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Abstract
Conventional preytaxis systems assume that prey-tactic velocity is proportional to the prey density gradient.
However, many experiments exploring the predator–prey interactions show that it is the predator’s acceleration
instead of velocity that is proportional to the prey density gradient in the prey-tactic movement, which we call
preytaxis with prey-induced acceleration. Mathematical models of preytaxis with prey-induced acceleration were
proposed by Arditi et al. ((2001) Theor. Popul. Biol. 59(3), 207–221) and Sapoukhina et al. ((2003) Am. Nat. 162(1),
61–76) to interpret the spatial heterogeneity of predators and prey observed in experiments. This paper is devoted
to exploring the qualitative behaviour of such preytaxis systems with prey-induced acceleration and establishing the
global existence of classical solutions with uniform-in-time bounds in all spatial dimensions. Moreover, we prove
the global stability of spatially homogeneous prey-only and coexistence steady states with decay rates under cer-
tain conditions on system parameters. For the parameters outside the stability regime, we perform linear stability
analysis to find the possible patterning regimes and use numerical simulations to demonstrate that spatially inho-
mogeneous time-periodic patterns will typically arise from the preytaxis system with prey-induced acceleration.
Noticing that conventional preytaxis systems are unable to produce spatial patterns, our results imply that the prey-
taxis with prey-induced acceleration is indeed more appropriate than conventional preytaxis to interpret the spatial
heterogeneity resulting from predator–prey interactions.

1. Introduction

To precisely characterise the population dynamics for actively dispersing species, both random and
directed movement (i.e., advection) should be considered. In the conventional framework of reaction–
diffusion–advection models, the advective velocity of migrants is usually assumed to be proportional
to the gradients of various biotic or abiotic stimuli, which is termed ‘taxis’, such as chemotaxis if the
stimuli are chemical substances or preytaxis if the stimuli are food sources. However, there are many
observations of the dependence of individual acceleration on the stimulus gradient. For instance, accel-
eration vectors of individuals in fish schools (cf. [36]) and in swarms of flying insects (cf. [37]) are
directed towards the centroid of such dynamically stable formations, the moving flea-beetles modify
their acceleration in response to food patch quality (cf. [19]), individual fish in schools adjust their vari-
ation of velocity according to the difference between ambient and preferred temperatures (cf. [11]), and
the average velocity is directed by the increasing individual reproduction rate in species clustering (cf.
[12]). In these observations, the directed movement of individuals is not determined by the velocity
itself but by the velocity variation (i.e., acceleration) which is proportional to the gradients of stimuli.
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We shall call such directed movement preytaxis with prey-induced acceleration in the sequel. To under-
stand the phenomenon of accelerated predator movement along the prey density gradient observed in
Kareiva [19] and Winder et al. [51], the following reaction–diffusion–preytaxis model was proposed in
[6, 40]: ⎧⎪⎨

⎪⎩
ut = du�u − ∇ · (uw) + αug(u, v) −μuh(u), x ∈�, t> 0,

vt = dv�v + f (v) − αug(u, v), x ∈�, t> 0,

wt = dw�w + γ∇v, x ∈�, t> 0,

(1.1)

where �⊂Rn (n ≥ 1) is a bounded domain with smooth boundary, u = u(x, t) and v = v(x, t) repre-
sent predator and prey densities at location x and at time t, respectively, the vector-valued function
w = (w1, w2, · · · , wn) denotes the velocity of predators, and �w = (�w1,�w2, · · · ,�wn). du, dv, dw,
α, μ and γ are positive constants. g(u, v) is called the trophic function (or functional response) rep-
resenting the consumption of prey assuming a given number of predators, h(u) is the mortality rate of
predators and f (v) denotes the growth function of the prey. There are many possible forms for the trophic
functions g(u, v) in different ecological applications, and the most commonly used include Holling type
I (also called Lotka–Volterra) and Holling type II functional responses, and a summary of possible
trophic functions can be found in a monograph [33]. The mortality rate function of predators is typi-
cally given by h(u) = 1 + θu with θ ≥ 0 representing death due to intraspecific competitions. The prey
growth function f (v) is usually described by a logistic or bistable function. The first equation of (1.1)
asserts that alongside the random diffusion the predator has an advection with the advective velocity w,
where the temporal variation wt (i.e., acceleration) is proportional to the prey density gradient (with a
proportional constant γ ) perturbed by a diffusion term dw�w (see the third equation of (1.1)) accounting
for some social behaviours of species such as intraspecific competition for space or schooling effects
equalising the speed and direction of neighbouring predators [11] (see more modelling details in [6,
40]). The preytaxis system (1.1) with prey-induced acceleration can generate spatiotemporal patterns
(cf. [6, 40]) qualitatively consistent with the observed spatiotemporal heterogeneity in experiments in
[20, 36, 37]). However, the conventional preytaxis systems featuring Lotka–Volterra interactions, where
the advective velocity of the predator is directly proportional to the prey density gradient (i.e., w ∼ ∇v,
cf. [9, 13, 20, 43] for instance), fail to achieve this explanatory power (cf. [18] or see discussions in
Section 4.3.1).

There are plenty of interesting mathematical works carried out for the conventional preytaxis systems,
for example, travelling wave solutions [25], pattern formation [8, 15, 26, 28, 48, 49], global solvability
and stability [1, 3, 7, 30, 41, 44, 45, 53, 54], where different g(u, v), h(u) and f (v) may be used in different
works. In contrast, the preytaxis system (1.1) with prey-induced acceleration determined by the prey
density gradient was rarely studied in the literature except in a few preliminary studies as recalled below.
First, by assuming that predators’ reproduction and mortality are negligible in comparison with the
timescale of migration (i.e., α =μ= 0), Arditi et al. [6] conduct the linear stability analysis of (1.1)
with g(u, v) = v (Holling type I trophic function) around the homogeneous equilibrium (ū, 0, 0) with
ū = 1

|�| udx in a two-dimensional parallelepipedic box � with the zero-flux boundary condition and find
that the model can produce spatial heterogeneity, in contrast to the conventional preytaxis system from
which no spatial heterogeneity can arise. Later on, the work [40] performs the linear stability analysis
for the model (1.1) with Holling type II trophic function g(u, v) = v

1+δv , where δ > 0 is a constant, and
numerically finds the limit cycle (periodic patterns) in an interval�= [0, L] with the zero-flux boundary
condition ux = vx = w = 0. When h(u) = 1, Chakraborty et al. [8] conduct the linear stability analysis for
(1.1) in an interval with a variety of trophic functions g(u, v) alongside numerical simulations showing
the chaotic or cyclic patterns. For the Beddington–DeAngelis-type functional response, Thakur et al.
[42] perform extensive simulations for�= [0, L] show that increasing the value of preytaxis coefficient
γ (from the bifurcation value) drives the system to exhibit chaotic behaviour, while increasing the value
of random diffusion of the predator brings the system to recover from a disordered state to an ordered
state. Similar observations in one dimension are observed in [39] for Holling type IV functional response
(Michaelis–Menten inhibitory kinetics).
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From the aforementioned results for the reaction–diffusion–advection system (1.1), we see that the
existing analytical works are confined to the linear analysis and no results on the global or nonlinear
dynamics seem to be available as far as we know. The goal of this paper will be to explore the global
dynamics of (1.1) with prey-dependent trophic functions. Specifically, we shall consider system (1.1) in
the following form: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ut = du�u − ∇ · (uw) + αuF(v) −μu, x ∈�, t> 0,

vt = dv�v + f (v) − αuF(v), x ∈�, t> 0,

wt = dw�w + γ∇v, x ∈�, t> 0,

∇u · n = ∇v · n = 0, w = 0, x ∈ ∂�, t> 0,

(u, v, w)(x, 0) = (u0, v0, w0)(x), x ∈�,

(1.2)

where �⊂Rn (n ≥ 1) is a bounded domain with smooth boundary and n is the unit outward normal
vector of ∂�. Writing du�u − ∇ · (uw) = ∇ · (du∇u − uw), we find that the above boundary conditions
give rise to the zero-flux boundary conditions meaning that both predator and prey live in a closed habitat
and cannot cross the boundary.

In the present paper, the initial data (u0, v0, w0) are supposed to satisfy

u0(x), v0(x) � 0, u0, v0 ∈ W1,∞(�), w0(x) ∈ [W1,∞(�)]n. (1.3)

Moreover, we suppose that the trophic function F(v) and the growth function f (v) satisfy the following
hypotheses:

(H1) F(v) ∈ C2([0, ∞)), F(0) = 0 and F(v)> 0 in (0, ∞).

(H2) f ∈ C2([0, ∞)), f (0) = 0, and there exist two positive constants η, K such that f (v) ≤ ηv for v ≥ 0,
f (K) = 0 and f (v)< 0 for v>K.

We remark that the above assumptions for F(v) and f (v) have covered a large class of typical examples
such as: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

F(v) = v (Lotka-Volterra type or Holling type I),

F(v) = v

λ+ v
(Holling type II),

F(v) = vκ

λκ + vκ
(Holling type III),

and ⎧⎪⎨
⎪⎩

f (v) = ηv
(

1 − v

K

)
(Logistic type),

f (v) = ηv
(

1 − v

K

) ( v

L
− 1
)

(Allee effect type),

where λ, κ and L are positive constants with κ > 1, 0< L<K.
In this paper, we shall establish the global existence and stability of classical solutions of (1.2) with a

generic prey-dependent trophic function, refine the linear analysis to identify the parameter regimes for
pattern formations and use numerical simulations to demonstrate the spatiotemporal patterns generated
by (1.2) implying that the preytaxis with prey-induced acceleration is more appropriate than the con-
ventional one to interpret the field observation of spatially heterogeneous coexistence in predator–prey
systems. The first main theorem stated below asserts that the problem (1.2) has a global-in-time classical
solution which is uniformly bounded with respect to time in any spatial dimensions.

Theorem 1.1. Let n ≥ 1 and the hypotheses (H1)–(H2) and (1.3) hold. Then the problem (1.2) has a
unique global classical solution (u, v, w) satisfying

u(x, t) ≥ 0 and 0 ≤ v(x, t) ≤ m for all (x, t) ∈ �̄× (0, +∞),
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and

lim sup
t→+∞

v(x, t) ≤ K for all x ∈ �̄,

where the positive constant m is defined by:

m = max
{‖v0‖L∞(�), K

}
. (1.4)

Moreover, we have

‖u‖L∞(�) + ‖v(·, t)‖W1,∞(�) + ‖w(·, t)‖W1,∞(�) ≤ C for all t> 0.

where C> 0 is a constant independent of time t.

