Lett. 114, 325–39.Google Scholar
Fisher, D. E. (1971). Incorporation of Ar in East Pacific basalts. Earth Planet. Sci. Lett. 12, 321–4.Google Scholar
Fisher, D. E. (1983). Rare gases from the undepleted mantle? Nature 305, 298300.CrossRefGoogle Scholar
Fisher, D. E. (1985). Noble gases from oceanic island basalts do not require an undepleted mantle source. Nature 316, 716–18.Google Scholar
Fisher, D. E. (1986). Rare gas abundances in MORB. Geochim. Cosmochim. Acta 50, 2531–41.Google Scholar
Garapic, G., Jackson, M. G., Hauri, E. H. et al. (2015). A radiogenic isotopic (He–Sr–Nd–Pb–Os) study of lavas from the Pitcairn hotspot: Implications for the origin of EM-1 (enriched mantle 1). Lithos 228, 111.Google Scholar
Geiss, J., Bühler, F., Cerutti, H. et al. (2004). The Apollo SWC experiment: results, conclusions, consequences. Space Sci. Rev. 110, 307–35.Google Scholar
Gerling, E. K., Mamyrin, B. A., Tolstikhin, I. N. and Yakovleva, S. S. (1971). Isotope composition of helium in some rocks. Geokhimiya 10, 1209–17.Google Scholar
Grimberg, A., Baur, H., Buhler, F., Bochsler, P. and Wieler, R. (2008). Solar wind helium, neon, and argon isotopic and elemental composition: data from the metallic glass flown on NASA's Genesis mission. Geochim. Cosmochim. Acta 72, 626–45.Google Scholar
Halliday, A. N. (2013). The origins of volatiles in the terrestrial planets. Geochim. Cosmochim. Acta 105, 146–71.Google Scholar
Hanan, B. B. and Graham, D. W. (1996). Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science 272, 991–5.Google Scholar
Hanyu, T., Dunai, T. J., Davies, G. R. et al. (2001). Noble gas study of the Reunion hotspot: evidence for distinct less-degassed mantle sources. Earth Planet. Sci. Lett. 193, 8398.CrossRefGoogle Scholar
Hanyu, T. and Kaneoka, I. (1997). The uniform and low 3He/4He ratios of HIMU basalts as evidence for their origin as recycled materials. Nature 390, 273–6.Google Scholar
Harper, C. L. and Jacobsen, S. B. (1996). Noble gases and Earth's accretion. Science 273, 1814–18.Google Scholar
Hart, R, Dymond, J. and Hogan, L. (1979). Preferential formation of the atmosphere–sialic crust system from the upper mantle. Nature 278, 156–9.Google Scholar
Hart, R, Dymond, J., Hogan, L. and Schilling, J. G. (1983). Mantle plume noble gas component in glassy basalts from Reykjanes Ridge. Nature 305, 403–7.Google Scholar
Hart, R., Hogan, L. and Dymond, J. (1985). The closed-system approximation for evolution of argon and helium in the mantle, crust and atmosphere. Chem. Geol. (Isot. Geosci. Sect.) 52, 4573.Google Scholar
Hart, S. R., Hauri, E. H., Oschmann, L. A. and Whitehead, J. A. (1992). Mantle plumes and entrainment: isotopic evidence. Science 256, 517–20.Google Scholar
Hennecke, E. W. and Manuel, O. K. (1975). Noble gases in CO2 well gas, Harding County, New Mexico. Earth Planet. Sci. Lett. 27, 346–55.Google Scholar
Hilton, D. R., Gronvold, K., Macpherson, C. G. and Castillo, P. R. (1999). Extreme 3He/4He ratios in northwest Iceland: constraining the common component in mantle plumes. Earth Planet. Sci. Lett. 173, 5360.CrossRefGoogle Scholar
Hilton, D. R., Hammerschmidt, K., Loock, G. and Friedrichsen, H. (1993). Helium and argon isotope systematics of the central Lau Basin and Valu Fa Ridge: evidence of crust/mantle interactions in a back-arc basin. Geochim. Cosmochim. Acta 57, 2819–41.Google Scholar
Hilton, D. R., Thirlwall, M. F., Taylor, R. N., Murton, B. J. and Nichols, A. (2000). Controls on magmatic degassing along the Reykjanes Ridge with implications for the helium paradox. Earth Planet. Sci. Lett. 183, 4350.Google Scholar
