We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove a general local law for Wigner matrices that optimally handles observables of arbitrary rank and thus unifies the well-known averaged and isotropic local laws. As an application, we prove a central limit theorem in quantum unique ergodicity (QUE): that is, we show that the quadratic forms of a general deterministic matrix A on the bulk eigenvectors of a Wigner matrix have approximately Gaussian fluctuation. For the bulk spectrum, we thus generalise our previous result [17] as valid for test matrices A of large rank as well as the result of Benigni and Lopatto [7] as valid for specific small-rank observables.
The $q$-coloured Delannoy numbers $D_{n,k}(q)$ count the number of lattice paths from $(0,\,0)$ to $(n,\,k)$ using steps $(0,\,1)$, $(1,\,0)$ and $(1,\,1)$, among which the $(1,\,1)$ steps are coloured with $q$ colours. The focus of this paper is to study some analytical properties of the polynomial matrix $D(q)=[d_{n,k}(q)]_{n,k\geq 0}=[D_{n-k,k}(q)]_{n,k\geq 0}$, such as the strong $q$-log-concavity of polynomial sequences located in a ray or a transversal line of $D(q)$ and the $q$-total positivity of $D(q)$. We show that the zeros of all row sums $R_n(q)=\sum \nolimits _{k=0}^{n}d_{n,k}(q)$ are in $(-\infty,\, -1)$ and are dense in the corresponding semi-closed interval. We also prove that the zeros of all antidiagonal sums $A_n(q)=\sum \nolimits _{k=0}^{\lfloor n/2 \rfloor }d_{n-k,k}(q)$ are in the interval $(-\infty,\, -1]$ and are dense there.
We consider an analogue of Kontsevich’s matrix Airy function where the cubic potential
$\textrm{Tr}(\Phi^3)$
is replaced by a quartic term
$\textrm{Tr}\!\left(\Phi^4\right)$
. Cumulants of the resulting measure are known to decompose into cycle types for which a recursive system of equations can be established. We develop a new, purely algebraic geometrical solution strategy for the two initial equations of the recursion, based on properties of Cauchy matrices. These structures led in subsequent work to the discovery that the quartic analogue of the Kontsevich model obeys blobbed topological recursion.
We calculate the moments of the characteristic polynomials of
$N\times N$
matrices drawn from the Hermitian ensembles of Random Matrix Theory, at a position t in the bulk of the spectrum, as a series expansion in powers of t. We focus in particular on the Gaussian Unitary Ensemble. We employ a novel approach to calculate the coefficients in this series expansion of the moments, appropriately scaled. These coefficients are polynomials in N. They therefore grow as
$N\to\infty$
, meaning that in this limit the radius of convergence of the series expansion tends to zero. This is related to oscillations as t varies that are increasingly rapid as N grows. We show that the
$N\to\infty$
asymptotics of the moments can be derived from this expansion when
$t=0$
. When
$t\ne 0$
we observe a surprising cancellation when the expansion coefficients for N and
$N+1$
are formally averaged: this procedure removes all of the N-dependent terms leading to values that coincide with those expected on the basis of previously established asymptotic formulae for the moments. We obtain as well formulae for the expectation values of products of the secular coefficients.
We use a linear algebra interpretation of the action of Hecke operators on Drinfeld cusp forms to prove that when the dimension of the
$\mathbb {C}_\infty $
-vector space
$S_{k,m}(\mathrm {{GL}}_2(\mathbb {F}_q[t]))$
is one, the Hecke operator
$\mathbf {T}_t$
is injective on
$S_{k,m}(\mathrm {{GL}}_2(\mathbb {F}_q[t]))$
and
$S_{k,m}(\Gamma _0(t))$
is a direct sum of oldforms and newforms.
Let
$a,b$
and n be positive integers and let
$S=\{x_1, \ldots , x_n\}$
be a set of n distinct positive integers. For
${x\in S}$
, define
$G_{S}(x)=\{d\in S: d<x, \,d\mid x \ \mathrm {and} \ (d\mid y\mid x, y\in S)\Rightarrow y\in \{d,x\}\}$
. Denote by
$[S^a]$
the
$n\times n$
matrix having the ath power of the least common multiple of
$x_i$
and
$x_j$
as its
$(i,j)$
-entry. We show that the bth power matrix
$[S^b]$
is divisible by the ath power matrix
$[S^a]$
if
$a\mid b$
and S is gcd closed (that is,
$\gcd (x_i, x_j)\in S$
for all integers i and j with
$1\le i, j\le n$
) and
$\max _{x\in S} \{|G_S (x)|\}=1$
. This confirms a conjecture of Shaofang Hong [‘Divisibility properties of power GCD matrices and power LCM matrices’, Linear Algebra Appl.428 (2008), 1001–1008].