In the following, we shall present the global stability of non-negative constant prey-only and
coexistence steady states. The system (1.2) has three possible constant steady states (us, vs, ws):

(us, vs, ws)=
{

(0, 0, 0), (0, 1, 0) , if αF(K) ≤μ,

(0, 0, 0), (0, 1, 0) , (u∗, v∗, 0) , if αF(K)>μ,
(1.5)

where (0, 0, 0) is the trivial steady state (i.e., extinction steady state), (0, 1, 0) is the semi-trivial steady
state (called the prey-only steady state) and (u∗, v∗, 0) is the coexistence steady state with u∗, v∗ > 0
determined by the following algebraic equations:

αF(v∗) =μ and μu∗ = f (v∗). (1.6)

Note that the non-negative constant steady states of w is 0 due to w = 0 on ∂�.
For the global stability of steady states given in (1.5), except the hypotheses (H1) and (H2), we need

additional assumptions for F(v) and the compound function:

�(v) = f (v)

F(v)

as follows:

(H3) F′(v)> 0 in [0, ∞).
(H4) �(v) ∈ C1((0, ∞)), �(0) = limv→0+ �(v)> 0 and �′(v)< 0 in (0, ∞).

It follows from Theorem 1.1 that there exists some T0 > 0 such that

0< v(x, t)<K + 1 for all (x, t) ∈ �̄× (T0, +∞). (1.7)

Then, F′(v) reaches its positive minimum in the interval [0, K + 1] and F2(v) has an upper bound in the
interval [0, K + 1] for t> T0. Let

c0 = inf
v∈[0,K+1]


(v), where 
(v) = F′(v)

F2(v)
, (1.8)

then c0 > 0 is a constant independent of the initial data. We shall also use the following Poincaré constant
for the domain �:

CP(�) = inf
{
C> 0
∣∣‖ϕ‖L2(�) ≤ C‖∇ϕ‖L2(�) for all ϕ ∈ (W1,2

0 (�)
)n }

. (1.9)

In the case of αF(K)>μ, we have global stability of the coexistence steady state.

Theorem 1.2. Assume that αF(K)>μ. Let n ≥ 1 and the hypotheses (H1)–(H4) and (1.3) hold, and let
(u, v, w) be the solution of (1.2) obtained in Theorem 1.1. If

dw >

(
u∗
4du

+ αγ 2

dvc0μ

)
C2

P(�)

2
, (1.10)

then the coexistence steady state (u∗, v∗, 0) is globally asymptotically stable.
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Remark 1.1. The positive number
(

u∗
4du

+ αγ 2

dvc0μ

)
C2

P(�)

2
on the right side of (1.10) is determined and

can be estimated once the domain �, parameter values and the tropic function F(v) are specified.
For instance, if F(v) = v (Holling type I) or F(v) = v

1+v
(Holling type II), then the constant c0 > 0 is

determined by:

c0 = inf
v∈[0,K+1]


(v) = inf
v∈[0,K+1]

F′(v)

F2(v)
= inf

v∈[0,K+1]

1

v2
= 1

(K + 1)2 .

For an open bounded set �⊂Rn, CP(�) ≤ 2
n

(
inf
x∈Rn

sup
y∈�

|x − y|
) 1

2
(cf. [27, Exercise 13.22]). Moreover,

CP can be specified in some special cases, such as CP = 1
π

if � is a unit isosceles right triangle (cf.
[22]).

Remark 1.2. Consider a special case: w is a conservative vector field with w = ∇φ for some scalar
potential function φ ∈ C1(�). Then the system (1.2) can be written as an indirect preytaxis system as
follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ut = du�u − ∇ · (u∇φ) + αuF(v) −μu, x ∈�, t> 0,

vt = dv�v + f (v) − αuF(v), x ∈�, t> 0,

φt = dw�φ + γ v + λ0, x ∈�, t> 0,

∇u · n = ∇v · n = ∇φ · n = 0, x ∈ ∂�, t> 0,

(u, v, φ)(x, 0) = (u0, v0, φ0)(x), x ∈�

(1.11)

for some constant λ0 ∈R. Recently, there are some works for the above indirect preytaxis model with
λ0 = 0 for different functional response functions (cf. [1, 2, 31, 46, 55, 56] and references therein). In
this sense, the indirect preytaxis system can be regarded as a special case of (1.2) when w is a gradient
field.

In the case of αF(K) ≤μ, we have the global stability of the prey-only steady state.

Theorem 1.3. Assume that αF(K) ≤μ. Let n ≥ 1 and the hypotheses (H1)–(H4) and (1.3) hold, and
let (u, v, w) be the solution of (1.2) obtained in Theorem 1.1. Then for any positive parameters du, dv,
dw and γ , the prey-only steady state (0, K, 0) is globally asymptotically stable. Moreover, if αF(K)<μ,
then (0, K, 0) is exponentially stable, that is, there exist positive constants C, λ and T1 such that

‖u‖L∞(�) + ‖v − K‖L∞(�) + ‖w‖L∞(�) ≤ Ce−λt for all t> T1.

The rest of this paper is organised as follows. In Section 2, we establish the existence of globally
bounded classical solutions of (1.2) by extending local solutions with the a priori estimates of solu-
tions derived. In Section 3, we show the global stability of coexistence and prey-only steady states by
constructing Lyapunov functionals along with some compactness arguments. In Section 4, we conduct
linear stability analysis to identify the parameter regime for the pattern formation and perform numerical
simulations to show that the preytaxis system (1.2) with prey-induced acceleration will typically gen-
erate spatially inhomogeneous time-periodic patterns which are well consistent with the experimental
observations.

2. Global existence and uniform boundedness

In this section, we shall establish the global existence and boundedness of solutions to (1.2), which
consists of local existence and some a priori estimates of solutions. Before proceeding, we introduce
some notations frequently used in the paper.
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Notations.

• Without confusion, we shall abbreviate
∫
�

fdx as
∫
�

f for simplicity.
• We denote by C, Ci (i = 1, 2, 3, · · · ) and C� generic positive constants that may vary in the context,

where C and Ci are independent of �, and C� depends only on �.

2.1. Preliminary results

We first use Amann’s theorem of parabolic systems in [4, 5] (cf. also [50, Lemma 2.6]) to establish the
existence of local-in-time classical solutions of the system (1.2).

Lemma 2.1. Let n ≥ 1 and the hypotheses (H1), (H2) and (1.3) hold. Then there exists Tmax ∈ (0, ∞]
such that (1.2) admits a unique classical solution (u, v, w) on [0, Tmax) satisfying{

u, v ∈ C
(
�̄× [0, Tmax)

)∩ C2,1
(
�̄× (0, Tmax)

)
,

w ∈ [C(�̄× [0, Tmax)) ∩ C2,1
(
�̄× (0, Tmax)

)]n
and

u(x, t)> 0, 0< v(x, t) ≤ m in �× (0, Tmax), (2.1)

where m is given by (1.4). Moreover, there is a dichotomous criterion:

either Tmax = ∞, or lim
t→Tmax

sup
(‖u(·, t)‖L∞(�) + ‖v(·, t)‖L∞(�) + ‖w(·, t)‖L∞(�)

)= ∞. (2.2)

Proof. Let ψ = (ψ1,ψ2, · · · ,ψn+2)
T = (u, v, w)T = (u, v, w1, w2, · · · , wn)T be a (n + 2)-dimensional

vector-valued function, where KT denotes the transpose of a matrix K. Denote 0p×q by a p-by-q zero
matrix with two positive integers p and q. Let

ξi =
(−ψi+2, 01×i, −ψ1, 01×(n−i)

)
, i = 1, 2, · · · , n,

be a (n + 2)-dimensional vector-valued function, and

Di =
(
ξi

Pi

)
, i = 1, 2, · · · , n,

be a square matrix of order (n + 2), where all elements of the (n + 1)-by-(n + 2) matrix Pi are 0 except
the (i + 1)-by-2 element is γ . Then the system (1.2) can be rewritten as:⎧⎪⎨

⎪⎩
ψ t = A ·�ψ +∑n

i=1 Di · ∂iψ + F, x ∈�, t> 0,

Bψ = 0, x ∈ ∂�, t> 0,

ψ(·, 0) = (u0, v0, w0) , x ∈�,

(2.3)

where

A =

⎛
⎜⎜⎝

du 0 0

0 dv 0

0 0 dwEn

⎞
⎟⎟⎠

is a constant square matrix of order (n + 2) with En being the identity matrix of order n, and F is a
(n + 2)-dimensional vector-valued function given by:

F =
⎛
⎜⎝
αψ1F(ψ2) −μψ1

f (ψ2) − αψ1F(ψ2)

0n×1

⎞
⎟⎠ .
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Moreover, the boundary operator B is given by:

B =

⎛
⎜⎜⎝
∂n

∂n

En

⎞
⎟⎟⎠ ,

where ∂n is the partial derivative with respect to n. Obviously, all eigenvalues of A are positive, and
hence system (2.3) is uniformly parabolic. The local existence and uniqueness of classical solutions
follow from Amann’s theorem [4, Theorem 7.3 and Corollary 9.3] and the blow-up criteria (2.2) follows
from [5, Theorem 15.5].

The positivity of u and v for t ∈ (0, Tmax) follows from the strong maximum principle. To be precise,
we rewrite the first equation of the system (1.2) as follows:⎧⎪⎨

⎪⎩
ut − du�u + w · ∇u + q(x, t)u = 0, x ∈�, t ∈ (0, Tmax) ,

∇u · n = 0, x ∈ ∂�, t ∈ (0, Tmax) ,

u(x, 0) = u0 ≥ 0( �≡ 0), x ∈�,

where q(x, t) = ∇ · w − αF(v) +μ. By the maximum principle, we know that u ≥ 0 in �× (0, Tmax),
we shall show that actually u> 0 in �× (0, Tmax). For any (x∗, t∗) ∈�× (0, Tmax), we can find an open
subset �∗ ⊂� and T∗ ∈ (0, Tmax) such that{

(x∗, t∗) ∈�∗ × (0, T∗) =: Q(x∗ ,t∗) ⊂�× (0, Tmax) ,

∃ x0 ∈�∗ such that u(x0, 0)> 0,
(2.4)

where the second condition can be satisfied according to (1.3). By the regularity of q(x, t), we can find
some constant R such that R = infQ(x∗ ,t∗ ) q(x, t), and hence U(x, t) := eRtu(x, t) ≥ 0 for (x, t) ∈�× [0, Tmax)
satisfies

Ut − du�U + w · ∇U + (q(x, t) − R)U = 0, (x, t) ∈ Q(x∗ ,t∗).

If u(x∗, t∗) = 0, then by q(x, t) − R ≥ 0, U(x∗, t∗) = 0 and U(x, t) ≥ 0 for (x, t) ∈ Q(x∗ ,t∗), one can apply the
strong maximum principle [29, Lemma 2.7] to obtain U(x, t) ≡ 0 for (x, t) ∈�∗ × (0, t∗). This together
with the continuity of U yields U(x, 0) ≡ 0 for x ∈�∗, which contradicts the second condition of (2.4).
Hence, we have u(x∗, t∗) �= 0, that is, u(x∗, t∗)> 0 due to u(x, t) ≥ 0 for (x, t) ∈�× (0, Tmax). Since
(x∗, t∗) ∈�× (0, Tmax) is arbitrary, we have u> 0 in �× (0, Tmax). Similarly, using the strong maxi-
mum principle one can show that 0< v ≤ m in �× (0, Tmax). Therefore, (2.1) is proved, and the proof
is completed.