Hiyagon, H. (1994). Retention of solar helium and neon in IDPs in deep sea sediment. Science 263, 1257–9.Google Scholar
Hiyagon, H., Ozima, M., Marty, B., Zashu, S. and Sakai, H. (1992). Noble gases in submarine glasses from mid-ocean ridges and Loihi seamount: constraints on the early history of the Earth. Geochim. Cosmochim. Acta 56, 1301–16.Google Scholar
Holland, G., Cassidy, M. and Ballentine, C. J. (2009). Meteorite Kr in Earth's mantle suggests a late accretionary source for the atmosphere. Science 326, 1522–5.Google Scholar
Honda, M., McDougall, I., Patterson, D. B., Doulgeris, A. and Clague, D. A. (1991). Possible solar noble-gas component in Hawaiian basalts. Nature 349, 149–51.Google Scholar
Honda, M., Reynolds, J. H., Roedder, E. and Epstein, S. (1987). Noble gases in diamonds: occurrences of solar-like helium and neon. J. Geophys. Res. 92, 12507–21.Google Scholar
Hopp, J. and Trieloff, M. (2005). Refining the noble gas record of the Reunion mantle plume source: Implications on mantle geochemistry. Earth Planet. Sci. Lett. 240, 573–88.CrossRefGoogle Scholar
Huang, S., Lee, C. T. A. and Yin, Q. Z. (2014). Missing lead and high 3He/4He in ancient sulfides associated with continental crust formation. Scientific rep. 4 (5314), 16.Google Scholar
Huss, G. R. and Lewis, R. S. (1994). Noble gases in presolar diamonds I: Three distinct components and their implications for diamond origins. Meteoritics 29, 791810.Google Scholar
Jackson, M. G., Carlson, R. W., Kurz, M. D. et al. (2010). Evidence for the survival of the oldest terrestrial mantle reservoir. Nature 466, 853–6.Google Scholar
Jackson, M. G., Hart, S. R., Konter, J. G. et al. (2014). Helium and lead isotopes reveal the geochemical geometry of the Samoan plume. Nature, 514, 355–8.Google Scholar
Jackson, M. G., Kurz, M. D., Hart, S. R. and Workman, R. K. (2007). New Samoan lavas from Ofu Island reveal a hemispherically heterogeneous high 3He/4He mantle. Earth Planet. Sci. Lett. 264, 360–74.CrossRefGoogle Scholar
Javoy, M. (1995). The integral enstatite chondrite model of the Earth. Geophys. Res. Lett. 22, 2219–22.Google Scholar
Jeffrey, P. M. and Hagan, P. J. (1969). Negative muons and the isotopic composition of the rare gases in the Earth's atmosphere. Nature 223, 1253.Google Scholar
Kaneoka, I. and Takaoka, N. (1980). Rare gas isotopes in Hawaiian ultramafic nodules and volcanic rocks: constraints on genetic relationships. Science 208, 1366–8.Google Scholar
Kellogg, L. H. and Wasserburg, G. J. (1990). The role of plumes in mantle helium fluxes. Earth Planet. Sci. Lett. 99, 276–89.CrossRefGoogle Scholar
Kennedy, B. M., Hiyagon, H. and Reynolds, J. H. (1990). Crustal neon: a striking uniformity. Earth Planet. Sci. Lett. 98, 277–86.CrossRefGoogle Scholar
Kunz, J. (1999). Is there solar argon in the Earth's mantle? Nature 399, 649–50.Google Scholar
Kunz, J., Staudacher, T. and Allegre, C. J. (1998). Plutonium-fission xenon found in the Earth's mantle. Science 280, 877–80.CrossRefGoogle ScholarPubMed
Kunz, W. and Schintlmeister, I. (1965). Tabellen der Atomekerne, teil II, Kernreaktionen. Akademie–Verlag, 1022 pp.Google Scholar
Kuroda, P. K. (1960). Nuclear fission in the early history of the Earth. Nature 187, 36–8.Google Scholar
Kurz, M. D. (1986a). Cosmogenic helium in a terrestrial rock. Nature 320, 435–9.Google Scholar
Kurz, M. D. (1986b). In-situ production of terrestrial cosmogenic helium and some applications to geochronology. Geochim. Cosmochim. Acta 50, 2855–62.Google Scholar
Kurz, M. D., Curtice, J., Fornari, D., Geist, D. and Moreira, M. (2009). Primitive neon from the center of the Galapagos hotspot. Earth Planet. Sci. Lett. 286, 2334.Google Scholar
