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Counting elements of the congruence sub-
group
Kamil Bulinski and Igor E. Shparlinski

Abstract. We obtain asymptotic formulas for the number of matrices in the congruence subgroup

Γ0 (𝑄) = {𝐴 ∈ SL2 (Z) : 𝑐 ≡ 0 (mod 𝑄) } ,

which are of naive height at most 𝑋 . Our result is uniform in a very broad range of values𝑄 and 𝑋 .

1 Introduction and the main result

Given an integer𝑄 ≥ 1 we consider the congruence subgroup

Γ0 (𝑄) = {𝐴 ∈ SL2 (Z) : 𝑐 ≡ 0 (mod 𝑄)} ,

where

𝐴 =

[
𝑎 𝑏

𝑐 𝑑

]
.

We are interested in counting matrices 𝐴 ∈ Γ0 (𝑄) with entries of size at most

‖𝐴‖∞ = max{|𝑎 |, |𝑏 |, |𝑐 |, |𝑑 |} ≤ 𝑋. (1.1)

The question is a natural generalisation of the a classical counting result ofNewman [10]
concerning matrices 𝐴 ∈ SL2 (Z) with

‖𝐴‖2 = 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 ≤ 𝑋, (1.2)

and of Krieg [9] who counts matrices 𝐴 ∈ SL2 (Z) with respect to the 𝐿∞-norm as (1.1).
We note that both of these results correspond to𝑄 = 1.

We note that while we can also use the 𝐿2-norm as in (1.2) to measure the “size” of
𝐴 ∈ SL2 (Z), for us it is more convenient to use the 𝐿∞-norm as in (1.1). However, our
main purpose to have an asymptotic formula in a broad range of uniformitywith respect
to the size of𝑄 compared to 𝑋 .

Let
Γ0 (𝑄, 𝑋) = {𝐴 ∈ Γ0 (𝑄) : ‖𝐴‖∞ ≤ 𝑋}.

The question of investigating the cardinality #Γ0 (𝑄, 𝑋) has been raised in [3], where it
is also shown that for𝑄 ≤ 𝑋 we have

#Γ0 (𝑄, 𝑋) = 𝑋2+𝑜 (1)𝑄−1.
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2 K. Bulinski and I. E. Shparlinski

We are interested in obtaining an asymptotic formula for the cardinality #Γ0 (𝑄, 𝑋)
in a broad range of 𝑄 and 𝑋 . Furthermore, our bound on error term relies on some
results of Ustinov [14], which go beyond standard techniques.

We first give an asymptotic formula for #Γ0 (𝑄, 𝑋) with the main term expressed via
sums of some standard arithmetic functions. For this we also define

𝐹 (𝑄, 𝑋) = 8 (𝐹1 (𝑄, 𝑋) + 𝐹2 (𝑄, 𝑋)) ,

where

𝐹1 (𝑄, 𝑋) =
∑︁

1≤𝑐≤𝑋/𝑄

𝜑(𝑐𝑄)
𝑐𝑄

,

𝐹2 (𝑄, 𝑋) = 𝑄−1
∑︁

𝑄<𝑥≤𝑋
gcd(𝑥,𝑄)=1

𝜑(𝑥)
𝑥

,

where as usual 𝜑(𝑘) denotes the Euler function.

Theorem 1.1 Uniformly over an integer𝑄 ≥ 1 and a positive real 𝑋 ≥ 𝑄, we have

#Γ0 (𝑄, 𝑋) = 𝑋𝐹 (𝑄, 𝑋) +𝑂

(
𝑋5/3+𝑜 (1)𝑄−1 + 𝑋

)
.

Next we study the function 𝐹 (𝑄, 𝑋). As indicated to us by one the referees, the sum
𝐹2 (𝑄, 𝑋) has already been computed in [13]. When 𝑄 is fixed a much more general
result is given in [11, Theorem 5.5A.1]. We have not however been able to locate refer-
ences for an asymptotic formula for 𝐹1 (𝑄, 𝑋) with the desired level of uniformity in𝑄,
so we derive one in this paper, see 4.4 below. For this, we first recall the definition of the
Dedekind function

𝜓(𝑄) = 𝑄
∏
𝑝 |𝑄

𝑝 prime

(
1 + 1

𝑝

)
.

Theorem 1.2 Uniformly over an integer𝑄 ≥ 1 and a positive real 𝑋 ≥ 𝑄, we have

𝐹 (𝑄, 𝑋) = 96
𝜋2

· 𝑋

𝜓(𝑄) +𝑂

(
𝑄𝑜 (1) log 𝑋

)
.

Combining Theorems 1.1 and 1.2, we obtain the following asymptotic formula.

Corollary Uniformly over an integer𝑄 ≥ 1 and a positive real 𝑋 ≥ 𝑄,

#Γ0 (𝑄, 𝑋) = 96
𝜋2

· 𝑋2

𝜓(𝑄) +𝑂

(
𝑋5/3+𝑜 (1)𝑄−1 + 𝑋 log 𝑋

)
.