Lemma 2.2. For all t ∈ (0, Tmax), there exists a constant C> 0 such that

‖u(·, t)‖L1(�) ≤ C.

Proof. It follows from the first two equations in (1.2) that

d

dt

∫
�

(u + v) +μ

∫
�

u ≤
∫
�

f (v) for all t ∈ (0, Tmax).

By the assumption (H2) and (2.1), we have

d

dt

∫
�

(u + v) +μ

∫
�

(u + v) ≤
(

max
v∈[0,m]

f (v) +μm

)
|�| ≤ C for all t ∈ (0, Tmax),

where m is given by (1.4). Therefore, an application of Grönwall’s inequality completes the proof.
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Since the boundary condition of w in (1.2) is Dirichlet type, we need the following Lp-Lq-estimates
for the Dirichlet heat semigroup established in [38, Proposition 48.4∗, 48.5 and 48.7∗].

Lemma 2.3. ([38, Proposition 48.4∗, 48.5 and 48.7∗]) Let n ≥ 1 and
(
et�
)

t≥0
be the Dirichlet heat semi-

group in � and let λ1 > 0 denote the first non-zero eigenvalue of −� in � under Dirichlet boundary
conditions. We have the following properties.

(i) If 1 ≤ q< p ≤ ∞, then∥∥et�z
∥∥

Lp(�)
≤ (4π t)− n

2 (
1
q − 1

p )‖z‖Lq(�) for all t> 0, (2.5)

holds for all z ∈ Lq(�).
(ii) For all 1 ≤ p ≤ ∞ and all z ∈ Lp(�), it holds that

‖et�z‖Lp(�) ≤ C�e−λ1 t‖z‖Lp(�) for all t> 0. (2.6)

(iii) For all z ∈ L∞(�), it holds that

‖∇et�z‖L∞(�) ≤ C�

(
1 + t−

1
2
)‖z‖L∞(�) for all t> 0. (2.7)

Next we give some further Lp-Lq-estimates for the Dirichlet heat semigroup, which can be deduced
based on Lemma 2.3 and a similar argument as the proof of [52, Lemma 1.3]. Although some of the
following results seem to be well known, we cannot find precise references in the literature that provide
all estimates that we need for our purpose, and therefore we provide some proof as a complement.

Lemma 2.4. Let et� be the Dirichlet heat semigroup in�⊂Rn (n ≥ 1), λ1 > 0 denote the first non-zero
eigenvalue of −� in � under the Dirichlet boundary condition. Then the following properties hold.

(i) If 1 ≤ q ≤ p ≤ ∞, then for any z ∈ Lq(�), it holds that

‖et�z‖Lp(�) ≤ C�

(
1 + t−

n
2 (

1
q − 1

p )
)

e−λ1 t‖z‖Lq(�) for all t> 0, (2.8)

and

‖∇et�z‖Lp(�) ≤ C�

(
1 + t−

1
2 − n

2 (
1
q − 1

p )
)

e−λ1 t‖z‖Lq(�) for all t> 0. (2.9)

(ii) If 2 ≤ p<∞, then for any z ∈ W1,p(�), it holds

‖∇et�z‖Lp(�) ≤ C�e−λ1 t‖∇z‖Lp(�) for all t> 0. (2.10)

(iii) If 1< q ≤ p ≤ ∞, then for z ∈ (Lq(�))n, one has

‖et�∇ · z‖Lp(�) ≤ C�

(
1 + t−

1
2 − n

2 (
1
q − 1

p )
)

e−λ1t‖z‖Lq(�) for all t> 0. (2.11)

Proof. (i) We first prove (2.8). For 1 ≤ q = p ≤ ∞, (2.8) is a direct consequence of (2.6). For 1 ≤ q<
p ≤ ∞ and t< 2, (2.8) is a direct consequence of (2.5) since e−λ1 t > e−2λ1 for t< 2. For 1 ≤ q< p ≤ ∞
and t ≥ 2, using (2.5) and (2.6), we have

‖et�z‖Lp(�) = ‖e(t−1)�e�z‖Lp(�)

≤ C�e−λ1(t−1)‖e�z‖Lp(�)

≤ C�e−λ1 t‖z‖Lq(�) for all t ≥ 2.

This completes the proof of (2.8).
It remains to prove (2.9). Using the pointwise estimates for the spatial gradient of Green’s function

of et� in [23] (see also [32, Theorem 2.2]), we can find constants C1, C2, C3 > 0 such that

‖∇et�z‖L1(�) ≤ C1t−
n+1

2

∫
�

e−C2
|x|2

t dx‖z‖L1(�) ≤ C3t−
1
2 ‖z‖L1(�) for all t> 0, (2.12)

holds for all z ∈ L1(�). For any t ∈ (0, +∞), define the map Tt on Lp(�) for p ∈ [1, ∞] by: Tt(z) = ∇et�z
for z ∈ Lp(�). It follows from (2.7) and (2.12) that for all t> 0, Tt is of weak type (1, 1) and weak type
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(∞, ∞) (see [10, Section 9 of Chapter 9] for the definitions of weak type and ‖ · ‖p,w for p ∈ [1, ∞])
since { ‖Ttz‖1,w ≤ ‖∇et�z‖L1(�) ≤ C3t−

1
2 ‖z‖L1(�) ≤ C3

(
1 + t−

1
2
)‖z‖L1(�),

‖Ttz‖∞,w = ‖∇et�z‖L∞(�) ≤ C�

(
1 + t−

1
2
)‖z‖L∞(�).

Using the Marcinkiewicz interpolation theorem (cf. [10, Theorem 9.1]), we find that Tt is of strong type
(r, r) for 1< r<∞: ‖Ttz‖r ≤ C(r, t)‖z‖Lr (�), where

C(r, t) = C

(
r

r − 1

) 1
r (

C3

(
1 + t−

1
2
)) 1

r
(

C�

(
1 + t−

1
2
))1− 1

r =: C(�, r)
(
1 + t−

1
2
)
.

That is, ‖∇et�z‖Lr (�) ≤ C(�, r)
(
1 + t−

1
2
)‖z‖Lr (�) for 1< r<∞, where the constant C(�, r) depends only

on � and r. Therefore, this along with (2.7) and (2.12) yields for 1 ≤ p ≤ ∞ that

‖∇et�z‖Lp(�) ≤ C(�, p)
(
1 + t−

1
2
)‖z‖Lp(�) for all t> 0, (2.13)

where the constant C(�, p) depends only on � and p.
For 0< t< 2, we can use (2.8) and (2.13) to obtain

‖∇et�z‖Lp(�) = ‖∇e
t
2�e

t
2�z‖Lp(�)

≤ C
(

1 + (t/2)− 1
2

)
‖e

t
2�z‖Lp(�)

≤ C�

(
1 + (t/2)− 1

2

) (
1 + ((t/2))−

n
2 (

1
q − 1

p )
)

e−λ1
t
2 ‖z‖Lq(�)

≤ C�(t/2)− 1
2 − n

2 (
1
q − 1

p )e−λ1
t
2 ‖z‖Lq(�)

≤ C�t−
1
2 − n

2 (
1
q − 1

p )e−λ1 t‖z‖Lq(�), (2.14)

where we have used 1 ≤ min
{(

t
2

)− 1
2 ,
(

t
2

)− n
2 (

1
q − 1

p )
}
. This implies (2.9) for t< 2. For t ≥ 2, we can use

(2.8) and (2.13) to obtain

‖∇et�z‖Lp(�) = ‖∇e�e(t−1)�z‖Lp(�) ≤ C�‖e(t−1)�z‖Lp(�)

≤ C�

(
1 + (t − 1)−

n
2 (

1
q − 1

p )
)

e−λ1(t−1)‖z‖Lq(�)

≤ C�e−λ1(t−1)‖z‖Lq(�).

This together with (2.14) proves (2.9).
(ii) Recall that the following two inequalities hold also for the Dirichlet heat semigroup (cf. [7,

formula (1.12)] and [32, formula (2.39)]),

‖∇et�z‖L2(�) ≤ ‖∇z‖L2(�) for all t ≥ 0,

and

‖∇et�z‖L∞(�) ≤ C‖∇z‖L∞(�) for all t ∈ (0, 1).

Then (2.10) can be readily derived by a process similar to the proof of [52, Lemma 1.3 (iii)].
(iii) With (2.9) at hand, (2.11) can be proved by an argument similar to the proof of [52, Lemma 1.3

(iv)]. Although [52, Lemma 1.3 (iv)] is stated only for the case of 1< q ≤ p<∞, but the proof actually
already covers the case p = q = ∞ (cf. [24, Lemma 3.1]).
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2.2. A priori estimates (Proof of Theorem 1.1)

We first derive the L∞-estimate for w, which is a direct consequence of the above Lp-Lq-estimates for
the Dirichlet heat semigroup.

Lemma 2.5. For all t ∈ (0, Tmax), there exists a constant C> 0 such that

‖w(·, t)‖L∞(�) ≤ C. (2.15)

Proof. By Duhamel’s principle, one has

w(t) = edwt�w0 + γ

∫ t

0

edw(t−s)�∇v(·, s)ds,

= edwt�w0 + γ

∫ t

0

∇edw(t−s)�v(·, s)ds for all t ∈ (0, Tmax).

By Lemma 2.4 and (2.1), we have

‖w(·, t)‖L∞(�) ≤ C‖w0‖L∞(�) + C
∫ t

0

(
1 + (t − s)− 1

2

)
e−dwλ1(t−s)‖v(·, s)‖L∞(�)ds

≤ C‖w0‖L∞(�) + C
∫ t

0

(
1 + (t − s)− 1

2

)
e−dwλ1(t−s)ds

≤ C for all t ∈ (0, Tmax).

This completes the proof.

With (2.1) and (2.15) at hand, we can proceed to derive a priori L∞-estimate of u.

Lemma 2.6. For all t ∈ (0, Tmax), there exists a constant M> 0 such that

‖u(·, t)‖L∞(�) ≤ M. (2.16)

Proof. Multiplying the first equation of (1.2) by pup−1 (p> 1), integrating the result with respect to x
over � and using (2.1), one has

d

dt

∫
�

up + pμ
∫
�

up + du(p − 1)
4

p

∫
�

∣∣∇u
p
2
∣∣2

= p(p − 1)
∫
�

up−1w · ∇u + αp
∫
�

F(v)up

≤ 2(p − 1)
∫
�

u
p
2 w · ∇u

p
2 + αpδ1

∫
�

up for all t ∈ (0, Tmax), (2.17)

where δ1 := max
v∈[0,m]

F(v) is a positive constant due to the assumption (H1) (recall m> 0 is a constant
given by (1.4)). By Lemma 2.5 and Young’s inequality, one can see that there exists a constant C1 > 0
satisfying

2(p − 1)
∫
�

u
p
2 w · ∇u

p
2 ≤ du(p − 1)

2

p

∫
�

∣∣∇u
p
2
∣∣2 + 2C1

p(p − 1)

du

∫
�

up

for all t ∈ (0, Tmax). Inserting this inequality into (2.17), we obtain

d

dt

∫
�

up + pμ
∫
�

up + 2du(p − 1)

p

∫
�

∣∣∇u
p
2
∣∣2

≤
(

2C1

p(p − 1)

du

+ αpδ1

) ∫
�

up for all t ∈ (0, Tmax). (2.18)
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By Lemma 2.2 and the Gagliardo–Nirenberg inequality, we know that∫
�

up = ∥∥u p
2
∥∥2

L2(�)

≤ C
(
‖∇u

p
2 ‖2θ

L2(�)

∥∥u p
2
∥∥2(1−θ)

L
2
p (�)

+ ∥∥u p
2
∥∥2

L
2
p (�)

)
≤ C(p)‖∇u

p
2 ‖2θ

L2(�) + C(p) for all t ∈ (0, Tmax),

where θ = p
2 − 1

2
1
n + p

2 − 1
2

∈ (0, 1).

