Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-18T08:54:17.088Z Has data issue: false hasContentIssue false

17 - Decadal to interdecadal variations of northern China heat wave frequency: impact of the Tibetan Plateau snow cover

from Part IV - Heat waves and cold-air outbreaks

Published online by Cambridge University Press:  05 March 2016

Jianping Li
Affiliation:
Beijing Normal University
Richard Swinbank
Affiliation:
Met Office, Exeter
Richard Grotjahn
Affiliation:
University of California, Davis
Hans Volkert
Affiliation:
Deutsche Zentrum für Luft- und Raumfahrt eV (DLR)
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, L. (2010). Extreme heat rooted in dry soils. Nat. Geosci., 3, 12.Google Scholar
Chen, W. Y. (1982). Fluctuations in Northern Hemisphere 700 mb height field associated with southern oscillation. Mon. Wea. Rev. 110, 808832.2.0.CO;2>CrossRefGoogle Scholar
Ding, Y. H. (1992). Summer monsoon rainfalls in China. J. Meteor. Soc. Japan, 70, 397421.CrossRefGoogle Scholar
Ding, Y. H., Ren, G. Y., Zhao, Z. C., et al. (2007). Detection, causes and projection of climate change over China: An overview of recent progresses. Adv. Atmos. Sci., 24(6), 954971.CrossRefGoogle Scholar
Ding, Y. H., Wang, Z. Y., and Sun, Y. (2008). Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. Inter J Climatol, 28(9), 11391161.CrossRefGoogle Scholar
Ding, Y. H., Sun, Y., Wang, Z. Y., Zhu, Y. X., and Song, Y. F. (2009). Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. II: Possible causes. Inter. J. Climatol., 29(13), 19261944.CrossRefGoogle Scholar
Duan, A. M., Li, F., Wang, M. R., and Wu, G.X. (2011). Persistent weakening trend in the spring sensible heat source over the Tibetan Plateau and its impact on the Asian summer monsoon. J. Clim., 24, 56715682.CrossRefGoogle Scholar
Easterling, D. R., Evans, J. L., Groisman, P. Y., et al. (2000). Observed variability and trends in extreme climate events: a brief review. Bull. Amer. Meteor. Soc., 81, 417425.2.3.CO;2>CrossRefGoogle Scholar
Fu, C. B. (2003). Potential impacts of human-induced land cover change on East Asia monsoon. Global Planet Change, 37, 219229.Google Scholar
Fischer, E. M. and Schär, C. (2010). Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci., 3, 398403.CrossRefGoogle Scholar
Garcia-Herrera, R., Diaz, J., Trigo, R. M., Luterbacher, J., and Fischer, E. M. (2010). A review of the European summer heatwave of 2003. Crit. Rev. Environ. Sci. Technol., 40, 267306.CrossRefGoogle Scholar
Hall, N. M. J. (2000). A simple GCM based on dry dynamics and constant forcing. J. Atmos. Sci., 57, 15571572.2.0.CO;2>CrossRefGoogle Scholar
Hirschi, M., Seneviratne, S. I., Alexandrov, V., et al. (2010). Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat Geosci, 3, doi: 10.1038/NGEO1032.Google Scholar
Hu, Z. Z. (1997). Interdecadal variability of summer climate over East Asia and its association with 500 hPa height and global sea surface temperature. J. Geophys. Res., 102(D16), 1940319412.CrossRefGoogle Scholar
Hu, Z. Z., Yang, S., and Wu, R. (2003). Long-term climate variations in China and global warming signals. J. Geophys. Res., 108(19), 4614, doi: 10.1029/2003JD003651.CrossRefGoogle Scholar
Hu, K. M., Huang, G., and Huang, R. H. (2011). The impact of tropical Indian Ocean variability on summer surface air temperature in China. J. Clim., 24, 53655377.CrossRefGoogle Scholar
Ito, H., Johnson, N. C., and Xie, S. P. (2013). Subseasonal and interannual temperature variability in relation to extreme temperature occurrence over East Asia. J. Clim., 26, 90269042.CrossRefGoogle Scholar
Kalnay, E., Kanamitus, M., and Kistler, R., et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437471.2.0.CO;2>CrossRefGoogle Scholar
Li, J., Yu, R. C., Zhou, T. J., and Wang, B. (2005). Why is there an early spring cooling shift downstream of the Tibetan Plateau? J. Clim., 18, 46604668.CrossRefGoogle Scholar
Li, J. P., Wu, Z. W., Jiang, Z. H., and He, J. H. (2010). Can global warming strengthen the East Asian summer monsoon? J. Clim., 23, 66966705.CrossRefGoogle Scholar
Liu, J. and Chen, R. (2011). Studying the spatiotemporal variation of snow-covered days over China based on combined use of MODIS snow-covered days and in situ observations. Theo. Appl. Climatol., doi: 10.1007/s00704-011-0441-9.CrossRefGoogle Scholar
Massimo, B. and Benedict, S. (2004). The role of the Himalayas and the Tibetan Plateau within the Asian monsoon system. Bull. Amer. Meteor. Soc., 85, 10011004.Google Scholar
Meehl, G. A., et al. (2007). Global climate projections, in Climate Change 2007: The Physical Science Basis: Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Solomon, S., et al., Cambridge University Press, Cambridge, UK.Google Scholar
Meehl, G. A., et al. (2009). Decadal prediction. Bull. Amer. Meteor. Soc., 90, 14671485.CrossRefGoogle Scholar
Nitta, T. and Hu, Z. Z. (1996). Summer climate variability in China and its association with 500 hPa height and tropical convection. J. Meteor. Soc. Japan, 74(4), 425445.CrossRefGoogle Scholar
