We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
in a bounded domain $\Omega \subset \mathbb {R}^N(N=3,\,4,\,5)$ with smooth boundary $\partial \Omega$. It is shown that if $m>\max \{1,\,\frac {3N-2}{2N+2}\}$, for any reasonably smooth nonnegative initial data, the corresponding no-flux type initial-boundary value problem possesses a globally bounded weak solution. Furthermore, we prove that the solution converges to the spatially homogeneous equilibrium $(\bar {u}_0,\,0)$ in an appropriate sense as $t\rightarrow \infty$, where $\bar {u}_0=\frac {1}{|\Omega |}\int _\Omega u_0$. This result not only partly extends the previous global boundedness result in Fan and Jin (J. Math. Phys.58 (2017), 011503) and Wang and Xiang (Z. Angew. Math. Phys.66 (2015), 3159–3179) to $m>\frac {3N-2}{2N}$ in the case $N\geq 3$, but also partly improves the global existence result in Zheng and Wang (Discrete Contin. Dyn. Syst. Ser. B22 (2017), 669–686) to $m>\frac {3N}{2N+2}$ when $N\geq 2$.
Existence of specific eternal solutions in exponential self-similar form to the following quasilinear diffusion equation with strong absorption
\[ \partial_t u=\Delta u^m-|x|^{\sigma}u^q, \]
posed for $(t,\,x)\in (0,\,\infty )\times \mathbb {R}^N$, with $m>1$, $q\in (0,\,1)$ and $\sigma =\sigma _c:=2(1-q)/ (m-1)$ is proved. Looking for radially symmetric solutions of the form
we show that there exists a unique exponent $\beta ^*\in (0,\,\infty )$ for which there exists a one-parameter family $(u_A)_{A>0}$ of solutions with compactly supported and non-increasing profiles $(f_A)_{A>0}$ satisfying $f_A(0)=A$ and $f_A'(0)=0$. An important feature of these solutions is that they are bounded and do not vanish in finite time, a phenomenon which is known to take place for all non-negative bounded solutions when $\sigma \in (0,\,\sigma _c)$.
For $s\in [\tfrac {1}{2},\, 1)$, let $u$ solve $(\partial _t - \Delta )^s u = Vu$ in $\mathbb {R}^{n} \times [-T,\, 0]$ for some $T>0$ where $||V||_{ C^2(\mathbb {R}^n \times [-T, 0])} < \infty$. We show that if for some $0<\mathfrak {K} < T$ and $\epsilon >0$
We analyse the asymptotic dynamics of quasilinear parabolic equations when solutions may grow up (i.e. blow up in infinite time). For such models, there is a global attractor which is unbounded and the semiflow induces a nonlinear dynamics at infinity by means of a Poincaré projection. In case the dynamics at infinity is given by a semilinear equation, then it is gradient, consisting of the so-called equilibria at infinity and their corresponding heteroclinics. Moreover, the diffusion and reaction compete for the dimensionality of the induced dynamics at infinity. If the equilibria are hyperbolic, we explicitly prove the occurrence of heteroclinics between bounded equilibria and/or equilibria at infinity. These unbounded global attractors describe the space of admissible initial data at event horizons of certain black holes.
In this paper, we analyse Turing instability and bifurcations in a host–parasitoid model with nonlocal effect. For a ordinary differential equation model, we provide some preliminary analysis on Hopf bifurcation. For a reaction–diffusion model with local intraspecific prey competition, we first explore the Turing instability of spatially homogeneous steady states. Next, we show that the model can undergo Hopf bifurcation and Turing–Hopf bifurcation, and find that a pair of spatially nonhomogeneous periodic solutions is stable for a (8,0)-mode Turing–Hopf bifurcation and unstable for a (3,0)-mode Turing–Hopf bifurcation. For a reaction–diffusion model with nonlocal intraspecific prey competition, we study the existence of the Hopf bifurcation, double-Hopf bifurcation, Turing bifurcation, and Turing–Hopf bifurcation successively, and find that a spatially nonhomogeneous quasi-periodic solution is unstable for a (0,1)-mode double-Hopf bifurcation. Our results indicate that the model exhibits complex pattern formations, including transient states, monostability, bistability, and tristability. Finally, numerical simulations are provided to illustrate complex dynamics and verify our theoretical results.