Since θ ∈ (0, 1), it follows from Young’s inequality that(
2C1

p(p − 1)

du

+ αpδ1

) ∫
�

up ≤ du(p − 1)

p

∫
�

∣∣∇u
p
2
∣∣2 + C(p)

for all t ∈ (0, Tmax). Substituting this inequality into (2.18), we obtain
d

dt

∫
�

up + pμ
∫
�

up + du(p − 1)

p

∫
�

∣∣∇u
p
2
∣∣2 ≤ C(p) for all t ∈ (0, Tmax).

Solving the above ordinary differential inequality, we get

‖u(·, t)‖Lp(�) ≤ C(p) for all t ∈ (0, Tmax) .

Particularly, there exists a constant C> 0 independent of p satisfying

‖u(·, t)‖L2n(�) ≤ C for all t ∈ (0, Tmax) .

By Duhamel’s principle, one has

u(·, t) = edut�u0 −
∫ t

0

edu(t−s)�∇ · (uw)ds +
∫ t

0

edu(t−s)�ϕ(u, v)ds for all t ∈ (0, Tmax) ,

where ϕ(u, v) = f (v) − αuF(v). By the Lp-Lq-estimates for the Neumann heat semigroup (cf. [52, Lemma
1.3]), we have

‖u(·, t)‖L∞(�) ≤ C‖u0‖L∞(�) + C
∫ t

0

(
1 + (t − s)− 1

2 − n
2 · 1

2n

)
e−duρ1(t−s)‖u‖L2n(�)‖w‖L∞(�)ds

+C
∫ t

0

(
1 + (t − s)− n

2 · 1
2n

)
e−duρ1(t−s)‖ϕ(u, v)‖L2n(�)ds

≤ C‖u0‖L∞(�) + C
∫ t

0

(
1 + (t − s)− 3

4

)
e−duρ1(t−s)ds

+C
∫ t

0

(1 + (t − s)− 1
4 )e−duρ1(t−s)ds

≤ C for all t ∈ (0, Tmax),

where ρ1 > 0 denotes the first non-zero eigenvalue of −� in� under the Neumann boundary condition.
This completes the proof.

In view of Lemmas 2.1, 2.5 and 2.6, we find Tmax = ∞. We now derive a priori L∞-estimate involving
the gradient of v and w.

Lemma 2.7. There exists a constant C> 0 such that

‖v(·, t)‖W1,∞(�) + ‖w(·, t)‖W1,∞(�) ≤ C for all t> 0. (2.19)

Proof. In view of Lemmas 2.5 and 2.6, we only need to prove

‖∇v(·, t)‖L∞(�) + ‖∇w(·, t)‖L∞(�) ≤ C for all t> 0. (2.20)
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Using the variation of constants representation of v, we have

v(·, t) = edvt�v0 +
∫ t

0

edv(t−s)�ϕ(u(·, s), v(·, s))ds for all t> 0,

where ϕ(u, v) = f (v) − αuF(v). It follows from (H1), (H2), Lemmas 2.1 and 2.6 that

‖ϕ(u(·, t), v(·, t))‖L∞(�) ≤ C for all t> 0,

which together with the Lp-Lq-estimates for the Neumann heat semigroup (cf. [52, Lemma 1.3]) shows
that

‖∇v(·, t)‖L∞(�) ≤ C‖v0‖W1,∞(�) + C
∫ t

0

(
1 + (t − s)− 1

2

)
e−dvρ1(t−s)‖ϕ‖L∞(�)ds

≤ C‖v0‖W1,∞(�) + C
∫ t

0

(
1 + (t − s)− 1

2

)
e−dvρ1(t−s)ds

≤ C for all t> 0, (2.21)

where ρ1 > 0 denotes the first non-zero eigenvalue of −� in� under the Neumann boundary condition.
Similarly, via the variation of constants formula of wi (i = 1, 2, · · · , n), we have

∇wi(t) = ∇edwt�wi(·, 0) + γ

∫ t

0

∇edw(t−s)�∂xi v(·, s)ds for all t> 0.

By Lemma 2.4, for i = 1, 2, · · · , n, we have

‖∇wi(·, t)‖L∞(�) ≤ C‖wi(·, 0)‖W1,∞(�) + C
∫ t

0

(
1 + (t − s)− 1

2

)
e−dwλ1(t−s)‖∇v(·, s)‖L∞(�)ds

≤ C‖wi(·, 0)‖W1,∞(�) + C
∫ t

0

(
1 + (t − s)− 1

2

)
e−dwλ1(t−s)ds

≤ C for all t> 0.

This along with (2.21) proves (2.20).

Proof of Theorem 1.1. In veiw of Lemmas 2.1, 2.6 and 2.7, it remains to prove lim sup
t→+∞

v(x, t) ≤ K

for all x ∈ �̄. Based on the assumptions (H1)–(H4), this can be proved by using the strong maximum
principle and the comparison principle, we omit the standard argument for brevity and refer readers to
[17, Lemma 2.2].

3. Global stability

In this section, we are devoted to proving the global stability results stated in Theorems 1.2 and 1.3 by
constructing Lyapunov functionals. To this end, we first need some regularity results as follows.

Lemma 3.1. Let (u, v, w) be the unique global classical solution of (1.2), which is given by Theorem 1.1.
Then for any 0< θ < 1, there exists C(θ )> 0 such that

‖u, v, w‖
C2+θ ,1+ θ

2 (�̄×[1,∞))
≤ C(θ ). (3.1)
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Proof. This proof is based on a standard parabolic regularity for parabolic equations (see [46, Theorem
2.1] for instance). For the reader’s convenience, we shall sketch the proof below. We rewrite (1.2) as:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ut − du�u + w · ∇u = H1(u, v, w), x ∈�, t> 0,

vt = dv�v + H2(u, v), x ∈�, t> 0,

wt = dw�w + γ∇v, x ∈�, t> 0,

∇u · n = ∇v · n = 0, w = 0, x ∈ ∂�, t> 0,

u(x, 0) = u0(x), v(x, 0) = v0(x) w(x, 0) = w0(x), x ∈�,

(3.2)

where

H1(u, v, w) = −u∇ · w + αuF(v) −μu and H2(u, v) = f (v) − αuF(v).

By (2.16) and (2.19), one has

‖∇v, H1(u, v, w), H2(u, v)‖L∞(�×(0,∞)) ≤ C.

For any p ≥ 1, applying the interior Lp estimate [29, Theorems 7.30 and 7.35] to (3.2), we have

‖u, v, w‖W2,1
p (�×[1,∞)) ≤ C.

Taking p appropriately large and using the Sobolev embedding theorem, we can find a positive constant
θ ∈ (0, 1) such that

‖u, v, w‖
C1+θ , 1+θ

2 (�̄×[1,∞))
≤ C.

Then, it follows that

‖∇v, H1(u, v, w), H2(u, v)‖
Cθ , θ2 (�̄×[1,∞))

≤ C.

This along with an application of the interior Schauder estimate [23] to (3.2) shows that

‖u, v, w‖
C2+θ ,1+ θ

2 (�̄×[1,∞))
≤ C.

This completes the proof.

To proceed, we recall two basic results.

Lemma 3.2. ([47, Lemma 1.1]) Let τ ≥ 0, c> 0 be constants, ψ(t) ≥ 0,
∫ ∞
τ
ρ(t)dt<∞. Assume that

ϕ ∈ C1([τ , ∞)), ϕ is bounded from below and satisfies

ϕ ′(t) ≤ −cψ(t) + ρ(t) in [τ , ∞).

If ψ ∈ C1([τ , ∞)) and ψ ′(t) ≤ k in [τ , ∞) for some k> 0, or ψ ∈ Cα([τ , ∞)) and ‖ψ‖Cα ([τ ,∞)) ≤ k for
some constants 0<α < 1 and k> 0, then

lim
t→∞

ψ(t) = 0.

Lemma 3.3. Let F satisfy the conditions in (H1) and (H3) and (u, v, w) be a solution of (1.2). Define a
function for some ξ > 0:

ζ (v) =
∫ v

ξ

F(s) − F(ξ )

F(s)
ds.

Then ζ (v) is a convex function such that ζ (v) ≥ 0. If we further assume that v → ξ as t → ∞, then there
is a constant T2 > 0 such that for all t ≥ T2 it holds that

F′(ξ )

4F(ξ )
(v − ξ )2 ≤ ζ (v) =

∫ v

ξ

F(s) − F(ξ )

F(s)
ds ≤ F′(ξ )

F(ξ )
(v − ξ )2.

Proof. The result immediately follows from the Taylor expansion of ζ (v).
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3.1. Global stability of the coexistence steady state: Proof of Theorem 1.2

Lemma 3.4. Let αF(K)>μ and the conditions in Theorem 1.2 hold, if

dw >

(
u∗
4du

+ αγ 2

dvc0μ

)
C2

P(�)

2
, (3.3)

then the two functions E1(t) and F1(t) defined by:

E1(t) =
∫
�

(
u − u∗ − u∗ ln

u

u∗

)
+
∫
�

∫ v

v∗

F(s) − F(v∗)

F(s)
ds +
∫
�

|w|2, t> 0,

F1(t) =
∫
�

(|∇u|2 + |∇v|2 + |w|2
)+ ∫

�

(v − v∗)
2, t> 0,

satisfy

E ′
1(t) ≤ −ε1F1(t) for all t> T0, (3.4)

for some constant ε1 > 0, where T0, c0 and CP(�) are given by (1.7), (1.8) and (1.9), respectively.