�

We remark that the appearance of the Dedekind function 𝜓(𝑄) in the denominator
of the asymptotic formula for #Γ0 (𝑄, 𝑋) in Corollary 1.3 is not surprising as function
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Counting elements of the congruence subgroup 3

itself appears in as the index of Γ0 (𝑄) in SL2 (Z), that is

[SL2 (Z) : Γ0 (𝑄)] = 𝜓(𝑄),

see [8, Proposition 2.5].
Elementary estimates easily show that 𝜓(𝑄) = 𝑄1+𝑜 (1) . Thus Corollary 1.3 is non-

trivial in an essentially full range of 𝑄 and 𝑋 , namely for 𝑄 ≤ 𝑋1−𝜀 for a fixed
𝜀 > 0.

2 Preparations

2.1 Notation and some elementary estimates

We recall that the notations𝑈 = 𝑂 (𝑉),𝑈 � 𝑉 and𝑉 � 𝑈 are equivalent to |𝑈 | 6 𝑐𝑉

for some positive constant 𝑐, which throughout this work, is absolute.
Futhermore we write𝑈 � 𝑉 to express that𝑉 � 𝑈 � 𝑉 .
We also write𝑈 = 𝑉𝑜 (1) if for all 𝜀 > 0 there exists a constant 𝑐(𝜀) > 0 such that

|𝑈 | ≤ 𝑐(𝜀)𝑉 𝜀 as𝑉 → ∞.
The letter 𝑝 always denotes a prime number.
For an integer 𝑘 ≥ 1 we denote by 𝜇(𝑘), 𝜏(𝑘) and 𝜑(𝑘), the Möbius function, the

number of integer positive divisors and the Euler function of 𝑘 , respectively, for which
we use the well-known bound

𝜏(𝑘) = 𝑘𝑜 (1) and 𝜑(𝑘) � 𝑘

log log(𝑘 + 2) , (2.1)

as 𝑘 → ∞, see [6, Theorems 317 and 328].
As usual we define

sign 𝑢 =


−1, if 𝑢 < 0,
0, if 𝑢 = 0,
1, if 𝑢 > 0.

For positive integers 𝑢 and 𝑣, using the Möbius function 𝜇(𝑒) and the inclusion-
exclusion principle to detect the co-primality condition and then interchanging the
order of summation, we obtain∑︁

1≤𝑐≤𝑣
gcd(𝑐,𝑢)=1

1 =
∑︁
𝑒 |𝑢

𝜇(𝑒)
⌊ 𝑣
𝑒

⌋
= 𝑣

∑︁
𝑒 |𝑢

𝜇(𝑒)
𝑒

+𝑂
©­«
∑︁
𝑒 |𝑢

|𝜇(𝑒) |ª®¬
= 𝑣

𝜑(𝑢)
𝑢

+𝑂 (𝜏(𝑢)) = 𝑣
𝜑(𝑢)
𝑢

+𝑂

(
𝑢𝑜 (1)

)
,

(2.2)

see [6, Equation (16.1.3)].

2.2 Modular hyperbolas

Here we need some results on the distribution of points on the modular hyperbola

𝑢𝑣 ≡ 1 (mod 𝑞), (2.3)
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4 K. Bulinski and I. E. Shparlinski

where 𝑞 ≥ 1 is an arbitrary integer.
We start with a very well-known case counting the number 𝑁 (𝑞;𝑈,𝑉) of solu-

tions in a rectangular domain (𝑢, 𝑣) ∈ [1,𝑈] × [1, 𝑉]. For example, such a result has
been recorded in [12, Theorem 13] (we note that the restriction𝑈,𝑉 ≤ 𝑞 is not really
necessary.

Lemma 2.1 For any𝑈,𝑉 ≥ 1, we have

𝑁 (𝑞;𝑈,𝑉) = 𝜑(𝑞)
𝑞2

𝑈𝑉 +𝑂

(
𝑞1/2+𝑜 (1)

)
.

Next we recall a result of Ustinov [14] on the number𝑇 𝑓 (𝑞; 𝑍,𝑈) of points (𝑢, 𝑣) on
the modular hyperbola (2.3) with variables run through a domain of the form

𝑍 < 𝑢 ≤ 𝑍 +𝑈 and 0 ≤ 𝑣 ≤ 𝑓 (𝑢),

where 𝑓 is a positive function with a continuous second derivative.
Namely a special case of [14], wherewehave also used (2.1) to estimate various divisor

sums, can be formulated as follows.
Let

T𝑓 (𝑞, 𝑍,𝑈) = {(𝑢, 𝑣) ∈ Z2 : 𝑍 < 𝑢 ≤ 𝑍 +𝑈, 0 < 𝑣 ≤ 𝑓 (𝑢),
𝑢𝑣 ≡ 1 (mod 𝑞)}

and let

𝑇 𝑓 (𝑞, 𝑍,𝑈) = #T𝑓 (𝑞, 𝑍,𝑈).

Lemma 2.2 Assume that the function 𝑓 : R→ R≥0 has a continuous second derivative on
[𝑍, 𝑍 +𝑈] such that for some 𝐿 > 0 we have

| 𝑓 ′′(𝑢) | � 1
𝐿
, 𝑢 ∈ [𝑍, 𝑍 +𝑈] .

Then we have the estimate

𝑇 𝑓 (𝑞; 𝑍,𝑈) = 1
𝑞

∑︁
𝑍<𝑢≤𝑍+𝑈
gcd(𝑢,𝑞)=1

𝑓 (𝑢) +𝑂

((
𝑈𝐿−1/3 + 𝐿1/2 + 𝑞1/2

)
(𝑞𝑈)𝑜 (1)

)
.