Kurz, M. D., Gurney, J. J., Jenkins, W. J. and Lott, D. E. (1987). Helium isotopic variability within single diamonds from Orapa kimberlite pipe. Earth Planet. Sci. Lett. 86, 5768.Google Scholar
Kurz, M. D. and Jenkins, W. J. (1981). The distribution of helium in oceanic basalt glasses. Earth Planet. Sci. Lett. 53, 4154.Google Scholar
Kurz, M. D., Jenkins, W. J. and Hart, S. R. (1982). Helium isotopic systematics of oceanic islands and mantle heterogeneity. Nature 297, 43–6.CrossRefGoogle Scholar
Kurz, M. D., Meyer, P. S. and Sigurdsson, H. (1985). Helium isotopic systematics within the neovolcanic zones of Iceland. Earth Planet. Sci. Lett. 74, 291305.Google Scholar
Kyser, T. K. and Rison, W. (1982). Systematics of rare gas isotopes in basaltic lavas and ultramafic xenoliths. J. Geophys. Res. 87, 5611–30.Google Scholar
Lal, D. (1987). Production of 3He in terrestrial rocks. Chem. Geol. (Isot. Geosci. Sect.) 66, 8998.Google Scholar
Lal, D., Nishiizumi, K., Klein, J., Middleton, R. and Craig, H. (1987). Cosmogenic 10Be in Zaire alluvial diamonds: implications to 3He excess in diamonds. Nature 328, 139–41.Google Scholar
Lupton, J. E., (1983). Terrestrial inert gases: isotope tracer studies and clues to primordial components in the mantle. Ann. Rev. Earth Planet. Sci. 11, 371414.Google Scholar
Lupton, J. E. and Craig, H. (1975). Excess 3He in oceanic basalts: evidence for terrestrial primordial helium. Earth Planet. Sci. Lett. 26, 133–9.Google Scholar
Mahaffy, P. R., Donahue, T. M., Owen, T. C., Niemann, H. B. and Atreya, S. K. (1998) Galileo probe measurements of D/H and 3He/4He in Jupiter's atmosphere. Space Sci.Rev. 84, 251–63.CrossRefGoogle Scholar
Mamyrin, B. A., Anufriyev, G. S., Kamenskiy, I. L. and Tolstikhin, I. N. (1970). Determination of the composition of atmospheric helium. Geochem. Int. 7, 498505.Google Scholar
Mamyrin, B. A. and Tolstikhin, I. N. (1984). Helium Isotopes in Nature. Elsevier, 273 pp.Google Scholar
Mamyrin, B. A., Tolstikhin, I. N., Anufriyev, G. S. and Kamenskiy, I. L. (1969). Anomalous isotopic composition of helium in volcanic gases. Dokl. Akad. Nauka SSSR 184, 1197–9.Google Scholar
Mamyrin, B. A., Tolstikhin, I. N., Anufriyev, G. S. and Kamenskiy, I. L. (1972). Isotopic composition of helium in Icelandic hot springs. Geokhimiya 11, 1396.Google Scholar
Marcantonio, F., Anderson, R. F., Stute, M. et al. (1996). Extraterrestrial 3He as a tracer of marine sediment transport and accumulation. Nature 383, 705–7.Google Scholar
Marcantonio, F., Kumar, N., Stute, M. et al. (1995). A comparative study of accumulation rates derived by He and Th isotope analysis of marine sediments. Earth Planet. Sci. Lett. 133, 549–55.Google Scholar
Marty, B. (1989). Neon and xenon isotopes in MORB: implications for the Earth–atmosphere evolution. Earth Planet. Sci. Lett. 94, 4556.Google Scholar
Marty, B. (2012). The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313, 5666.Google Scholar
Marty, B. and Craig, H. (1987). Cosmic-ray-produced neon and helium in the summit lavas of Maui. Nature 325, 335–7.Google Scholar
Matsuda, J., Murota, M. and Nagao, K. (1990). He and Ne isotopic studies on the extraterrestrial material in deep-sea sediments. J. Geophys. Res. 95, 7111–17.Google Scholar
Matsuda, J., Sudo, M., Ozima, M. et al. (1993). Noble gas partitioning between metal and silicate under high pressures. Science 259, 788–90.Google Scholar
Merrihue, C. (1964). Rare gas evidence for cosmogenic dust in modern Pacific red clay. Ann. N. Y. Acad. Sci. 119, 351–67.Google Scholar