Proof. By (1.6), (2.16) and Theorem 1.1, with some β ∈ (0, duu∗) to be specified below, for all t> 0 we
have

d

dt

∫
�

(
u − u∗ − u∗ ln

u

u∗

)
=
∫
�

(
1 − u∗

u

)
(du�u − ∇ · (uw) + αuF(v) −μu)

= −duu∗

∫
�

|∇u|2

u2
+ u∗

∫
�

w · ∇u

u
+
∫
�

(αF(v) −μ) (u − u∗)

≤ −β
∫
�

|∇u|2

u2
+ u∗2

4(duu∗ − β)

∫
�

|w|2 + α

∫
�

(F(v) − F(v∗)) (u − u∗)

≤ − β

M2

∫
�

|∇u|2 + u∗2

4(duu∗ − β)

∫
�

|w|2 + α

∫
�

(F(v) − F(v∗)) (u − u∗),

(3.5)

where M is given by (2.16). Moreover, for all t> 0 we have
d

dt

∫
�

∫ v

v∗

F(s) − F(v∗)

F(s)
ds =
∫
�

F(v) − F(v∗)

F(v)
(dv�v + f (v) − αuF(v))

= −dvF(v∗)
∫
�


(v) |∇v|2 +
∫
�

(F(v) − F(v∗)) (�(v) − αu)

= −dvF(v∗)
∫
�


(v) |∇v|2 − α

∫
�

(F(v) − F(v∗))(u − u∗)

+
∫
�

(F(v) − F(v∗)) (�(v) −�(v∗)) , (3.6)

where we have used (1.6) in the last inequality. For any δ > 0, by Young’s inequality and (1.9) we have
d

dt

∫
�

|w|2 = 2dw

∫
�

�w · w + 2γ
∫
�

w · ∇v

= −2dw

n∑
i=1

∫
�

|∇wi|2 + 2γ
∫
�

w · ∇v

≤ −2dw

∫
�

|∇w|2 + δ

∫
�

|∇v|2 + γ 2

δ

∫
�

|w|2

≤ −
(

2dw

C2
P(�)

− γ 2

δ

) ∫
�

|w|2 + δ

∫
�

|∇v|2 for all t> 0. (3.7)
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By (H1), (H3), (H4), and the mean value theorem, we can find η1, η2 ∈ (0, m) such that∫
�

(F(v) − F(v∗)) (�(v) −�(v∗))=
∫
�

F′(η1)�
′(η2)(v − v∗)2 ≤ 0. (3.8)

Using (1.8) and (3.5)–(3.8), we obtain

E ′
1(t) ≤ − β

M2

∫
�

|∇u|2 −
(

2dw

C2
P(�)

−
(

u∗2

4(duu∗ − β)
+ γ 2

δ

)) ∫
�

|w|2

− (dvc0F(v∗) − δ)

∫
�

|∇v|2 +
∫
�

F′(η1)�
′(η2)(v − v∗)2 for all t> T0.

By continuity and (1.6), we know that if (3.3) holds, then we can pick β ∈ (0, duu∗) small enough and
δ ∈ (0, dvc0F(v∗)) closing to dvc0F(v∗) such that

dvc0F(v∗) − δ > 0 and
2dw

C2
P(�)

−
(

u∗2

4(duu∗ − β)
+ γ 2

δ

)
> 0.

Therefore, we can arrive at (3.4) by taking

ε1 := min

{
β

M2
,

2dw

C2
P(�)

−
(

u∗2

4(duu∗ − β)
+ γ 2

δ

)
, dvc0F(v∗) − δ, −F′(η1)�

′(η2)

}
.

Thus, the proof is completed.

Lemma 3.5. Let αF(K)>μ and the conditions in Theorem 1.2 hold, for any 0< θ < 1 we have

‖u − u∗‖C2+θ (�̄) + ‖v − v∗‖C2+θ (�̄) + ‖w‖C2+θ (�̄) → 0 as t → ∞. (3.9)

Proof. With Lemma 3.1 at hand, the conclusion can be proved by a similar argument as in [46, Lemma
3.4]. For the reader’s convenience, we shall sketch the proof here. Let E1(t), F1(t) be given by Lemma 3.4.
For θ ∈ (0, 1), by (3.1) we have F1(t) ≥ 0, F1(t) ∈ Cθ/2([1, ∞)) and ‖F1‖Cθ/2([1,∞)) ≤ k for some k> 0.
Clearly, E1(t) ∈ C1([1, ∞)). Using Taylor’s expansion, we can find ṽ between v and v∗ such that∫ v

v∗

F(s) − F(v∗)

F(s)
ds = F(v∗)F′(ṽ)

2F2(ṽ)
(v − v∗)2 ≥ 0,

and ũ between u and u∗ such that

u − u∗ − u∗ ln
u

u∗
= u∗

2ũ2
(u − u∗)2 ≥ 0.

Therefore, E1(t) is bounded from blow in [1, ∞) with E1(t) ≥ 0 for t ∈ [1, ∞). We now apply Lemma 3.2
to (3.4) and conclude that limt→∞ F1(t) = 0, which gives

lim
t→∞

(‖∇u‖L2(�) + ‖v − v∗‖L2(�) + ‖w‖L2(�)

)= 0. (3.10)

Taking 0< θ < θ ′ < 1, by Lemma 3.1 we have

‖u, v, w‖
C2+θ ′ ,1+ θ ′

2 (�̄×[1,∞))
≤ C(θ ′).

This alongside the compact arguments and uniqueness of limits (cf. [46, (3.12)], see also [16, Remark
6.1]) shows that

lim
t→∞

(‖v − v∗‖C2+θ (�̄) + ‖w‖C2+θ (�̄)

)= 0. (3.11)

It remains to prove

‖u − u∗‖C2+θ (�̄) → 0 as t → ∞. (3.12)
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By the second equation of (1.2) and (1.6), we obtain

d

dt

(
1

|�|
∫
�

vdx

)
= v̄′(t) = 1

|�|
∫
�

(f (v) − αuF(v))dx

= 1

|�|
∫
�

(f (v) − f (v∗)) dx − α

|�|
∫
�

u(F(v) − F(v∗) )dx

−αF(v∗)

|�|
∫
�

(u − u∗) dx

=: J1(t) + J2(t) + J3(t) for all t> 0, (3.13)

where z̄ := 1
|�|
∫
�

z dx for z ∈ L1(�). It follows from (H1), (H3) and (3.11) that J1(t) → 0 and J2(t) → 0
as t → ∞. By (3.1) we know that ‖v̄′‖Cθ/2([1,∞)) ≤ C2(θ ), which together with (3.11) shows that v̄′(t) → 0
as t → ∞. Therefore, we can infer from (3.13) that J3(t) → 0 as t → ∞, that is,

ū(t) → u∗ as t → ∞.

This yields, thanks to the Poincaré inequality and (3.10), that

‖u − u∗‖L2(�) ≤ ‖u − ū‖L2(�) + ‖ū − u∗‖L2(�) ≤ C‖∇u‖2 + ‖ū − u∗‖L2(�) → 0 as t → ∞.

Similar to the proof of (3.11), again by the compact arguments and uniqueness of limits, we have (3.12).
This completes the proof.

Proof of Theorem 1.2. In view of Lemma 3.5, we obtain Theorem 1.2 immediately.

3.2. Global stability of the prey-only steady state: Proof of Theorem 1.3

In this subsection, we shall consider the stability of the prey-only steady state (0, 1, 0) which is given by
(1.5) in the case of weak predation αF(K) ≤μ. We shall show that (0, 1, 0) is globally asymptotically
stable. Moreover, we shall establish the exponential stability of (0, 1, 0) under the condition of αF(K)<
μ. To this end, we construct an appropriate Lyapunov functional as below.

Lemma 3.6. Assume that αF(K) ≤μ and the conditions in Theorem 1.3 hold. Let D = 2γ 2C2
P(�)

dvdwF(K)c0
. Then

functions E2(t) and F2(t) defined by:

E2(t) = D
∫
�

u + D
∫
�

∫ v

K

F(s) − F(K)

F(s)
ds +
∫
�

|w|2, t> 0,

F2(t) =
∫
�

(|∇v|2 + (v − K)2 + |w|2
)

, t> 0,

satisfy

E ′
2(t) ≤ −ε2F2(t) − D(μ− αF(K))

∫
�

u for all t> T0, (3.14)

for some constant ε2 > 0, where T0 is given by (1.7).
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Proof. By the same argument as in the proof of Lemma 3.4, with some calculations, we can find η1, η2

between 1 and v such that
d

dt

∫
�

∫ v

K

F(s) − F(K)

F(s)
ds

= −dvF(K)
∫
�


(v) |∇v|2 +
∫
�

(F(v) − F(K)) (�(v) − αu)

= −dvF(K)
∫
�


(v) |∇v|2 − α

∫
�

u(F(v) − F(K)) +
∫
�

(F(v) − F(K))(�(v) −�(K))

= −dvF(K)
∫
�


(v) |∇v|2 − α

∫
�

u(F(v) − F(K)) + F′(η1)�
′(η2)
∫
�

(v − K)2 (3.15)

for all t> 0. Moreover, the integration of the first equation of (1.2) along with boundary conditions
yields ∫

�

ut = α

∫
�

u(F(v) − F(K)) +
∫
�

u(αF(K) −μ) for all t> 0.

Taking δ = γ 2C2
P(�)

dw
in (3.7) and using (3.15), we have

E ′
2(t) ≤ −

∫
�

(dvDF(K)
(v) − δ) |∇v|2 + DF′(η1)�
′(η2)
∫
�

(v − K)2

− dw

C2
P(�)

∫
�

|w|2 − D
∫
�

(μ− αF(K))u for all t> 0. (3.16)

It follows from (H1), (H3), (H4) and (1.8) that DF′(η1)�′(η2)< 0 and

dvDF(K)
(v) − δ= 2γ 2C2
P(�)

dw

· 
(v)

c0

− γ 2C2
P(�)

dw

≥ γ 2C2
P(�)

dw

for all t> T0.

Therefore, (3.14) is a direct consequence of (3.16) with

ε2 := min

{
γ 2C2

P(�)

dw

, −DF′(η1)�
′(η2),

dw

C2
P(�)

}
.

This completes the proof.

Lemma 3.7. Assume that αF(K) ≤μ and the conditions in Theorem 1.3 hold. For any 0< θ < 1, we
have

‖u‖C2+θ (�̄) + ‖w‖C2+θ (�̄) + ‖v − K‖C2+θ (�̄) → 0 as t → ∞.

Proof. The proof is similar to that of Lemma 3.5, hence we omit it here for brevity.

Lemma 3.8. Assume that αF(K)<μ and the conditions in Theorem 1.3 hold. Then there exist positive
constants C, λ and T1 ≥ 1 such that

‖u‖L∞(�) + ‖v − K‖L∞(�) + ‖w‖L∞(�) ≤ Ce−λt for all t> T1.

Proof. According to (3.9) and Lemma 3.3, we can find T1 ≥ 1 such that
F′(K)

4F(K)

∫
�

(v − K)2 ≤
∫
�

∫ v

K

F(s) − F(K)

F(s)
ds ≤ F′(K)

F(K)

∫
�

(v − K)2 for all t> T1. (3.17)

Using the right inequality in (3.17), the definition of E2(t) and F2(t), (3.14) and αF(K)<μ, we can find
two positive constants C1 and C2 such that

E ′
2(t) ≤ −C1

(
F2(t) +

∫
�

u

)
≤ −C2E2(t) for all t> T1.
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Thus, there is a constant C3 > 0 such that

E2(t) ≤ C3e
−C2 t for all t> T1.

This together with the definition of E2(t) and the left inequality in (3.17) shows that

‖u‖L1(�) + ‖w‖2
L2(�) + ‖v − K‖2

L2(�) ≤ C3e−C2t for all t> T1. (3.18)

We shall extend this result to the estimates of L∞-norm. Indeed (3.9) implies that

‖u, v, w‖W1,∞(�) ≤ C for all t ≥ 1.