For other results on the distribution of points onmodular hyperbolas we refer to the
survey [12] and also more recent works [1, 2, 4, 5, 7, 15].

3 Proof of Theorem 1.1

3.1 Separating contributions to the main term and to the error term

It is easy to see that there are only𝑂 (𝑋) matrices in SL2 (Z; 𝑋) with 𝑎𝑏𝑐𝑑 = 0. We now
consider the following eight sets for different choices of the signs of 𝑎, 𝑐 and 𝑑:

Γ
𝛼,𝛾, 𝛿

0 (𝑄, 𝑋) = {𝐴 ∈ Γ0 (𝑄, 𝑋) : sign 𝑎 = 𝛼, sign 𝑐 = 𝛾, sign 𝑑 = 𝛿},
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Counting elements of the congruence subgroup 5

with 𝛼, 𝛾, 𝛿 ∈ {−1, 1}.
Now observe that Γ0 (𝑄, 𝑋) is preserved under the bijections[

𝑎 𝑏

𝑐 𝑑

]
↦→

[
−𝑎 𝑏

𝑐 −𝑑

]
and [

𝑎 𝑏

𝑐 𝑑

]
↦→

[
𝑎 −𝑏
−𝑐 𝑑

]
.

This means

#Γ1,1,1
0 (𝑄, 𝑋) = #Γ𝛼,𝛾,𝛼

0

and

#Γ−1,1,1
0 (𝑄, 𝑋) = #Γ−𝛼,𝛾,𝛼

0

for all pairs 𝛼, 𝛾 ∈ {−1, 1}.
Thus

#Γ0 (𝑄, 𝑋) = 4 · (#Γ1,1,1
0 (𝑄, 𝑋) + #Γ1,1,−1

0 (𝑄, 𝑋)) +𝑂 (𝑋). (3.1)

3.2 Preliminary counting of Γ1,1,1
0 (𝑄, 𝑋)

Writing 𝑐𝑄 instead of 𝑐, we need to count the number of solutions to the equation

𝑎𝑑 = 1 + 𝑏𝑐𝑄, 1 ≤ 𝑎, |𝑏 |, 𝑑 ≤ 𝑋, 1 ≤ 𝑐 ≤ 𝑋/𝑄.

We first do this for a fixed 𝑐 and then sum up over all 𝑐 ≤ 𝑋/𝑄.
First we consider the values 𝑎 ≤ 𝑐𝑄. We note that setting

𝑏 =
𝑎𝑑 − 1
𝑐𝑄

for a solution (𝑎, 𝑑) to the congruence

𝑎𝑑 ≡ 1 (mod 𝑐𝑄) 1 ≤ 𝑎 ≤ 𝑐𝑄, 1 ≤ 𝑑 ≤ 𝑋,

we have 𝑏 ≤ 𝑋 . Hence, we see from Lemma 2.1 (and then recalling that 𝑐𝑄 ≤ 𝑋 ) that
for every 𝑐 ∈ [1, 𝑋/𝑄] there are

𝐺1 (𝑐) =
𝜑(𝑐𝑄)
(𝑐𝑄)2 𝑐𝑄𝑋 +𝑂

(
(𝑐𝑄)1/2+𝑜 (1)

)
=

𝜑(𝑐𝑄)
𝑐𝑄

𝑋 +𝑂

(
𝑋1/2+𝑜 (1)

) (3.2)

such matrices [
𝑎 𝑏

𝑐𝑄 𝑑

]
∈ Γ

1,1,1
0 (𝑄, 𝑋).

Nextwe count the contribution𝐺2 (𝑐) frommatrices 𝐴 ∈ Γ
1,1,1
0 (𝑄, 𝑋)with 𝑎 > 𝑐𝑄.

To do this, we recall the notation of Section 2.2 and then parametrise this set using a
modular hyperbola as follows.
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6 K. Bulinski and I. E. Shparlinski

Lemma 3.1 Fix 1 ≤ 𝑐 ≤ 𝑋/𝑄, 0 < 𝑈 ≤ 𝑋 − 𝑐𝑄 and define

𝑓𝑐 (𝑥) =
𝑐𝑄𝑋 + 1

𝑥
.

Then the map

T𝑓𝑐 (𝑐𝑄, 𝑐𝑄,𝑈) → Γ
1,1,1
0 (𝑄, 𝑋)

given by

(𝑥, 𝑦) ↦→
[
𝑥 (𝑥𝑦 − 1)/𝑐𝑄
𝑐𝑄 𝑦

]
is well defined, injective and its image is exactly the set of those 𝐴 ∈ Γ

1,1,1
0 (𝑄, 𝑋) with 𝑐𝑄 <

𝑎 ≤ 𝑐𝑄 +𝑈 and bottom left entry equal to 𝑐𝑄.

Proof For (𝑥, 𝑦) ∈ T𝑓𝑐 (𝑐𝑄, 𝑐𝑄,𝑈) we have that (𝑥𝑦 − 1)/𝑐𝑄 ∈ Z and

0 < 𝑦 ≤ 𝑓𝑐 (𝑋),

which is equivalent to
−1
𝑐𝑄

< (𝑥𝑦 − 1)/𝑐𝑄 ≤ 𝑋.