Moreira, M. and Charnoz, S. (2016). The origin of the neon isotopes in chondrites and on Earth. Earth Planet. Sci. Lett. 433, 249–56.Google Scholar
Moreira, M., Kunz, J. and Allegre, C. J. (1998). Rare gas systematics in popping rock: isotopic and elemental compositions in the upper mantle. Science 279, 1178–81.CrossRefGoogle ScholarPubMed
Moreira, M. (2013). Noble gas constraints on the origin and evolution of Earth's volatiles. Geochem. Perspectives 2, 229403.CrossRefGoogle Scholar
Morrison, P. and Pine, J. (1955). Radiogenic origin of the helium isotopes in rocks. Ann. N. Y. Acad. Sci. 62, 6992.Google Scholar
Mukhopadhyay, S. (2012). Deep mantle neon and xenon preserve a record of early planetary differentiation and heterogeneous volatile accretion. Nature 486, 101–4.Google Scholar
Mukhopadhyay, S., Farley, K. A. and Montanari, A. (2001). A 35 Ma record of helium in pelagic limestones from Italy: implications for interplanetary dust accretion from the early Maastrichtian to the middle Eocene. Geochim. Cosmochim. Acta 65, 653–69.Google Scholar
Muller, R. A. and Macdonald, G. J. (1995). Glacial cycles and orbital inclination. Nature 377, 107–8.Google Scholar
Murphy, B. H., Farley, K. A. and Zachos, J. C. (2010). An extraterrestrial 3He-based timescale for the Paleocene–Eocene thermal maximum (PETM) from Walvis Ridge, IODP Site 1266. Geochim. Cosmochim. Acta 74, 5098–108.Google Scholar
Nagao, K., Takaoka, N. and Matsubayashi, O. (1979). Isotopic anomalies of rare gases in the Nigorikawa geothermal area, Hokkaido, Japan. Earth Planet. Sci. Lett. 44, 8290.Google Scholar
Niedermann, S., Bach, W. and Erzinger, J. (1997). Noble gas evidence for a lower mantle component in MORBs from the southern East Pacific Rise: decoupling of helium and neon isotope systematics. Geochim. Cosmochim. Acta 61, 2697–715.CrossRefGoogle Scholar
Nier, A. O. and Schlutter, D. J. (1990). Helium and neon in stratospheric particles. Meteoritics 25, 263–7.Google Scholar
O'Nions, R. K. and Oxburgh, E. R. (1983). Heat and helium in the Earth. Nature 306, 429–36.Google Scholar
Ott, U. (2014). Planetary and pre-solar noble gases in meteorites. Chemie der Erde 74, 519–44.Google Scholar
Ott, U. and Begemann, F. (1985). Are all the ‘Martian’ meteorites from Mars? Nature 317, 509–12.CrossRefGoogle Scholar
Owen, T., Bar-Nun, A. and Kleinfeld, I. (1992). Possible cometary origin of heavy noble gases in the atmospheres of Venus, Earth and Mars. Nature 358, 43–6.Google Scholar
Oxburgh, E. R., O'Nions, R. K. and Hill, R. I. (1986). Helium isotopes in sedimentary basins. Nature 324, 632–5.Google Scholar
Ozima, M. and Podosek, F. A. (1999). Formation age of Earth from 129I/127I and 244Pu/238U systematics and the missing Xe. J. Geophys. Res. B 104. 25 493–9.Google Scholar
Ozima, M., Podosek, F. A. and Igarashi, G. (1985). Terrestrial xenon isotope constraints on the early history of the Earth. Nature 315, 471–4.CrossRefGoogle Scholar
Ozima, M. and Zashu, S. (1983). Primitive helium in diamonds. Science 219, 1067–8.Google Scholar
Ozima, M. and Zashu, S. (1988). Solar-type Ne in Zaire cubic diamonds. Geochim. Cosmochim. Acta 52, 1925.Google Scholar
Ozima, M. and Zashu, S. (1991). Noble gas state of the ancient mantle as deduced from noble gases in coated diamonds. Earth Planet. Sci. Lett. 105, 1327.Google Scholar
Patterson, D. B. and Farley, K. A. (1998). Extraterrestrial 3He in seafloor sediments: evidence for correlated 100 ka periodicity in the accretion rate of interplanetary dust, orbital parameters, and Quaternary climate. Geochim. Cosmochim. Acta 62, 3669–82.Google Scholar