This together with (3.18) and the Gagliardo–Nirenberg inequality for any ψ ∈ W1,∞(�):

‖ψ‖L∞(�) ≤ C‖ψ‖ n
n+1

W1,∞(�)‖ψ‖ 1
n+1

L1(�), ‖ψ‖L∞(�) ≤ C‖ψ‖ n
n+2

W1,∞(�)‖ψ‖ 2
n+2

L2(�),

yields the following decay estimate for any t> T1 (recalling T1 ≥ 1):⎧⎪⎪⎪⎨
⎪⎪⎪⎩

‖u‖L∞(�) ≤ C‖u‖ n
n+1

W1,∞(�)‖u‖ 1
n+1

L1(�) ≤ Ce− C2 t
n+1 ,

‖v − K‖L∞(�) ≤ C‖v − K‖ n
n+2

W1,∞(�)‖v − K‖ 2
n+2

L2(�) ≤ Ce− C2 t
n+2 ,

‖w‖L∞(�) ≤ C‖w‖ n
n+2

W1,∞(�)‖w‖ 2
n+2

L2(�) ≤ Ce− C2 t
n+2 .

This completes the proof by defining λ= − C2
n+2

.

Proof of Theorem 1.3. Using Lemmas 3.7 and 3.8, we get Theorem 1.3 immediately.

4. Applications and spatiotemporal patterns

There are two main purposes in this section. The first is to apply Theorems 1.1, 1.2 and 1.3 to two
specific trophic functions: Holling type I (i.e., Lotka–Volterra): F(v) = v and Holling type II: F(v) = v

1+v
,

and restate the results more explicitly. The second is to investigate whether the model (1.2) can generate
spatial heterogeneous patterns comparable with experimental observations. To this end, we shall conduct
the linear instability analysis to identify the possible parameter regimes of pattern formation and then
use numerical simulations to illustrate the patterns. Throughout this section, for the sake of brevity, we
shall take the carrying capacity K = 1 and consider the growth function f (v) in the case of the logistic
type: f (v) = v(1 − v).

4.1. Examples

The first example is the system (1.2) with the Lotka–Volterra type predator–prey interaction:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ut = du�u − ∇ · (uw) + αuv −μu, x ∈�, t> 0,

vt = dv�v + v(1 − v) − αuv, x ∈�, t> 0,

wt = dw�w + γ∇v, x ∈�, t> 0,

∇v · n = ∇u · n = 0, w = 0, x ∈ ∂�, t> 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈�.

(4.1)

Then, an application of Theorems 1.2 and 1.3 yields the following results on system (4.1).

Corollary 4.1. Let �⊂Rn(n ≥ 1) be a bounded domain with smooth boundary and assume the initial
data (u0, v0, w0) satisfy (1.3). Then the problem (4.1) has a unique global classical solution (u, v, w)
satisfying {

u, v ≥ 0, u, v ∈ C(�̄× [0, ∞)) ∩ C2,1(�̄× (0, ∞)),

w ∈ [C(�̄× [0, ∞)) ∩ C2,1(�̄× (0, ∞))
]n
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with the following asymptotics:

(i) If α ≤μ, then

‖u‖L∞(�) + ‖v − 1‖L∞(�) + ‖w‖L∞(�) → 0 as t → ∞,

where the convergence is exponential if α <μ.
(ii) If α >μ and

dw >

(
α −μ

4α2du

+ αm2γ 2

dvμ

)
C2

P(�)

2
,

then

‖u − u∗‖L∞(�) + ‖v − v∗‖L∞(�) + ‖w‖L∞(�) → 0 as t → ∞,

where m and CP(�) are given by (1.4) and (1.9), respectively, and (u∗, v∗) = ( α−μ
α2 , μ

α

)
.

The second example is Holling type II predator–prey interaction, which specifies (1.2) as:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ut = du�u − ∇ · (uw) + α uv
1+v

−μu, x ∈�, t> 0,

vt = dv�v + v(1 − v) − α uv
1+v

, x ∈�, t> 0,

wt = dw�w + γ∇v, x ∈�, t> 0,

∇v · n = ∇u · n = 0, w = 0, x ∈ ∂�, t> 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈�.

(4.2)

Then the results of Theorems 1.2 and 1.3 imply the following results.

Corollary 4.2. Let �⊂Rn(n ≥ 1) be a bounded domain with smooth boundary and assume the initial
data (u0, v0, w0) satisfy (1.3). Then the problem (4.2) has a unique global classical solution (u, v, w)
satisfying {

u, v ≥ 0, u, v ∈ C(�̄× [0, ∞)) ∩ C2,1(�̄× (0, ∞)),

w ∈ [C(�̄× [0, ∞)) ∩ C2,1(�̄× (0, ∞))
]n

,

and the following asymptotic behaviours hold:

(i) If α ≤ 2μ, then

‖u‖L∞(�) + ‖v − 1‖L∞(�) + ‖w‖L∞(�) → 0 as t → ∞,

where the convergence is exponential if α < 2μ.
(i) If α > 2μ and

dw >

(
α− 2μ

4du(α−μ)2
+ αm2γ 2

dvμ

)
C2

P(�)

2
,

then

‖u − u∗‖L∞(�) + ‖v − v∗‖L∞(�) + ‖w‖L∞(�) → 0 as t → ∞,

where m and CP(�) are given by (1.4) and (1.9), respectively, and (u∗, v∗) =
(

α−2μ
(α−μ)2 , μ

α−μ

)
.

4.2. Linear instability analysis

In this subsection, we shall study the pattern formation possibly generated by the system (1.2). For this
purpose, let us begin with the corresponding ODE system of (1.2). In this case, the third equation of
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(1.2) becomes wt = 0 which together with w|∂� = 0 indicates that 0 is the only possible steady state for
w, and the first two equations of (1.2) in the absence of spatial effects become{

ut = αuF(v) −μu,

vt = v(1 − v) − αuF(v).
(4.3)

Clearly, (4.3) has three possible equilibria (us, vs): (0, 0), (0, 1) , (u∗, v∗), where (u∗, v∗) is given by (1.6).
Let J and Ji (i = 1, 2, 3, 4) be defined by:

J =
⎛
⎝ J1 J2

J3 J4

⎞
⎠=
⎛
⎝αF(vs) −μ αusF′(vs)

−αF(vs) 1 − 2vs − αusF′(vs)

⎞
⎠ . (4.4)

The eigenvalue of J, denoted by ρ, satisfies the following equation:

ρ2 − (J1 + J4)ρ + J1J4 − J2J3 = 0. (4.5)

By the Routh–Hurwitz criterion (cf. [35, Appendix B]) for second-order polynomials, we know that
(us, vs) is linearly stable if and only if

−(J1 + J4)> 0 and J1J4 − J2J3 > 0.

Therefore, one can check that (0, 0) is linearly unstable for both Lotka–Volterra type and Holling
type II predator–prey models, since J1J4 − J2J3 = −μ< 0. The steady state (0, 1) is linearly stable for
F(v) = v when α <μ since −(J1 + J4) = 1 +μ− α > 0 and J1J4 − J2J3 =μ− α > 0 and also linearly
stable for F(v) = v

1+v
when α < 2μ since −(J1 + J4) = 1 +μ− α

2
> 0 and J1J4 − J2J3 =μ− α

2
> 0. The

homogeneous coexistence steady state

(u∗, v∗) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
α −μ

α2
,
μ

α

)
, if F(v) = v,

(
α− 2μ

(α−μ)2
,

μ

α −μ

)
, if F(v) = v

1 + v
,

(4.6)

is linearly stable for F(v) = v when α >μ since −(J1 + J4) = μ

α
> 0 and J1J4 − J2J3 = μ(α−μ)

α
> 0 and also

linearly stable for F(v) = v
1+v

when α > 2μ since −(J1 + J4) = 2μ2

α(α−μ)
> 0 and J1J4 − J2J3 = μ(α−2μ)

α
> 0.

Next, we proceed to consider the stability of (0, 1, 0) and (u∗, v∗, 0) in the presence of spatial struc-
tures. For this purpose, we restrict our analysis to the one-dimensional domain �= (0, l) with l> 0 for
simplicity and linearise the system (1.2) at the equilibrium (us, vs, 0) to get⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut = duuxx − uswx + J1u + J2v, x ∈ (0, l), t> 0,

vt = dvvxx + J3u + J4v, x ∈ (0, l), t> 0,

wt = dwwxx + γ vx, x ∈ (0, l), t> 0,

ux = vx = 0, w = 0, x = 0, l, t> 0.

(4.7)

The linearised system (4.7) has solutions in the form of (cf. [40, Appendix]):⎧⎪⎨
⎪⎩

u(x, t) =∑k≥0 Ukeλt cos kx,

v(x, t) =∑k≥0 Vkeλt cos kx,

w(x, t) =∑k≥0 Wkeλt sin kx,

(4.8)

where the constants Uk, Vk and Wk are determined by Fourier expansions of the initial conditions,
λ (depending on k) is the temporal growth rate and k = Nπ

l
is the wavenumber with the mode
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N = 0, 1, 2, · · · . Substituting (4.8) into (4.7), we obtain⎧⎪⎪⎨
⎪⎪⎩

∑
k≥0

(
λUk + duk2Uk + kusWk − J1Uk − J2Vk

)
eλt cos kx = 0,∑

k≥0

(
λVk + dvk2Vk − J3Uk − J4Vk

)
eλt cos kx = 0,∑

k≥0

(
λWk + dwk2Wk + γ kVk

)
eλt sin kx = 0.

(4.9)

Recall a basic fact

∫ l

0

cos

(
Nπ

l
x

)
cos

(
Mπ

l
x

)
dx =

⎧⎪⎪⎨
⎪⎪⎩

l, M = N = 0,

l

2
, M = N > 0,

0, M �= N.

Multiplying the first two equations of (4.9) by cos Nπ
l

x, integrating the results with respect to x over (0, l)
and using eλt �= 0, one has {

λUk + duk2Uk + kusWk − J1Uk − J2Vk = 0,

λVk + dvk2Vk − J3Uk − J4Vk = 0.
(4.10)

Similarly, using the third equation of (4.9) and∫ l

0

sin

(
Nπ

l
x

)
sin

(
Mπ

l
x

)
dx =
{

l
2
, M = N > 0,

0, M = N = 0 or M �= N,

one has

λWk + dwk2Wk + γ kVk = 0, k = Nπ

l
�= 0, N = 1, 2, 3, · · · . (4.11)

When k = 0, the third equation of (4.9) holds true for any λ ∈C, and it follows from (4.10) that

λ

(
Uk

Vk

)
=
(

J1 J2

J3 J4

)(
Uk

Vk

)
,

which implies that λ is the eigenvalue of matrix J satisfying (4.5). Therefore, when k = 0, by the dis-
cussion of the roots of (4.5) we know that for the prey-only steady state (0, 1, 0) and the coexistence
steady state (u∗, v∗, 0), where (u∗, v∗) is given by (4.6), the two roots of (4.5) have negative real parts for
F(v) = v with α <μ and F(v) = v

1+v
with α < 2μ, and hence it follows that⎧⎪⎨

⎪⎩
limt→+∞ Ukeλt cos kx

∣∣
k=0

= limt→+∞ U0eλt = 0,

limt→+∞ Vkeλt cos kx
∣∣

k=0
= limt→+∞ V0eλt = 0,

Wkeλt sin kx
∣∣

k=0
= 0 for all t> 0.