As 𝑥 > 𝑐𝑄 ≥ 1 and 𝑦 > 0 this is actually equivalent to

1 ≤ (𝑥𝑦 − 1)/𝑐𝑄 ≤ 𝑋.

We also need to check that 1 ≤ 𝑦 ≤ 𝑋 . This follows since

0 < 𝑦 ≤ 𝑓𝑐 (𝑥) =
𝑐𝑄𝑋 + 1

𝑥
<

𝑐𝑄𝑋 + 1
𝑐𝑄

= 𝑋 + 1
𝑐𝑄

≤ 𝑋 + 1.

Thus indeed (𝑥, 𝑦) is mapped to an element of Γ1,1,1
0 (𝑄, 𝑋) with the desired properties.

Conversely, suppose that 𝐴 ∈ Γ
1,1,1
0 (𝑄, 𝑋) with 𝑎 > 𝑐𝑄 and bottom left entry equal to

𝑐𝑄. As 𝑎𝑑 ≡ 1 (mod 𝑐𝑄) we have 1 ≤ 𝑥, 𝑦 ≤ 𝑋 such that

𝐴 =

[
𝑥 (𝑥𝑦 − 1)/𝑐𝑄
𝑐𝑄 𝑦

]
.

Also by definition (the lower bound holds as 𝑥 > 𝑐𝑄 ≥ 1)

1 ≤ 𝑥𝑦 − 1
𝑐𝑄

≤ 𝑋,

which means

0 <
𝑐𝑄 + 1

𝑥
≤ 𝑦 ≤ 𝑐𝑄𝑋 + 1

𝑥
= 𝑓𝑐 (𝑥)

and so indeed (𝑥, 𝑦) ∈ T ( 𝑓𝑐 , 𝑐𝑄,𝑈). �

We partition the interval (𝑐𝑄, 𝑋] into 𝐼 � log 𝑋 dyadic intervals of the form
(𝑍𝑖 , 𝑍𝑖 +𝑈𝑖] with

𝑍𝑖 = 2𝑖−1𝑐𝑄 and 𝑈𝑖 ≤ 𝑍𝑖 , 𝑖 = 1, . . . , 𝐼,
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(in fact𝑈𝑖 = 𝑍𝑖 , except maybe for 𝑖 = 𝐼) and note that

2𝐼 𝑐𝑄 � 𝑋. (3.3)

We now write

𝐺2 (𝑐) =
𝐼∑︁
𝑖=1

𝑇 𝑓𝑐 (𝑐𝑄, 𝑍𝑖 ,𝑈𝑖) , (3.4)

where 𝑓𝑐 (𝑥) is as in Lemma 3.1.
Next, for each 𝑖 = 1, . . . , 𝐼 , we use Lemma 2.2 with 𝑞 = 𝑐𝑄 and use that

| 𝑓 ′′(𝑥) | � 𝑐𝑄𝑋

𝑍3
𝑖

� 𝑋

23𝑖 (𝑐𝑄)2

for 𝑥 ∈ (𝑍𝑖 , 𝑍𝑖 +𝑈𝑖]. Therefore, we conclude that

𝑇 𝑓𝑐 (𝑐𝑄, 𝑍𝑖 ,𝑈𝑖) = 𝑀𝑖 (𝑐) +𝑂

(
𝐸𝑖 (𝑐)𝑋𝑜 (1)

)
, (3.5)

where

𝑀𝑖 (𝑐) =
1
𝑐𝑄

∑︁
𝑍𝑖<𝑥≤𝑍𝑖+𝑈𝑖

gcd(𝑥,𝑐𝑄)=1

𝑓𝑐 (𝑥),

𝐸𝑖 (𝑐) = 2𝑖𝑐𝑄
(

𝑋

23𝑖 (𝑐𝑄)2

)1/3
+

(
23𝑖 (𝑐𝑄)2

𝑋

)1/2
+ 𝑋1/2.

Combing the main terms 𝑀𝑖 (𝑐), 𝑖 = 1, . . . , 𝐼 , together and recallining (3.4), we obtain

𝐺2 (𝑐) = M(𝑐) +𝑂

(
E(𝑐)𝑋𝑜 (1)

)
, (3.6)

where

M(𝑐) = 1
𝑐𝑄

∑︁
𝑐𝑄<𝑥≤𝑋

gcd(𝑥, |𝑐 |𝑄)=1

𝑓𝑐 (𝑥)

and

E(𝑐) =
𝐼∑︁
𝑖=1

(
2𝑖𝑐𝑄

(
𝑋

23𝑖 (𝑐𝑄)2

)1/3
+

(
23𝑖 (𝑐𝑄)2

𝑋

)1/2
+ (𝑐𝑄)1/2

)
=

𝐼∑︁
𝑖=1

(
(𝑐𝑄𝑋)1/3 + 23𝑖/2𝑐𝑄𝑋−1/2 + (𝑐𝑄)1/2

)
=

(
(𝑐𝑄𝑋)1/3 + 23𝐼 /2𝑐𝑄𝑋−1/2 + (𝑐𝑄)1/2

)
𝑋𝑜 (1) .