Patterson, D. B., Honda, M. and McDougall, I. (1990). Atmospheric contamination: a possible source for heavy noble gases in basalts from Loihi Seamount, Hawaii. Geophys. Res. Lett. 17, 705–8.Google Scholar
Pepin, R. O. (1991). On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92, 279.Google Scholar
Pepin, R. O. (1997). Evolution of Earth's noble gases: consequences of assuming hydrodynamic loss driven by giant impact. Icarus 126, 148–56.Google Scholar
Pepin, R. O. (1998). Isotopic evidence for a solar argon component in the Earth's mantle. Nature 394, 664–7.Google Scholar
Pepin, R. O. (2006). Atmospheres on the terrestrial planets: Clues to origin and evolution. Earth Planet. Sci. Lett. 252, 114.CrossRefGoogle Scholar
Pepin, R. O. and Signer, P. (1965). Primordial rare gases in meteorites. Science 149, 253–65.Google Scholar
Peron, S., Moreira, M., Colin, A. et al. (2016). Neon isotopic composition of the mantle constrained by single vesicle analyses. Earth Planet. Sci. Lett. 449, 145–54.Google Scholar
Peto, M. K., Mukhopadhyay, S. and Kelley, K. A. (2013). Heterogeneities from the first 100 million years recorded in deep mantle noble gases from the Northern Lau Back-arc Basin. Earth Planet. Sci. Lett. 369, 1323.Google Scholar
Phinney, D., Tennyson, J. and Frick, U. (1978). Xenon in CO2 well gas revisited. J. Geophys. Res. 83, 2313–19.Google Scholar
Porcelli, D. and Elliott, T. (2008). The evolution of He isotopes in the convecting mantle and the preservation of high 3He/4He ratios. Earth Planet. Sci. Lett. 269, 175–85.Google Scholar
Porcelli, D. and Halliday, A. N. (2001). The core as a possible source of mantle helium. Earth Planet. Sci. Lett. 192, 4556.Google Scholar
Porcelli, D. and Wasserburg, G. J. (1995a). Mass transfer of xenon through a steady-state upper mantle. Geochim. Cosmochim. Acta 59, 19912007.Google Scholar
Porcelli, D. and Wasserburg, G. J. (1995b). Mass transfer of helium, neon, argon, and xenon through a steady-state upper mantle. Geochim. Cosmochim. Acta 59, 4921–37.Google Scholar
Poreda, R. J. and Farley, K. A. (1992). Rare gases in Samoan xenoliths. Earth Planet. Sci. Lett. 113, 129–44.Google Scholar
Pujol, M., Marty, B. and Burgess, R. (2011). Chondritic-like xenon trapped in Archean rocks: a possible signature of the ancient atmosphere. Earth Planet. Sci. Lett. 308, 298306.Google Scholar
Pujol, M., Marty, B., Burnard, P. and Philippot, P. (2009). Xenon in Archean barite: weak decay of 130Ba, mass-dependent isotopic fractionation and implication for barite formation. Geochim. Cosmochim. Acta 73, 6834–46.Google Scholar
Raquin, A. and Moreira, M. (2009). Atmospheric 38Ar/36Ar in the mantle: implications for the nature of the terrestrial parent bodies. Earth Planet. Sci. Lett. 287, 551–8.Google Scholar
Reynolds, J. H. (1960a). Determination of the age of the elements. Phys. Rev. Lett. 4, 810.Google Scholar
Reynolds, J. H. (1960b). Isotopic composition of primordial xenon. Phys. Rev. Lett 4, 351–4.Google Scholar
Reynolds, J. H. (1963). Xenology. J. Geophys. Res. 68, 2939–56.<Au: text citation?>Google Scholar
Rutherford, E. (1906). The production of helium from radium and the transformation of matter. In: Rutherford, E. Radioactive Transformations. Yale University Press, pp. 187–93.Google Scholar
Sarda, P., Staudacher, T. and Allegre, C. J. (1988). Neon isotopes in submarine basalts. Earth Planet. Sci. Lett. 91, 7388.Google Scholar
Sarda, P., Staudacher, T., Allegre, C. J. and Lecomte, A. (1993). Cosmogenic neon and helium at Reunion: measurement of erosion rate. Earth Planet. Sci. Lett. 119, 405–17.Google Scholar