North, G. R., Bell, T. L., Cahalan, R. F., and Moeng, F. J. (1982). Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706.2.0.CO;2>CrossRefGoogle Scholar
Ose, T. (1996). The comparison of the simulated response to the regional snow mass anomalies over Tibet, eastern Europe, and Siberia. J. Meteor. Soc. Japan, 74, 845866.CrossRefGoogle Scholar
Pu, Z. X., Xu, L., and Salomonson, V. V. (2007). MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau. Geophys. Res. Lett., 34, L06706, doi: 10.1029/2007GL029262.CrossRefGoogle Scholar
Qian, Y. F., Zheng, Y. Q., Zhang, Y., and Miao, M. Q. (2003). Responses of China's summer monsoon climate to snow anomaly over the Tibetan Plateau. Inter. J. Climatol., 23, 593613.CrossRefGoogle Scholar
Seol, K. H. and Hong, S. Y. (2009). Relationship between the Tibetan snow in spring and the East Asian summer monsoon in 2003: A global and regional modeling study. J. Clim., 22, 20952110.CrossRefGoogle Scholar
Sutton, R. T. and Hodson, D. (2005). Atlantic Ocean forcing of North American and European summer climate science. Science, 309, 115118.CrossRefGoogle Scholar
Trenberth, K. E., Jones, P. D., Ambenje, P., et al. (2007). Observations: Surface and Atmospheric Climate Change. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Solomon, S., Qin, D., Manning, M., et al. Cambridge University Press, Cambridge, UK and New York, NY, USA.Google Scholar
Uppala, S. M., Kallberg, P. W., Simmons, A. J., et al. (2005). The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.CrossRefGoogle Scholar
Wang, B., Bao, Q., Hoskins, B., Wu, G., and Liu, Y. (2008a). Tibetan Plateau warming and precipitation change in East Asia. Geophys. Res. Lett., 35, L14702, doi:10.1029/2008GL034330.CrossRefGoogle Scholar
Wang, B. and Ding, Q. (2006). Changes in global monsoon precipitation over the past 56 years. Geophys. Res. Lett., 33, L06711, doi:10.1029/2005GL025347.CrossRefGoogle Scholar
Wang, B., Wu, Z. W., Li, J. P., et al. (2008b). How to measure the strength of the East Asian summer monsoon. J. Clim., 17, 44494462.CrossRefGoogle Scholar
Wang, B., Wu, Z. W., Chang, C. P., et al. (2010). Another look at interannual to interdecadal variations of the East Asian winter monsoon. J. Clim., 23, 14951512.CrossRefGoogle Scholar
Wu, G. X. and Coauthors. (2007). The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J. Hydrometeor., 8, 770789.CrossRefGoogle Scholar
Wu, R. and Kirtman, B. P. (2007). Observed relationship of spring and summer East Asian rainfall with winter and spring Eurasian snow. J. Clim., 20, 12851304.CrossRefGoogle Scholar
Wu, R., Wen, Z. P., Yang, S., and Li, Y. Q. (2010). An interdecadal change in southern China summer rainfall around 1992–93. J. Clim., 23, 23892403.CrossRefGoogle Scholar
Wu, Z. W., Li, J. P., He, J. H., and Jiang, Z. H. (2006). Occurrence of droughts and floods during the normal monsoons in the mid- and lower reaches of the Yangtze River. Geophys. Res. Lett., 33, L05813, doi:10.1029/2005GL024487.CrossRefGoogle Scholar
Wu, Z. W., Wang, B., Li, J. P., and Jin, F. F. (2009). An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J. Geophys. Res., 114, D18120, doi: 10.1029/2009JD011733.CrossRefGoogle Scholar
Wu, Z. W., Li, J. P., Jiang, Z. H., and Ma, T. T. (2012a). Modulation of the Tibetan Plateau snow cover on the ENSO teleconnections: From the East Asian summer monsoon perspective. J. Clim., 25, 24812489.CrossRefGoogle Scholar
Wu, Z. W., Jiang, Z. H., Li, J. P., Zhong, S. S., and Wang, L. J. (2012b). Possible association of the western Tibetan Plateau snow cover with the decadal to interdecadal variations of Northern China heatwave frequency. Clim. Dyn., 39, 23932402.CrossRefGoogle Scholar
Yu, R. C., Wang, B., and Zhou, T. J. (2004). Climate effects of the deep continental stratus clouds generated by the Tibetan Plateau. J. Clim., 17, 27022713.2.0.CO;2>CrossRefGoogle Scholar
Zhai, P. M., Sun, A. J., Ren, F. M., et al. (1999). Changes of climate extremes in China. Clim. Change, 42, 203218.CrossRefGoogle Scholar
Zhang, Y., Li, T., and Wang, B. (2004). Decadal change of the spring snow depth over the Tibetan Plateau: the associated circulation and influence on the East Asian summer monsoon. J. Clim., 17, 27802793.2.0.CO;2>CrossRefGoogle Scholar
Zhao, P., Zhou, Z. J., and Liu, J. P. (2007). Variability of Tibetan spring snow and its associations with the hemispheric extratropical circulation and East Asian summer monsoon rainfall: An observational investigation. J. Clim., 20, 39423955.CrossRefGoogle Scholar
Zhao, P., Yang, S., and Yu, R. C. (2010). Long-term changes in rainfall over eastern China and large-scale atmospheric circulation associated with recent global warming. J. Clim., 23, 15441562.CrossRefGoogle Scholar
Zhu, X. Y., He, J. H., and Wu, Z. W. (2007). Meridional seesaw-like distribution of the Meiyu rainfall over the Changjiang-Huaihe River Valley and characteristics in the anomalous climate years. Chin. Sci. Bull., 52(17), 24202428.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×