Recalling (3.3) and using 𝑐𝑄 ≤ 𝑋 we obtain

E(𝑐) ≤
(
𝑋2/3 + (𝑐𝑄)−1/2𝑋

)
𝑋𝑜 (1) .

which after the substitution in (3.6) yields

𝐺2 (𝑐) = M(𝑐) +𝑂

((
𝑋2/3 + (𝑐𝑄)−1/2𝑋

)
𝑋𝑜 (1)

)
. (3.7)
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3.3 Asymptotic formula for Γ1,1,1
0 (𝑄, 𝑋)

From the equations (3.2) and (3.7) we obtain

#Γ1,1,1
0 (𝑄, 𝑋) =

∑︁
1≤𝑐≤𝑋/𝑄

(𝐺1 (𝑐) + 𝐺2 (𝑐)) = M +𝑂 (E) , (3.8)

where

M =
∑︁

1≤𝑐≤𝑋/𝑄

©­­­«
𝜑(𝑐𝑄)
𝑐𝑄

𝑋 + 1
𝑐𝑄

∑︁
𝑐𝑄<𝑥≤𝑋

gcd(𝑥,𝑐𝑄)=1

𝑓𝑐 (𝑥)
ª®®®¬

= 𝑋𝐹1 (𝑄, 𝑋) +
∑︁

1≤𝑐≤𝑋/𝑄

1
𝑐𝑄

∑︁
𝑐𝑄<𝑥≤𝑋

gcd(𝑥,𝑐𝑄)=1

𝑓𝑐 (𝑥)

and

E =
∑︁

1≤𝑐≤𝑋/𝑄

(
𝑋2/3 + (𝑐𝑄)−1/2𝑋

)
𝑋𝑜 (1) = 𝑋5/3+𝑜 (1)𝑄−1.

We also note that

1
𝑐𝑄

∑︁
𝑐𝑄<𝑥≤𝑋

gcd(𝑥,𝑐𝑄)=1

𝑓𝑐 (𝑥) =
∑︁

1≤𝑐≤𝑋/𝑄

∑︁
𝑐𝑄<𝑥≤𝑋

gcd(𝑥,𝑐𝑄)=1

𝑐𝑄𝑋 + 1
𝑐𝑄𝑥

= 𝑋
∑︁

1≤𝑐≤𝑋/𝑄

∑︁
𝑐𝑄<𝑥≤𝑋

gcd(𝑥,𝑐𝑄)=1

1
𝑥
+𝑂

(
𝑋𝑜 (1)

)
.

Change the order of summation, we write∑︁
1≤𝑐≤𝑋/𝑄

∑︁
𝑐𝑄<𝑥≤𝑋

gcd(𝑥,𝑐𝑄)=1

1
𝑥
=

∑︁
𝑄<𝑥≤𝑋

gcd(𝑥,𝑄)=1

1
𝑥

∑︁
𝑐<𝑥/𝑄

gcd(𝑥,𝑐)=1

1.

Hence, recalling (2.2), we derive that∑︁
1≤𝑐≤𝑋/𝑄

1
𝑐𝑄

∑︁
𝑐𝑄<𝑥≤𝑋

gcd(𝑥,𝑐𝑄)=1

𝑓𝑐 (𝑥) = 𝑄−1
∑︁

𝑄<𝑥≤𝑋
gcd(𝑥,𝑄)=1

𝜑(𝑥)
𝑥

+𝑂

(
𝑋𝑜 (1)

)
= 𝐹2 (𝑄, 𝑋) +𝑂

(
𝑋𝑜 (1)

)
.

Thus, we see from (3.8) that

#Γ1,1,1
0 (𝑄, 𝑋) = 𝑋 (𝐹1 (𝑄, 𝑋) + 𝐹2 (𝑄, 𝑋)) +𝑂

(
𝑋5/3+𝑜 (1)𝑄−1

)
. (3.9)
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3.4 Counting Γ−1,1,1 (𝑄, 𝑋)

Recalling (3.1) we see that it remains to count Γ−1,1,1
0 (𝑄, 𝑋). One can use a similar

argument, but in fact we show that

#Γ−1,1,1 (𝑄, 𝑋) = #Γ1,1,1 (𝑄, 𝑋) +𝑂 (E + 𝑋) , (3.10)

where the error term E = 𝑂 (𝑋5/3+𝑜 (1)𝑄−1) is the same as obtained above.
Thus we wish to count matrices of the form

𝐴 =

[
𝑥 (𝑥𝑦 − 1)/𝑐𝑄
𝑐𝑄 𝑦

]
,

where 𝑥𝑦 ≡ 1 (mod 𝑐𝑄), −𝑋 ≤ 𝑥 ≤ −1, 1 ≤ 𝑦 ≤ 𝑋 , 1 ≤ 𝑐𝑄 ≤ 𝑋 and −𝑋 ≤
(𝑥𝑦 − 1)/𝑐𝑄 ≤ −1.

Without loss of generalitywe can assume that 𝑋 ∉ Z. Thenwe consider the following
two cases.

Case I: 𝑥 > −𝑐𝑄. Note that for any 𝑥, 𝑦 with 𝑥𝑦 ≡ 1 (mod 𝑐𝑄), −𝑐𝑄 < 𝑥 ≤ −1
and 1 ≤ 𝑦 ≤ 𝑋 we have

−𝑐𝑄𝑋 − 1
𝑐𝑄

<
𝑥𝑦 − 1
𝑐𝑄

≤ −2
𝑐𝑄

,

and so

−𝑋 ≤ 𝑥𝑦 − 1
𝑐𝑄

≤ −1.