(4.12)

This means N = 0 is a stable mode.
When k = Nπ

l
�= 0, N = 1, 2, · · · , it follows from (4.10) and (4.11) that

λ

⎛
⎜⎜⎝

Uk

Vk

Wk

⎞
⎟⎟⎠= A

⎛
⎜⎜⎝

Uk

Vk

Wk

⎞
⎟⎟⎠ with A =

⎛
⎜⎜⎝

−duk2 + J1 J2 −kus

J3 −dvk2 + J4 0

0 −kγ −dwk2

⎞
⎟⎟⎠ ,

which implies that λ is the eigenvalue of matrix A. Calculating the eigenvalue of matrix A, we obtain
the eigenvalue λ

(
k2
)

depending on the wavenumber k as the root of

P(λ) := λ3 + a2

(
k2
)
λ2 + a1

(
k2
)
λ+ a0

(
k2
)= 0, (4.13)
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where ⎧⎪⎨
⎪⎩

a2 = (du + dv + dw) k2 − (J1 + J4),

a1 = (dudv + dudw + dwdv) k4 − [(dv + dw)J1 + (du + dw)J4] k2 + J1J4 − J2J3,

a0 = dudvdwk6 − dw(dvJ1 + duJ4)k4 + [dw(J1J4 − J2J3)− γ usJ3

]
k2.

(4.14)

It follows from the Routh–Hurwitz criterion (cf. [35, Appendix B]) for third-order polynomials that
(us, vs, 0) is linearly stable (i.e., all roots of (4.13) have negative real parts) if and only if

a0 > 0, a2 > 0 and � := a1a2 − a0 > 0. (4.15)

Using the explicit expressions of a0, a1 and a2 in (4.14), we have

� = [(du + dv)k
2 − (J1 + J4)

] {[
(du + dw)k2 − J1

] [
(dv + dw)k2 − J4

]− J2J3

}+ J3usγ . (4.16)

We know that (4.13) has either one real root and a pair of complex conjugate roots or three real roots.
Denote the zeros of P(λ) by λ1, λ2 and λ3. Then for each k �= 0, there are three cases for the zeros of
P(λ):

Case 1: Re(λi)< 0, i = 1, 2, 3. This case is equivalent to (4.15).
Case 2: Re(λi) ≤ 0, i = 1, 2, 3, and at least one zero of P(λ) has zero real part.
Case 3: At least one zero of P(λ) has a positive real part.

Remark 4.1. The equilibrium (us, vs, 0) is linearly stable (or called locally asymptotically stable)
in Case 1, marginally stable (or called neutrally stable, which is neither linearly stable nor linearly
unstable, see [21] for instance) in Case 2, and linearly unstable in Case 3. When � = 0, the zeros of
P(λ) are λ1 = −a2 and λ2,3 = ±i

√
a1. When � < 0 and ai > 0 for i = 0, 1, 2, then at least one zero of

P(λ) has a positive real part, and consequently the equilibrium (us, vs, 0) is linearly unstable.

Remark 4.2. One can see from (4.14) and (4.15) that

lim
k→∞

�

k6
= (du + dv)(dv + dw)(du + dw)> 0.

Therefore, (4.15) always holds for sufficient large k when a0 > 0 and a2 > 0. In the case of ai > 0 for
i = 0, 1, 2, one can see that if J3 < 0 and us > 0, then the equilibrium (us, vs, 0) is linearly unstable for
large γ > 0. Indeed, for any fixed k �= 0, let

γ∗
(
k2
)= − 1

J3usk2

[
(du + dv)k

2 − (J1 + J4)
]×

{[
(du + dw)k2 − J1

] [
(dv + dw)k2 − J4

]− J2J3

}
. (4.17)

If γ∗
(
k2
)
> 0, it follows from (4.16) that � > 0 for γ < γ∗

(
k2
)
, � = 0 for γ = γ∗

(
k2
)

and � < 0 for
γ > γ∗
(
k2
)
. If γ∗
(
k2
)≤ 0, then � < 0 for all γ > 0. In view of Remark 4.1, (us, vs, 0) is linearly unstable

for γ >max
{
γ∗
(
k2
)
, 0
}
, which gives the possibility of patterns bifurcating from (us, vs, 0).

We start by considering the equilibrium (0, 1, 0) under the condition αF(1) ≤μ. In this situation, we
have

A =

⎛
⎜⎜⎝

−duk2 + αF(1) −μ 0 0

−αF(1) −dvk2 − 1 0

0 −γ k −dwk2

⎞
⎟⎟⎠ .

One can see that all eigenvalues of A are negative for k = Nπ
l

(N = 1, 2, · · · ), which together with (4.12)
shows that the equilibrium (0, 1, 0) is linearly stable. Thus, the pattern can only arise possibly from the
homogeneous coexistence steady state (u∗, v∗, 0).
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Under the condition αF(1)>μ, we next consider the stability of the equilibrium (u∗, v∗, 0) where
(u∗, v∗) is given by (4.6). For both Lotka–Volterra (F(v) = v) and Holling type II

(
F(v) = v

1+v

)
trophic

functions, we have

J3 = −μ< 0, a1 > 0, a2 > 0 and a0 ≥ 0 (“=” holds if and only if k = 0). (4.18)

We shall give details of deriving (4.18) later in Remark 4.3. For the Lotka–Volterra trophic function
F(v) = v, we can deduce from (4.17) and Remark 4.3 that

γ∗
(
k2
)= b3k4 + b2k2 + b1 + b0

k2
, (4.19)

where bi (i = 0, 1, 2, 3) given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b3 = α2(du + dv)(du + dw)(dv + dw)

μ(α −μ)
,

b2 = α(du + dw)(du + 2dv + dw)

α −μ
,

b1 = du

(
α2 − αμ+μ

)+ αdv(α−μ) + dwμ

α −μ
,

b0 =μ,

are all positive constants since α >μ. Denoting

γ1 = inf
k= Nπ

l �=0
γ∗
(
k2
)= inf

k= Nπ
l �=0

(
b3k4 + b2k2 + b1 + b0

k2

)
, (4.20)

in view of (4.12), Remarks 4.1 and 4.2, we see that the equilibrium
(
α−μ
α2 , μ

α
, 0
)

of the system (1.2) is⎧⎪⎨
⎪⎩

linearly stable, γ < γ1,

marginally stable, γ = γ1,

linearly unstable, γ > γ1.

(4.21)

Similarly, for the Holling type II functional response function F(v) = v
1+v

, when k �= 0, we see that a0,
a1 and a2 given by (4.14) are all positive thanks to α > 2μ and it follows from (4.17) that

γ∗
(
k2
)= d3k4 + d2k2 + d1 + d0

k2
,

where di (i = 0, 1, 2, 3) given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d3 = (α−μ)2(du + dv)(du + dw)(dv + dw)

μ(α − 2μ)
,

d2 = 2μ(α −μ)(du + dw)(du + 2dv + dw)

α(α− 2μ)
,

d1 = du

(
α4 − 4α3μ+ 5α2μ2 − 2αμ3 + 4μ3

)+ αdv(α−μ)2(α− 2μ) + 4dwμ
3

α2(α− 2μ)
,

d0 = 2μ2(α−μ)

α2
,

are all positives constants since α > 2μ. Denoting

γ2 = inf
k= Nπ

l �=0
γ∗
(
k2
)= inf

k= Nπ
l �=0

(
d3k4 + d2k2 + d1 + d0

k2

)
, (4.22)
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it follows from (4.12), Remarks 4.1 and 4.2 that the equilibrium
(

α−2μ
(α−μ)2 , μ

α−μ , 0
)

of the system (1.2) is
⎧⎪⎨
⎪⎩

linearly stable, γ < γ2,

marginally stable, γ = γ2,

linearly unstable, γ > γ2.

(4.23)

Remark 4.3. Below we present some details of obtaining (4.18). Recall f (v) = v(1 − v) and K = 1, and
note that the homogeneous coexistence steady state (u∗, v∗) given by (4.6) exists if and only if αF(1)>μ.
We next discuss into two cases: F(v) = v (Lotka–Volterra) and F(v) = v

1+v
(Holling type II).

• F(v) = v. In this case, the condition αF(1)>μ is equivalent to

α >μ. (4.24)

Then, we have from (4.4) and (4.6) that

J
∣∣

(us ,vs)=(u∗ ,v∗)
=
⎛
⎝ J1 J2

J3 J4

⎞
⎠
∣∣∣∣∣

(us ,vs)=
(
α−μ
α2 , μα

) =
⎛
⎝ 0 1 − μ

α

−μ −μ

α

⎞
⎠ ,

which along with (4.14) and (4.24) implies that⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a2 = (du + dv + dw) k2 + μ

α
> 0,

a1 = (dudv + dudw + dwdv) k4 + μ(du + dw)

α
k2 +μ

(
1 − μ

α

)
> 0,

a0 = dudvdwk6 + μdudw

α
k4 + μ(α−μ)(γ + αdw)

α2
k2 ≥ 0,

where a0 = 0 if and only if k = 0.
• F(v) = v

1+v
. In this case, the condition αF(1)>μ is equivalent to

α > 2μ. (4.25)

Then, we have from (4.4) and (4.6) that

J
∣∣

(us ,vs)=(u∗ ,v∗)
=
⎛
⎝ J1 J2

J3 J4

⎞
⎠
∣∣∣∣∣

(us ,vs)=
(

α−2μ
(α−μ)2

, μ
α−μ
) =
⎛
⎝ 0 1 − 2μ

α

−μ − 2μ2

α(α−μ)

⎞
⎠ ,

which alongside (4.14) and (4.25) implies that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a2 = (du + dv + dw) k2 + 2μ2

α(α −μ)
> 0,

a1 = (dudv + dudw + dwdv) k4 + 2μ2(du + dw)

α(α −μ)
k2 +μ

(
1 − 2μ

α

)
> 0,

a0 = dudvdwk6 + 2μ2dudw

α(α −μ)
k4 + μ(α − 2μ)

(
αγ + dw(α−μ)2

)
α(α−μ)2

k2 ≥ 0,

where a0 = 0 if and only if k = 0.