Conditional on the extended Riemann hypothesis, we show that with high probability, the characteristic polynomial of a random symmetric
$\{\pm 1\}$
-matrix is irreducible. This addresses a question raised by Eberhard in recent work. The main innovation in our work is establishing sharp estimates regarding the rank distribution of symmetric random
$\{\pm 1\}$
-matrices over
$\mathbb{F}_p$
for primes
$2 < p \leq \exp(O(n^{1/4}))$
. Previously, such estimates were available only for
$p = o(n^{1/8})$
. At the heart of our proof is a way to combine multiple inverse Littlewood–Offord-type results to control the contribution to singularity-type events of vectors in
$\mathbb{F}_p^{n}$
with anticoncentration at least
$1/p + \Omega(1/p^2)$
. Previously, inverse Littlewood–Offord-type results only allowed control over vectors with anticoncentration at least
$C/p$
for some large constant
$C > 1$
.
Consider two-type linear-fractional branching processes in varying environments with asymptotically constant mean matrices. Let
$\nu$
be the extinction time. Under certain conditions, we show that both
$\mathbb{P}(\nu=n)$
and
$\mathbb{P}(\nu>n)$
are asymptotically the same as some functions of the products of spectral radii of the mean matrices. We also give an example for which
$\mathbb{P}(\nu=n)$
decays with various speeds such as
${c}/({n^{1/2}\log n)^2}$
,
${c}/{n^\beta}$
,
$\beta >1$
, which are very different from those of homogeneous multitype Galton–Watson processes.
Motivated by considerations of the quadratic orthogonal bisectional curvature, we address the question of when a weighted graph (with possibly negative weights) has nonnegative Dirichlet energy.
We show that the elements of the dual of the Euclidean distance matrix cone can be described via an inequality on a certain weighted sum of its eigenvalues.
A celebrated theorem of Douglas Lind states that a positive real number is equal to the spectral radius of some integral primitive matrix, if and only if, it is a Perron algebraic integer. Given a Perron number p, we prove that there is an integral irreducible matrix with spectral radius p, and with dimension bounded above in terms of the algebraic degree, the ratio of the first two largest Galois conjugates, and arithmetic information about the ring of integers of its number field. This arithmetic information can be taken to be either the discriminant or the minimal Hermite-like thickness. Equivalently, given a Perron number p, there is an irreducible shift of finite type with entropy
$\log (p)$
defined as an edge shift on a graph whose number of vertices is bounded above in terms of the aforementioned data.
We investigate a class of generalised stochastic complex matrices constructed from the class of all doubly stochastic matrices and a special class of circulant matrices. We determine the exact values of the structured singular values of all matrices in the class in terms of the constant row (column) sum.
We provide a description of the spectrum and compute the eigenvalues distribution of circulant Hankel matrices obtained as symmetrization of classical Toeplitz circulant matrices. Other types of circulant matrices such as simple and Cesàro circulant matrices are also considered.
In this note, we give a new property of de Branges–Rovnyak kernels. As the main theorem, it is shown that the exponential of de Branges–Rovnyak kernel is strictly positive definite if the corresponding Schur class function is nontrivial.
Let
$G(n)={\textrm {Sp}}(n,1)$
or
${\textrm {SU}}(n,1)$
. We classify conjugation orbits of generic pairs of loxodromic elements in
$G(n)$
. Such pairs, called ‘nonsingular’, were introduced by Gongopadhyay and Parsad for
${\textrm {SU}}(3,1)$
. We extend this notion and classify
$G(n)$
-conjugation orbits of such elements in arbitrary dimension. For
$n=3$
, they give a subspace that can be parametrized using a set of coordinates whose local dimension equals the dimension of the underlying group. We further construct twist-bend parameters to glue such representations and obtain local parametrization for generic representations of the fundamental group of a closed (genus
$g \geq 2$
) oriented surface into
$G(3)$
.
For an infinite Toeplitz matrix T with nonnegative real entries we find the conditions under which the equation
$\boldsymbol {x}=T\boldsymbol {x}$
, where
$\boldsymbol {x}$
is an infinite vector column, has a nontrivial bounded positive solution. The problem studied in this paper is associated with the asymptotic behaviour of convolution-type recurrence relations and can be applied to problems arising in the theory of stochastic processes and other areas.
We investigate the concept of orbital free entropy from the viewpoint of the matrix liberation process. We will show that many basic questions around the definition of orbital free entropy are reduced to the question of full large deviation principle for the matrix liberation process. We will also obtain a large deviation upper bound for a certain family of random matrices that is essential to define the orbital free entropy. The resulting rate function is made up into a new approach to free mutual information.
Using an idea of Doug Lind, we give a lower bound for the Perron–Frobenius degree of a Perron number that is not totally real, in terms of the layout of its Galois conjugates in the complex plane. As an application, we prove that there are cubic Perron numbers whose Perron–Frobenius degrees are arbitrary large, a result known to Lind, McMullen and Thurston. A similar result is proved for bi-Perron numbers.
A basic problem in the theory of partially ordered vector spaces is to characterise those cones on which every order-isomorphism is linear. We show that this is the case for every Archimedean cone that equals the inf-sup hull of the sum of its engaged extreme rays. This condition is milder than existing ones and is satisfied by, for example, the cone of positive operators in the space of bounded self-adjoint operators on a Hilbert space. We also give a general form of order-isomorphisms on the inf-sup hull of the sum of all extreme rays of the cone, which extends results of Artstein–Avidan and Slomka to infinite-dimensional partially ordered vector spaces, and prove the linearity of homogeneous order-isomorphisms in a variety of new settings.