Sasada, T., Hiyagon, H., Bell, K. and Ebihara, M. (1997). Mantle-derived noble gases in carbonatites. Geochim. Cosmochim. Acta 61, 4219–28.Google Scholar
Savage, P. S., Moynier, F., Chen, H. et al. (2015). Copper isotope evidence for large-scale sulphide fractionation during Earth's differentiation. Geochem. Perspect. Lett. 1, 5364.Google Scholar
Schmitz, B., Peucker-Ehrenbrink, B., Heilmann-Clausen, C. et al. (2004). Basaltic explosive volcanism, but no comet impact, at the Paleocene–Eocene boundary: high-resolution chemical and isotopic records from Egypt, Spain and Denmark. Earth Planet. Sci. Lett. 225, 117.Google Scholar
Schwartzman, D. W. (1973). Argon degassing models of the Earth. Nature Phys. Sci. 245, 201.Google Scholar
Seta, A., Matsumoto, T. and Matsuda, J.-I. (2001). Concurrent evolution of 3He/4He ratio in the Earth's mantle reservoirs for the first 2 Ga. Earth Planet. Sci. Lett. 188, 211–19.Google Scholar
Sheldon, W. R. and Kern, J. W. (1972). Atmospheric helium and geomagnetic field reversals. J. Geophys. Res. 77, 6194–201.Google Scholar
Srinivasan, B. (1976). Barites: anomalous xenon from spallation and neutron-induced reactions. Earth Planet. Sci. Lett. 31, 129–41.Google Scholar
Starkey, N. A., Stuart, F. M., Ellam, R. M. et al. (2009). Helium isotopes in early Iceland plume picrites: Constraints on the composition of high 3He/4He mantle. Earth Planet. Sci. Lett. 277, 91100.Google Scholar
Staudacher, T. (1987). Upper mantle origin for Harding County well gases. Nature 325, 605–7.Google Scholar
Staudacher, T. and Allegre, C. J. (1982). Terrestrial xenology. Earth Planet. Sci. Lett. 60, 389406.Google Scholar
Staudacher, T. and Allegre, C. J. (1988). Recycling of oceanic crust and sediments: the noble gas subduction barrier. Earth Planet. Sci. Lett. 89, 173–83.Google Scholar
Staudacher, T., Kurz, M. D. and Allegre, C. J. (1986). New noble-gas data on glass samples from Loihi Seamount and Hualalai and on dunite samples from Loihi and Reunion Island. Chem. Geol. 56, 193205.Google Scholar
Staudacher, T., Sarda, P., Richardson, S. H. et al. (1989). Noble gases in basalt glasses from a Mid-Atlantic Ridge topographic high at 14 °N: geodynamic consequences. Earth Planet. Sci. Lett. 96, 119–33.Google Scholar
Stroncik, N. A. and Niedermann, S. (2016). Atmospheric contamination of the primary Ne and Ar signal in mid-ocean ridge basalts and its implications for ocean crust formation. Geochim. Cosmochim. Acta 172, 306–21.Google Scholar
Stuart, F. M., Lass-Evans, S., Fitton, J. G. and Ellam, R. M. (2003). High 3He/4He ratios in picritic basalts from Baffin Island and the role of a mixed reservoir in mantle plumes. Nature 424, 57.Google Scholar
Takayanagi, M. and Ozima, M. (1987). Temporal variation of 3He/4He ratio recorded in deep-sea sediment cores. J. Geophys. Res. 92, 12 531–8.Google Scholar
Tang, M. and Anders, E. (1988) Isotopic anomalies of Ne, Xe, and C in meteorites. III. Local and exotic noble gas components and their interrelations. Geochim. Cosmochim. acta 52, 1245–54.Google Scholar
Tolstikhin, I., Marty, B., Porcelli, D. and Hofmann, A. (2014). Evolution of volatile species in the earth's mantle: A view from xenology. Geochim. Cosmochim. Acta 136, 229–46.Google Scholar
Tolstikhin, I. N. and O'Nions, R. K. (1994). The Earth's missing xenon: a combination of early degassing and of rare gas loss from the atmosphere. Chemical geology, 115(1–2), 16.Google Scholar
Tolstikhin, I. N. and O'Nions, R. K. (1996). Some comments on isotopic structure of terrestrial xenon. Chem. Geol. 129, 185–99.Google Scholar