We investigate an inverse boundary value problem of determination of a nonlinear law for reaction-diffusion processes, which are modeled by general form semilinear parabolic equations. We do not assume that any solutions to these equations are known a priori, in which case the problem has a well-known gauge symmetry. We determine, under additional assumptions, the semilinear term up to this symmetry in a time-dependent anisotropic case modeled on Riemannian manifolds, and for partial data measurements on ${\mathbb R}^n$.
Moreover, we present cases where it is possible to exploit the nonlinear interaction to break the gauge symmetry. This leads to full determination results of the nonlinear term. As an application, we show that it is possible to give a full resolution to classes of inverse source problems of determining a source term and nonlinear terms simultaneously. This is in strict contrast to inverse source problems for corresponding linear equations, which always have the gauge symmetry. We also consider a Carleman estimate with boundary terms based on intrinsic properties of parabolic equations.
Conventional preytaxis systems assume that prey-tactic velocity is proportional to the prey density gradient. However, many experiments exploring the predator–prey interactions show that it is the predator’s acceleration instead of velocity that is proportional to the prey density gradient in the prey-tactic movement, which we call preytaxis with prey-induced acceleration. Mathematical models of preytaxis with prey-induced acceleration were proposed by Arditi et al. ((2001) Theor. Popul. Biol. 59(3), 207–221) and Sapoukhina et al. ((2003) Am. Nat. 162(1), 61–76) to interpret the spatial heterogeneity of predators and prey observed in experiments. This paper is devoted to exploring the qualitative behaviour of such preytaxis systems with prey-induced acceleration and establishing the global existence of classical solutions with uniform-in-time bounds in all spatial dimensions. Moreover, we prove the global stability of spatially homogeneous prey-only and coexistence steady states with decay rates under certain conditions on system parameters. For the parameters outside the stability regime, we perform linear stability analysis to find the possible patterning regimes and use numerical simulations to demonstrate that spatially inhomogeneous time-periodic patterns will typically arise from the preytaxis system with prey-induced acceleration. Noticing that conventional preytaxis systems are unable to produce spatial patterns, our results imply that the preytaxis with prey-induced acceleration is indeed more appropriate than conventional preytaxis to interpret the spatial heterogeneity resulting from predator–prey interactions.
In this paper, we consider reaction-diffusion epidemic models with mass action or standard incidence mechanism and study the impact of limiting population movement on disease transmissions. We set either the dispersal rate of the susceptible or infected people to zero and study the corresponding degenerate reaction-diffusion model. Our main approach to study the global dynamics of these models is to construct delicate Lyapunov functions. Our results show that the consequences of limiting the movement of susceptible or infected people depend on transmission mechanisms, model parameters and population size.
This article is devoted to the analysis of the parabolic–parabolic chemotaxis system with multi-components over $\mathbb{R}^2$. The optimal small initial condition on the global existence of solutions for multi-species chemotaxis model in the fully parabolic situation had not been attained as far as the author knows. In this paper, we prove that under the sub-critical mass condition, any solutions to conflict-free system exist globally. Moreover, the global existence of solutions to system with strong self-repelling effect has been discussed even for large initial data. The proof is based on the modified free energy functional and the Moser–Trudinger inequality for system.
We generalize the one-dimensional population model of Anguige & Schmeiser [1] reflecting the cell-to-cell adhesion and volume filling and classify the resulting equation into the six types. Among these types, we fix one that yields a class of advection-diffusion equations of forward-backward-forward type and prove the existence of infinitely many global-in-time weak solutions to the initial-Dirichlet boundary value problem when the maximum value of an initial population density exceeds a certain threshold. Such solutions are extracted from the method of convex integration by Müller & Šverák [12]; they exhibit fine-scale density mixtures over a finite time interval, then become smooth and identical, and decay exponentially and uniformly to zero as time approaches infinity. TE check: Please check the reference citation in abstract.