Thus indeed the corresponding 𝐴 is in Γ−1,1,1
0 (𝑄, 𝑋). Note that since 0 < 𝑥 + 𝑐𝑄 ≤ 𝑐𝑄

and −𝑋 ≤ (𝑥𝑦 − 1)/𝑐𝑄 + 𝑦 ≤ 𝑋 we have that[
1 1
0 1

]
𝐴 =

[
𝑥 + 𝑐𝑄 (𝑥𝑦 − 1)/𝑐𝑄 + 𝑦

𝑐𝑄 𝑦

]
∈ Γ

1,1,1
0 (𝑄, 𝑋).

So in fact the number of such matrices 𝐴 is exactly 𝐺1 (𝑐) as computed in (3.2) in the
Γ
1,1,1
0 (𝑄, 𝑋) case.
Case II: −𝑋 < 𝑥 ≤ −𝑐𝑄. Let

𝑓̃𝑐 (𝑥) =
−𝑐𝑄𝑋 + 1

𝑥
.

Wenowneed an analogue of Lemma3.1.While the argument is very similar to that of the
proof of Lemma 3.1 there are some differences, so we prefer to present it in full detail.

Lemma 3.2 Fix 1 ≤ 𝑐 ≤ 𝑋/𝑄, 0 < 𝑈 ≤ 𝑋 − 𝑐𝑄. Then the map

T
𝑓𝑐
(𝑐𝑄,−𝑋,𝑈) → Γ

−1,1,1
0 (𝑄, 𝑋)

given by

(𝑥, 𝑦) ↦→ 𝐴 =

[
𝑥 (𝑥𝑦 − 1)/𝑐𝑄
𝑐𝑄 𝑦

]
is well defined, injective and its image is exactly the set of those 𝐴 ∈ Γ

−1,1,1
0 (𝑄, 𝑋) with

−𝑋 < 𝑥 ≤ −𝑋 +𝑈 and bottom left entry equal to 𝑐𝑄.
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Proof Let (𝑥, 𝑦) ∈ T
𝑓𝑐
(𝑐𝑄,−𝑋,𝑈). Thus by definition

0 < 𝑦 ≤ −𝑐𝑄𝑋 + 1
𝑥

.

As 𝑥 < −𝑐𝑄 we have that
−𝑐𝑄𝑋 + 1

𝑥
=

𝑐𝑄𝑋 − 1
−𝑥 ≤ 𝑐𝑄𝑋 − 1

𝑐𝑄
< 𝑋

and so indeed 𝑦 ≤ 𝑋 . Moreover, as 𝑥 < 0 we have

1 ≥ 1
𝑐𝑄

>
𝑥𝑦 − 1
𝑐𝑄

≥ −𝑋.

So indeed this mapping has range inside Γ−1,1,1
0 (𝑄, 𝑋). Conversely suppose

𝐴 =

[
𝑥 𝑏

𝑐𝑄 𝑦

]
is inΓ−1,1,1

0 (𝑄, 𝑋) with−𝑋 < 𝑥 ≤ −𝑋 +𝑈. Then−𝑋 ≤ 𝑏 ≤ 0 is an integer thus 𝑥𝑦 ≡ 1
(mod 𝑐𝑄) and

−𝑋 ≤ 𝑥𝑦 − 1
𝑐𝑄

≤ 0.

Thus as 𝑥 < 0 we have
−𝑐𝑄𝑋 + 1

𝑥
≥ 𝑦.

Thus
0 < 𝑦 ≤ 𝑓̃𝑐 (𝑥)

and so indeed (𝑥, 𝑦) ∈ T
𝑓𝑐
(𝑐𝑄,−𝑋,𝑈) as desired. �

We now fix 𝑐 with 1 ≤ 𝑐 ≤ 𝑋/𝑄 and observe now that by Lemma 3.2, for any
𝑍 ∈ [−𝑋, 0) and 0 < 𝑈 ≤ |𝑍 | we have that 𝑇

𝑓𝑐
(𝑐𝑄, 𝑍,𝑈) has the main term

2
𝑐𝑄

∑︁
𝑍<𝑥≤𝑍+𝑈
gcd(𝑥,𝑞)=1

𝑓̃𝑐 (𝑥) =
2
𝑐𝑄

∑︁
𝑍<𝑥≤𝑍+𝑈
gcd(𝑥,𝑞)=1

−𝑐𝑄𝑋 + 1
𝑥

=
2
𝑐𝑄

∑︁
−𝑍−𝑈 ≤𝑥<−𝑍
gcd(𝑥′,𝑞)=1

𝑐𝑄𝑋 − 1
𝑥

=
2
𝑐𝑄

∑︁
−𝑍−𝑈 ≤𝑥<−𝑍
gcd(𝑥,𝑞)=1

𝑓𝑐 (𝑥)