Trieloff, M., Kunz, J., Clague, D. A., Harrison, D. and Allegre, C. J. (2000). The nature of pristine noble gases in mantle plumes. Science 288, 1036–8.Google Scholar
Tucker, J. M., Mukhopadhyay, S. and Schilling, J. G. (2012). The heavy noble gas composition of the depleted MORB mantle (DMM) and its implications for the preservation of heterogeneities in the mantle. Earth Planet. Sci. Lett. 355, 244–54.Google Scholar
Turekian, K. K. (1964). Outgassing of argon and helium from the Earth. In: Brancazio, P. and Cameron, A. G. W. (Eds) The Origin and Evolution of Atmospheres and Oceans. Wiley, pp. 7483.Google Scholar
Turner, G., Busfield, A., Crowther, S. A. et al. (2007). Pu–Xe, U–Xe, U–Pb chronology and isotope systematics of ancient zircons from Western Australia. Earth Planet. Sci. Lett. 261, 491–9.Google Scholar
Valbracht, P. J., Staudacher, T., Malahoff, A. and Allegre, C. J. (1997). Noble gas systematics of deep rift zone glasses from Loihi Seamount, Hawaii. Earth Planet. Sci. Lett. 150, 399411.Google Scholar
van Keken, P. E. and Ballentine, C. J. (1998). Whole-mantle versus layered mantle convection and the role of a high-viscosity lower mantle in terrestrial volatile evolution. Earth Planet. Sci. Lett. 156, 1932.Google Scholar
van Keken, P. E. and Ballentine, C. J. (1999). Dynamical models of mantle volatile evolution and the role of phase transitions and temperature-dependent rheology. J. Geophys. Res. 104, 7137–51.Google Scholar
van Keken, P. E., Hauri, E. H. and Ballentine, C. J. (2002). Mantle mixing: the generation, preservation, and destruction of chemical heterogeneity. Ann. Rev. Earth Planet. Sci. 30, 493525.Google Scholar
Wetherill, G. W. (1953). Spontaneous fission yields from uranium and thorium. Phys. Rev. 82, 907–12.Google Scholar
Wetherill, G. W. (1954). Variations in the isotopic abundances of neon and argon extracted from radioactive materials. Phys. Rev. 96, 679–83.Google Scholar
Winckler, G., Anderson, R. F., Stute, M. and Schlosser, P. (2004). Does interplanetary dust control 100 kyr glacial cycles? Quaternary Sci. Rev. 23, 1873–8.Google Scholar
Yokochi, R. and Marty, B. (2004). A determination of the neon isotopic composition of the deep mantle. Earth Planet. Sci. Lett. 225, 7788.Google Scholar
Zadnik, M. G., Smith, C. B., Ott, U. and Begemann, F. (1987). Crushing of a terrestrial diamond: 3He/4He higher than solar meteorites. Meteoritics 22, 541–2.Google Scholar
Zahnle, K., Arndt, N., Cockell, C. et al. (2007). Emergence of a habitable planet. Space Sci. Rev. 127, 3578.Google Scholar
Zeitler, P. K., Herczeg, A. L., McDougall, I. and Honda, M. (1987). U–Th–He dating of apatite: A potential thermochronometer. Geochim. Cosmochim. Acta 51, 2865–8.Google Scholar
Zhang, Y. and Yin, Q. Z. (2012). Carbon and other light element contents in the Earth's core based on first-principles molecular dynamics. Proc. Nat. Acad. Sci. 109, 19 579–83.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Noble Gas Geochemistry
  • Alan P. Dickin, McMaster University, Ontario
  • Book: Radiogenic Isotope Geology
  • Online publication: 01 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781316163009.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Noble Gas Geochemistry
  • Alan P. Dickin, McMaster University, Ontario
  • Book: Radiogenic Isotope Geology
  • Online publication: 01 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781316163009.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Noble Gas Geochemistry
  • Alan P. Dickin, McMaster University, Ontario
  • Book: Radiogenic Isotope Geology
  • Online publication: 01 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781316163009.012
Available formats
×