In this paper, we study the Dirichlet problem of Hessian quotient equations of the form $S_k(D^2u)/S_l(D^2u)=g(x)$ in exterior domains. For $g\equiv \mbox {const.}$, we obtain the necessary and sufficient conditions on the existence of radially symmetric solutions. For g being a perturbation of a generalized symmetric function at infinity, we obtain the existence of viscosity solutions by Perron’s method. The key technique we develop is the construction of sub- and supersolutions to deal with the non-constant right-hand side g.
In this work, we carry out an analytical and numerical investigation of travelling waves representing arced vegetation patterns on sloped terrains. These patterns are reported to appear also in ecosystems which are not water deprived; therefore, we study the hypothesis that their appearance is due to plant–soil negative feedback, namely due to biomass-(auto)toxicity interactions.
To this aim, we introduce a reaction-diffusion-advection model describing the dynamics of vegetation biomass and toxicity which includes the effect of sloped terrains on the spatial distribution of these variables. Our analytical investigation shows the absence of Turing patterns, whereas travelling waves (moving uphill in the slope direction) emerge. Investigating the corresponding dispersion relation, we provide an analytic expression for the asymptotic speed of the wave. Numerical simulations not only just confirm this analytical quantity but also reveal the impact of toxicity on the structure of the emerging travelling pattern.
Our analysis represents a further step in understanding the mechanisms behind relevant plants‘ spatial distributions observed in real life. In particular, since vegetation patterns (both stationary and transient) are known to play a crucial role in determining the underlying ecosystems’ resilience, the framework presented here allows us to better understand the emergence of such structures to a larger variety of ecological scenarios and hence improve the relative strategies to ensure the ecosystems’ resilience.
We provide a natural simple argument using anistropic flows to prove the existence of weak solutions to Lutwak’s $L^p$-Minkowski problem on $S^n$ which were obtained by other methods.
We consider the long-time behaviour of a West Nile virus (WNv) model consisting of a reaction–diffusion system with free boundaries. Such a model describes the spreading of WNv with the free boundary representing the expanding front of the infected region, which is a time-dependent interval $[g(t), h(t)]$ in the model (Lin and Zhu, Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary. J. Math. Biol. 75, 1381–1409, 2017). The asymptotic spreading speed of the front has been determined in Wang et al. (Spreading speed for a West Nile virus model with free boundary. J. Math. Biol. 79, 433–466, 2019) by making use of the associated semi-wave solution, namely $\lim _{t\to \infty } h(t)/t=\lim _{t\to \infty }[\!-g(t)/t]=c_\nu$, with $c_\nu$ the speed of the semi-wave solution. In this paper, by employing new techniques, we significantly improve the estimate in Wang et al. (Spreading speed for a West Nile virus model with free boundary. J. Math. Biol. 79, 433–466, 2019): we show that $h(t)-c_\nu t$ and $g(t)+c_\nu t$ converge to some constants as $t\to \infty$, and the solution of the model converges to the semi-wave solution. The results also apply to a wide class of analogous Ross–MacDonold epidemic models.
This paper focuses on the Cauchy problem for a one-dimensional quasilinear hyperbolic–parabolic coupled system with initial data given on a line of parabolicity. The coupled system is derived from the Poiseuille flow of full Ericksen–Leslie model in the theory of nematic liquid crystals, which incorporates the crystal and liquid properties of the materials. The main difficulty comes from the degeneracy of the hyperbolic equation, which makes that the system is not continuously differentiable and then the classical methods for the strictly hyperbolic–parabolic coupled systems are invalid. With a choice of a suitable space for the unknown variable of the parabolic equation, we first solve the degenerate hyperbolic problem in a partial hodograph plane and express the smooth solution in terms of the original variables. Based on the smooth solution of the hyperbolic equation, we then construct an iterative sequence for the unknown variable of the parabolic equation by the fundamental solution of the heat equation. Finally, we verify the uniform convergence of the iterative sequence in the selected function space and establish the local existence and uniqueness of classical solutions to the degenerate coupled problem.