=
2
𝑐𝑄

∑︁
|𝑍 |−𝑈 ≤𝑥< |𝑍 |
gcd(𝑥,𝑞)=1

𝑓𝑐 (𝑥),

where we recall 𝑓𝑐 (𝑥) = (𝑐𝑄𝑋 − 1)/𝑥 as used in Lemma 3.1. But this is precisely the
same main term as for 𝑇 𝑓𝑐 (𝑐𝑄, |𝑍 | − 𝑈,𝑈) except for the boundary terms (𝑥 = −𝑍 −
𝑈,−𝑍 ) which contribute only 𝑂 (𝑋) (uniformly in 𝑄 as | (𝑐𝑄𝑋 − 1)/𝑥 ≤ (𝑐𝑄𝑋 −
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1)/𝑐𝑄 ≤ 𝑋 ). Thus, recalling (3.4), (3.5) and (3.6), we see that for each admissible 𝑐, we
obtain the contribution to #Γ−1,1,1 (𝑄, 𝑋), which is asymptotic to𝐺2 (𝑐). Now observe
that 𝑓̃𝑐 (𝑥) = − 𝑓𝑐 (𝑥) and so | 𝑓̃ ′′𝑐 (𝑥) | = | 𝑓 ′′𝑐 (−𝑥) | which means that the error terms we
obtain from applying Lemma 2.2 to 𝑓̃𝑐 are the same as those obtained for 𝑓𝑐 (we have
𝑥 ∈ [−𝑋,−𝑐𝑄] and before we had 𝑥 ∈ [𝑐𝑄, 𝑋]). Thus if we sum over 𝑐 and proceed as
before, we see that the error term is at most𝑂 (E + 𝑋) which implies (3.10).

3.5 Concluding the proof

Substituting (3.10) in (3.1) implies

#Γ0 (𝑄, 𝑋) = 8#Γ1,1,1
0 (𝑄, 𝑋) +𝑂 (𝑋5/3+𝑜 (1)𝑄−1 + 𝑋).

Recalling (3.9), we conclude the proof.

4 Proof of Theorem 1.2

4.1 Approximating 𝐹1 (𝑄, 𝑋)

For convenience we let

𝐺 (𝑄, 𝑋) =
∑︁

1≤𝑛≤𝑋

𝜑(𝑄𝑛)
𝑄𝑛

.

So

𝐹1 (𝑄, 𝑋) = 𝐺 (𝑄,𝑄−1𝑋). (4.1)

We now define the function

ℎ(𝑛) = 𝜇(𝑛)/𝑛.

Lemma 4.1 We have

𝐺 (𝑄, 𝑋) = 𝜑(𝑄)
𝑄

∑︁
𝑛≤𝑋

gcd(𝑛,𝑄)=1

ℎ(𝑛)
⌊
𝑋

𝑛

⌋
.

Proof Observe that for any integer 𝑛 ≥ 1,

𝜑(𝑄𝑛) = 𝑄𝑛
∏
𝑝 |𝑄𝑛

(
1 − 𝑝−1

)
and 𝜑(𝑄)𝑛 = 𝑄𝑛

∏
𝑝 |𝑄

(
1 − 𝑝−1

)
.

Hence

𝜑(𝑄𝑛)
𝜑(𝑄)𝑛 =

∏
𝑝 |𝑛

gcd(𝑝,𝑄)=1

(
1 − 𝑝−1

)
.
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Thus we derive

𝑄

𝜑(𝑄)𝐺 (𝑄, 𝑋) =
∑︁
𝑛≤𝑋

∏
𝑝 |𝑛

gcd(𝑝,𝑄)=1

(
1 − 𝑝−1

)
=

∑︁
𝑛≤𝑋

∑︁
𝑑 |𝑛

gcd(𝑑,𝑄)=1

𝜇(𝑑)
𝑑

=
∑︁
𝑑≤𝑋

gcd(𝑑,𝑄)=1

∑︁
𝑛≤𝑋
𝑑 |𝑛

𝜇(𝑑)
𝑑

=
∑︁
𝑑≤𝑋

gcd(𝑑,𝑄)=1

𝜇(𝑑)
𝑑

⌊
𝑋

𝑑

⌋
,

which completes the proof. �

We now see from Lemma 4.1 that

𝐺 (𝑄, 𝑋) = 𝜑(𝑄)
𝑄

𝑋
∑︁
𝑛≤𝑋

gcd(𝑛,𝑄)=1

ℎ(𝑛)
𝑛

+𝑂

(
𝜑(𝑄)
𝑄

∑︁
𝑛≤𝑋

|ℎ(𝑛) |
)

=
𝜑(𝑄)
𝑄

𝑋
∑︁
𝑛≤𝑋

gcd(𝑛,𝑄)=1

ℎ(𝑛)
𝑛

+𝑂

(
𝜑(𝑄)
𝑄

log 𝑋
)
.

Using that ∑︁
𝑛>𝑋

|ℎ(𝑛) |
𝑛

≤
∑︁
𝑛>𝑋

1
𝑛2

= 𝑂
(
𝑋−1) ,

we write

𝐺 (𝑄, 𝑋) = 𝜑(𝑄)
𝑄

𝑋

∞∑︁
𝑛=1

gcd(𝑛,𝑄)=1

ℎ(𝑛)
𝑛

+𝑂

(
𝜑(𝑄)
𝑄

log 𝑋
)
. (4.2)

Note that∑︁
𝑛≥1

gcd(𝑛,𝑄)=1

ℎ(𝑛)
𝑛

=
∏

gcd(𝑝,𝑄)=1

(
1 − 1

𝑝2

)
=

∏
𝑝

(
1 − 1

𝑝2

) ∏
𝑝 |𝑄

(
1 − 1

𝑝2

)−1
=

6
𝜋2

∏
𝑝 |𝑄

(
1 − 1

𝑝2

)−1
=

6
𝜋2

· 𝑄

𝜑(𝑄) ·
𝑄

𝜓(𝑄) .