4.3. Spatiotemporal patterns

The model (1.1) describes that predators respond to the heterogeneously distributed prey density by
accelerating towards the localities where prey are abundant, which results in predator aggregation. When
reaching a local maximum prey concentration, predators decelerate because the prey gradient reverses.
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Predator aggregations lead to local prey extinctions, while patches with low predator densities may pro-
vide partial refuges where prey densities grow. Then predators move actively to the newly formed prey
clusters to aggregate to start a new cycle. As such one may expect time-periodic patterns with spatial het-
erogeneity promoting the persistence of predator–prey interactions (cf. [14]). In this subsection, we shall
use numerical simulations to illustrate that the model (1.1) can generate the phenomena described above.
In the previous subsection, by taking the preytaxis coefficient γ as a bifurcation parameter, we show that
spatial patterns may arise from the vicinity of the homogeneous coexistence steady state (u∗, v∗, 0) as γ
is greater than a critical value γ1 (for Holling type 1 trophic function) or γ2 (for Holling type II trophic
function). Below we shall numerically illustrate the typical patterns generated by systems (4.1) and
(4.2). Unless otherwise specified, in this section we take the value of parameters in all simulations as
follows:

α = 0.3, μ= 0.14 and du = dv = dw = 0.1. (4.26)

We remark the specific values of the above parameters will not qualitatively affect the numerical pattern
formations to be shown. Solving (1.6), we get

(u∗, v∗)=

⎧⎪⎪⎨
⎪⎪⎩

(
16

9
,

7

15

)
, if F(v) = v,(

25

32
,

7

8

)
, if F(v) = v

1 + v
.

(4.27)

When F(v) = v, it follows from (4.19) that

γ∗
(
k2
)∣∣

k= Nπ
10

=
(

9k4

280
+ 3k2

20
+ 47

200
+ 7

50k2

)∣∣∣∣
k= Nπ

10

= 9π 4N4

2, 800, 000
+ 3π 2N2

2000
+ 47

200
+ 14

π 2N2
, N = 1, 2, 3, · · · .

In order to specify γ1 according to (4.20), we define a continuous function:

H(s) := 9π 4s4

2, 800, 000
+ 3π 2s2

2000
+ 47

200
+ 14

π 2s2
, s> 0.

One can check that H′(s) = 9π4x3

700,000
+ 3π2x

1000
− 28

π2x3 has only one zero s0 in (0, ∞), and H′(s) is negative in
(0, s0) and positive in (s0, ∞). Hence, we know that H(s) achieves its minimum at s0. Direct calculations
show that s0 ∈ (2, 3) and

H(2) = 47

200
+ 7

2π 2
+ 3π 2

500
+ 9π 4

175, 000
≈ 0.653851,

H(3) = 47

200
+ 14

9π 2
+ 27π 2

2000
+ 729π 4

2, 800, 000
≈ 0.5512.

Since γ∗
(
k2
)

is defined for discrete value k ∈ (0, ∞), γ∗
(
k2
)

attains its minimum at mode N = 3, namely
at k = 3π

10
. Hence, by (4.20) we have

γ1 = γ∗
(
k2
)∣∣

k= 3π
10

= 729π 4

2, 800, 000
+ 27π 2

2000
+ 47

200
+ 14

9π 2
≈ 0.5512. (4.28)

Similarly, when F(v) = v
1+v

, it follows from (4.19) that γ∗
(
k2
)= 64k4

875
+ 224k2

375
+ 6956

5625
+ 392

5625k2 . One can
check that γ∗

(
k2
)

attains its minimum at mode N = 2. Hence, by (4.22) we have

γ2 = γ∗
(
k2
)∣∣

k= 2π
10

= 64π 4

546, 875
+ 224π 2

9375
+ 6956

5625
+ 392

225π 2
≈ 1.6604. (4.29)

https://doi.org/10.1017/S0956792523000347 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792523000347


26 C. Mu et al.

Figure 1. Numerical simulation of spatiotemporal patterns generated by (4.1) with γ = 1 in the interval
[0, 10], where the initial value (u0, v0, w0) is given by (4.30) with (u∗, v∗) = ( 16

9
, 7

15

)
and other parameter

values are chosen as in (4.26).

The initial data (u0, v0, w0) are taken as a small random perturbation of the coexistence steady state
(u∗, v∗, 0) with 1% deviation :

(u0, v0, w0) = (u∗ + 0.01 · R, v∗ + 0.01 · R, 0.01 · R), (4.30)

where R is a random variable taking values in ( − 1, 1) generated by the Matlab and (u∗, v∗) is given in
(4.27).

We show numerical simulations in the following by differentiating the Holling type I and Holling
type II trophic functions.

4.3.1. Spatiotemporal patterns for F(v) = v

With Holling type I (i.e., Lotka–Volterra) trophic function F(v) = v, the system (1.2) becomes (4.1).
Recall that γ1 ≈ 0.5512 in view of (4.28). It follows from (4.21) that the equilibrium

(
16
9

, 7
15

, 0
)

is linearly
stable if γ < γ1, marginally stable if γ = γ1 and linearly unstable if γ > γ1. Therefore, we expect patterns
will arise in the supercritical case (i.e., γ > γ1). In the critical case γ = γ1, in principle the equilibrium
(u∗, v∗, 0) may become unstable, stable or remain marginally stable upon a random small perturbation,
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Figure 2. Numerical simulation of spatiotemporal patterns generated by (4.1) with γ = 4 in the interval
[0, 10], where the initial value (u0, v0, w0) is given by (4.30) with (u∗, v∗) = ( 16

9
, 7

15

)
and other parameter

values are chosen as in (4.26).

and our analysis can not confirm which one will occur. Hence, it is also of interest to numerically explore
the critical case γ = γ1 to see whether patterns can develop from the marginally stable steady states upon
a small perturbation.

The numerical spatial-temporal patterns generated by the model (4.1) for the supercritical case are
plotted in Figure 1(a) where we observe the spatially inhomogeneous temporal periodic patterns arising
from the vicinity of equilibrium (u∗, v∗, 0), and an inhomogeneous limit cycle is eventually attained as
shown in Figure 1(c). The spatial distributions of predators and prey at a fixed time plotted in Figure 1(b)
show that predators and prey are nearly segregated in space to achieve a heterogeneous coexistence,
where predators’ aggregation depresses local prey density while patches with low predators densities
provide refuges for prey to promote the persistence at a desirable low level of prey densities. If prey are
pests and predators are natural enemies of pests, the model (4.1) is relevant to a successful biological
control without local outbreaks as discussed in [40]. If the value of prey-tactic coefficient γ is increased
to γ = 4, we still observe the spatially inhomogeneous temporal periodic patterns in the long run as
shown in Figure 2(a), although the amplitude and periodicity of periodic patterns are different from
the smaller prey-tactic coefficient. Moreover, predators with larger prey-tactic coefficients will be more
concentrated in space (compare Figure 2(b) with Figure 1(b)). However, if the prey-tactic coefficient
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Figure 3. Numerical simulation of spatiotemporal patterns generated by (4.1) with γ = 200 in the
interval [0, 10], where the initial value (u0, v0, w0) is given by (4.30) with (u∗, v∗) = ( 16

9
, 7

15

)
and other

parameter values are chosen as in (4.26).

γ is sufficiently large, then periodic patterns will be destroyed and chaotic dynamics will present (see
Figure 3). However, the prey is not locally eradicated in space (see Figure 3(b)), which is because if
predators are too active, they may easily move away from the locations with low prey density and hence
save the prey from local eradication (cf. [34]). Next, we numerically explore the critical case γ = γ1

and corresponding numerical patterns are shown in Figure 4 where spatially inhomogeneous temporal
periodic patterns are observed as illustrated in Figure 4(a), a stable limit cycle is achieved as plotted in
Figure 4(c) and predator and prey coexist with heterogeneous distributions nearly segregated in space
as shown in Figure 4(b).

From the above numerical simulations, we find that spatially inhomogeneous but temporal periodic
patterns will typically arise from the preytaxis system (1.2) with Lotka–Volterra trophic function, where
predators and prey are nearly segregated in space and persist in time at a low level of prey densities when
the preytaxis strength is moderate. If preytaxis is strong, then chaotic dynamics will develop with more
pronounced local aggregation of predators but prey can be persistent. This implies preytaxis is a factor
driving aggregation of predators but is unable to eradicate the prey. It was well known that if prey-
taxis in the predator-prey model is conventional (i.e., w ∼ ∇v), no spatial patterns will arise (cf. [18]).
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Figure 4. Numerical simulation of spatiotemporal patterns generated by (4.1) with γ = γ1 = 0.5512 in
the interval [0, 10], where the initial value (u0, v0, w0) is given by (4.30) with (u∗, v∗) = ( 16

9
, 7

15

)
and other

parameter values are chosen as in (4.26).

However, our linear analysis in the previous subsection shows that if preytaxis is modelled with prey-
induced acceleration by assuming that predator acceleration instead of velocity is proportional to prey
density gradient, spatial patterns may arise as numerically shown in Figures 1, 2 and 3. This is a signif-
icant difference between conventional and preytaxis with prey-induced acceleration. Hence, our results
indicate that preytaxis with prey-induced acceleration is capable of promoting the spatiotemporal het-
erogeneity in the predator–prey systems and therefore is more appropriate to interpret the experimental
observations as in [19, 20, 51].

4.3.2. Spatiotemporal patterns F(v) = v
1+v

For the system (1.2) with Holling type II trophic function F(v) = v
1+v

, namely the model (4.2), recalling
from (4.29) we have γ2 ≈ 1.6604. Then (4.23) asserts that the equilibrium

(
25
32

, 7
8
, 0
)

is linearly stable
if γ < γ2, marginally stable if γ = γ2 and linearly unstable if γ > γ2. Hence, pattern formations are
expected when the prey-tactic coefficient γ exceeds or is equal to the critical value γ2. The pattern for-
mations of (1.2) with Holling type II trophic function are qualitatively similar to Holling type I (i.e.,
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Figure 5. Numerical simulation of spatiotemporal patterns generated by (4.2) with γ = 4 in the interval
[0, 10], where the initial value (u0, v0, w0) is given by (4.30) with (u∗, v∗) = ( 25

32
, 7

8

)
and other parameter

values are chosen as in (4.26).

Figure 6. Numerical simulation of spatiotemporal patterns generated by (4.2) with γ = γ2 ≈ 1.6604 in
the interval [0, 10], where the initial value (u0, v0, w0) is given by (4.30) with (u∗, v∗) = ( 25

32
, 7

8

)
and other

parameter values are chosen as in (4.26).
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Figure 7. Numerical simulation of spatiotemporal patterns generated by (4.2) with γ = 300 in the
interval [0, 10], where the initial value (u0, v0, w0) is given by (4.30) with (u∗, v∗) = ( 25

32
, 7

8

)
and other

parameter values are chosen as in (4.26).

Lotka–Volterra) trophic function, and hence we only plot the spatiotemporal patterns formed for the
supercritical case in Figure 5 and for the critical case in Figure 6. In [40], it was numerically illustrated
that the chaotic dynamics will develop when the prey-tactic coefficient γ is large. Our numerical sim-
ulations shown in Figure 7 not only demonstrate that the predator density u has chaotic dynamics but
also show that the prey density v becomes periodic asymptotically in time. This is different from what
is observed for the case of Holling type I trophic function shown in Figure 3 where the dynamics of
both predator and prey density are chaotic. This is also the major difference between Holling type I and
Holling type II trophic functions observed in numerical simulations.
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