This paper is concerned with a nonlocal reaction–diffusion system with double free boundaries and two time delays. The free boundary problem describes the evolution of faecally–orally transmitted diseases. We first show the well-posedness of global solution, and then establish the monotonicity and asymptotic property of basic reproduction number for the epidemic model without delays, which is defined by spectral radius of the next infection operator. By introducing the generalized principal eigenvalue defined in general domain, we obtain an upper bound of the limit value of basic reproduction number. We discuss the spreading and vanishing phenomena in terms of the basic production number. By employing the perturbed approximation method and monotone iteration method, we establish the existence, uniqueness and monotonicity of solution to semi-wave problem. When spreading occurs, we determine the asymptotic spreading speeds of free boundaries by constructing suitable upper and lower solutions from the semi-wave solutions. Moreover, spreading speeds for partially degenerate diffusion case are provided in a similar way.
We consider a parabolic-parabolic chemotaxis system with singular chemotactic sensitivity and source functions, which is originally introduced by Short et al to model the spatio-temporal behaviour of urban criminal activities with the particular value of the chemotactic sensitivity parameter $\chi =2$. The available analytical findings for this urban crime model including $\chi =2$ are restricted either to one-dimensional setting, or to initial data and source functions with appropriate smallness, or to initial data and source functions with some radial symmetry. In the present work, our first result asserts that for any $\chi \gt 0$ the initial-boundary value problem of this urban crime model possesses a global generalised solution in the two-dimensional setting, without imposing any small or radial conditions on initial data and source functions. Our second result presents the asymptotic behaviour of such solution, under some additional assumptions on source functions.
In this paper, we investigate an initial-boundary value problem of a reaction–diffusion equation in a bounded domain with a Robin boundary condition and introduce some particular parameters to consider the non-zero flux on the boundary. This problem arises in the study of mosquito populations under the intervention of the population replacement method, where the boundary condition takes into account the inflow and outflow of individuals through the boundary. Using phase plane analysis, the present paper studies the existence and properties of non-constant steady-state solutions depending on several parameters. Then, we prove some sufficient conditions for their stability. We show that the long-time efficiency of this control method depends strongly on the size of the treated zone and the migration rate. To illustrate these theoretical results, we provide some numerical simulations in the framework of mosquito population control.
In this paper, we mainly investigate the well-posedness of the four-order degenerate differential equation ($P_4$): $(Mu)''''(t) + \alpha (Lu)'''(t) + (Lu)''(t)$$=\beta Au(t) + \gamma Bu'(t) + Gu'_t + Fu_t + f(t),\,( t\in [0,\,2\pi ])$ in periodic Lebesgue–Bochner spaces $L^p(\mathbb {T}; X)$ and periodic Besov spaces $B_{p,q}^s\;(\mathbb {T}; X)$, where $A$, $B$, $L$ and $M$ are closed linear operators on a Banach space $X$ such that $D(A)\cap D(B)\subset D(M)\cap D(L)$ and $\alpha,\,\beta,\,\gamma \in \mathbb {C}$, $G$ and $F$ are bounded linear operators from $L^p([-2\pi,\,0];X)$ (respectively $B_{p,q}^s([-2\pi,\,0];X)$) into $X$, $u_t(\cdot ) = u(t+\cdot )$ and $u'_t(\cdot ) = u'(t+\cdot )$ are defined on $[-2\pi,\,0]$ for $t\in [0,\, 2\pi ]$. We completely characterize the well-posedness of ($P_4$) in the above two function spaces by using known operator-valued Fourier multiplier theorems.