Thus, we see from (4.2) that

𝐺 (𝑄, 𝑋) = 6𝑄
𝜋2𝜓(𝑄) 𝑋 +𝑂

(
𝜑(𝑄)
𝑄

log 𝑋
)

(4.3)

and so by (4.1) we derive

𝐹1 (𝑄, 𝑋) = 𝐺 (𝑄,𝑄−1𝑋) = 6
𝜋2𝜓(𝑄) 𝑋 +𝑂

(
𝜑(𝑄)
𝑄

log 𝑋
)
. (4.4)

2024/05/20 21:03
https://doi.org/10.4153/S0008439524000365 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000365


Counting elements of the congruence subgroup 13

4.2 Approximating 𝐹2 (𝑄, 𝑋)

We can now easily recover an estimate for 𝐹2 (𝑄, 𝑋) originally derived in [13]. We do
this for the sake of completeness as [13] is not easily available. Let

𝛿𝑑 (𝑛) =
{
1, if 𝑑 | 𝑛,
0, if 𝑑 - 𝑛,

be the characteristic function of the set of integer multiplies of an integer 𝑑 ≠ 0. Then∑︁
𝑛≤𝑋

gcd(𝑛,𝑄)=1

𝜑(𝑛)
𝑛

=
∑︁
𝑛≤𝑋

∏
𝑝 |𝑄

(
1 − 𝛿𝑝 (𝑛)

) 𝜑(𝑛)
𝑛

=
∑︁
𝑛≤𝑋

∑︁
𝑑 |𝑄

𝜇(𝑑)𝛿𝑑 (𝑛)
𝜑(𝑛)
𝑛

=
∑︁
𝑑 |𝑄

𝜇(𝑑)
∑︁

𝑛≤𝑋/𝑑

𝜑(𝑑𝑛)
𝑑𝑛

=
∑︁
𝑑 |𝑄

𝜇(𝑑)𝐺 (𝑑, 𝑋/𝑑).

We can now use (4.3) and then the multiplicativity of 𝜓(𝑑) to obtain∑︁
𝑛≤𝑋

gcd(𝑛,𝑄)=1

𝜑(𝑛)
𝑛

=
6
𝜋2

𝑋
∑︁
𝑑 |𝑄

𝜇(𝑑) 1
𝜓(𝑑) +𝑂

©­«
∑︁
𝑑 |𝑄

|𝜇(𝑑) | 𝜑(𝑑)
𝑑

log 𝑋ª®¬
=

6
𝜋2

𝑋
∏
𝑝 |𝑄

(
1 − 1

𝜓(𝑝)

)
+𝑂

(
2𝜔 (𝑄) log 𝑋

)

since ∑︁
𝑑 |𝑄

|𝜇(𝑑) | 𝜑(𝑑)
𝑑

≤
∑︁
𝑑 |𝑄

|𝜇(𝑑) | = 2𝜔 (𝑄) ,

where 𝜔(𝑄) is the number of prime divisors of𝑄.
A simple computation shows that∏

𝑝 |𝑄

(
1 − 1

𝜓(𝑝)

)
=

∏
𝑝 |𝑄

(
1 − 1

𝑝 + 1

)
=

∏
𝑝 |𝑄

1
1 + 𝑝−1

=
𝑄

𝜓(𝑄) .

Therefore
1
𝑄

∑︁
𝑛≤𝑋

gcd(𝑛,𝑄)=1

𝜑(𝑛)
𝑛

=
6
𝜋2

𝑋

𝜓(𝑄) +𝑂

(
2𝜔 (𝑄)𝑄−1 log 𝑋

)
.

Therefore, using that 2𝜔 (𝑄) ≤ 𝜏(𝑄) = 𝑄𝑜 (1) we obtain

𝐹2 (𝑄, 𝑋) = 6
𝜋2

𝑋 −𝑄

𝜓(𝑄) +𝑂

(
𝑄−1+𝑜 (1) log 𝑋

)
=

6
𝜋2

𝑋

𝜓(𝑄) +𝑂

(
1 +𝑄−1+𝑜 (1) log 𝑋

)
,

(4.5)

whence 𝜓(𝑄) ≥ 𝑄.
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4.3 Concluding the proof

Combining the bounds (4.4) and (4.5) we obtain the desired result.

5 Comments

We presented our result, Corollary 1.3 as a direct consequence of Theorems 1.1 and 1.2
of very different nature with error terms of different strength. This makes it apparent
that Theorem 1.1 is the bottleneck to further improvements of Corollary 1.3.

The methods of this work can also be used for counting elements of bounded norm
of other congruence subgroup such as

Γ(𝑄) =
{[
𝑎 𝑏

𝑐 𝑑

]
∈ SL2 (Z) : 𝑎, 𝑑 ≡ 1 (mod 𝑄), 𝑏, 𝑐 ≡ 0 (mod 𝑄)

}
and

Γ1 (𝑄) =
{[
𝑎 𝑏

𝑐 𝑑

]
∈ SL2 (Z) : 𝑎, 𝑑 ≡ 1 (mod 𝑄), 𝑐 ≡ 0 (mod 𝑄)

}
.

One can also adjust our approach to countingmatrices of restricted size with respect
to other natural matrix norms.
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