Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-04-30T11:16:23.524Z Has data issue: false hasContentIssue false

Part V - Ocean connections

Published online by Cambridge University Press:  05 March 2016

Jianping Li
Affiliation:
Beijing Normal University
Richard Swinbank
Affiliation:
Met Office, Exeter
Richard Grotjahn
Affiliation:
University of California, Davis
Hans Volkert
Affiliation:
Deutsche Zentrum für Luft- und Raumfahrt eV (DLR)
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Alley, R. B., Marotzke, J., Nordhaus, W. D., et al. (2003). Abrupt climate change, Science 29,: 20052010.CrossRefGoogle Scholar
Andersen, K. and coauthors (2004). High-resolution record of Northern Hemisphere climate extending into the last interglacial period, Nature 431, 147151.Google ScholarPubMed
Bryan, F. O. (1986). High-latitude salinity effects and interhemispheric thermohaline circulations, Nature 323, 301304.CrossRefGoogle Scholar
Bryden, H. L., King, B. A., and McCarthy, G. D. (2011). South Atlantic overturning circulation at 24S, Journal of Marine Research 69, 3855.CrossRefGoogle Scholar
Clement, A. C. and Peterson, L. C. (2008). Mechanisms of abrupt climate change of the last glacial period, Reviews Of Geophysics, 46: RG4002.CrossRefGoogle Scholar
Cunningham, S. A., Kanzow, T., Rayner, D., et al. (2007). Temporal variability of the Atlantic Meridional Overturning Circulation at 26.5 N, Science 317(5840), 935938.CrossRefGoogle ScholarPubMed
De Boer, A. M., Gnanadesikan, A., Edwards, N. R., and Watson, A. J. (2010). Meridional density gradients do not control the Atlantic Overturning Circulation, Journal of Physical Oceanography 40(2), 368380.CrossRefGoogle Scholar
de Vries, P. and Weber, S. L. (2005). The Atlantic freshwater budget as a diagnostic for the existence of a stable shut down of the meridional overturning circulation, Geophys. Res. Letters 32, No. 9, L09606.CrossRefGoogle Scholar
Den Toom, M., Dijkstra, H. A., Cimatoribus, A. A., and Drijfhout, S. S. (2012). Effect of atmospheric feedbacks on the stability of the Atlantic Meridional Over turning Circulation, Journal of Climate 25(12), 40814096.CrossRefGoogle Scholar
Den Toom, M., Dijkstra, H. A., Weijer, W., et al. (2014). Response of a strongly eddying Global Ocean to North Atlantic Freshwater Perturbations, Journal of Physical Oceanography 44, 464481.CrossRefGoogle Scholar
Dijkstra, H. A. (2000). Nonlinear Physical Oceanography: A Dynamical Systems Approach to the Large Scale Ocean Circulation and El Niño., Kluwer Academic Publishers, Dordrecht, the Netherlands.CrossRefGoogle Scholar
Dijkstra, H. A. (2007). Characterization of the multiple equilibria regime in a global ocean model, Tellus 59A, 695705.CrossRefGoogle Scholar
Dijkstra, H. A. (2008). Scaling of the Atlantic meridional overturning in a global ocean model, Tellus A 60, 749760.CrossRefGoogle Scholar
Dijkstra, H. A., Te Raa, L. A., and Weijer, W. (2004). A systematic approach to determine thresholds of the ocean’s thermohaline circulation, Tellus 56A, 362370.Google Scholar
Dijkstra, H. A. and Weijer, W. (2005). Stability of the global ocean circulation: basic bifurcation diagrams, Journal of Physical Oceanography 35, 933948.CrossRefGoogle Scholar
Drijfhout, S. S., Weber, S. L., and Swaluw, E. (2011). The stability of the MOC as diagnosed from model projections for pre-industrial, present and future climates, Climate Dynamics 37(7–8), 15751586.CrossRefGoogle Scholar
Griesel, A. and Maqueda, M. (2006). The relation of meridional pressure gradients to North Atlantic deep water volume transport in an ocean general circulation model, Climate Dynamics 26, 781799.CrossRefGoogle Scholar
Hawkins, E., Smith, R. S., Allison, L. C., et al. (2011). Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport, Geophysical Research Letters 38(10), L10605.Google Scholar
Huisman, S. E., den Toom, M., Dijkstra, H. A., and Drijfhout, S. (2010). An indi cator of the multiple equilibria regime of the Atlantic Meridional Overturning Circulation, Journal Of Physical Oceanography 40(3), 551567.CrossRefGoogle Scholar
Johns, W. E., Baringer, M. O., and Beal, L. M. (2011). Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5 N, Journal of Climate 24, 24292449.CrossRefGoogle Scholar
Large, W. G. and Yeager, S. (2004). Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies, Technical report, National Center for Atmospheric Research, Boulder, CO, U.S.A.Google Scholar
Levitus, S. (1994). World Ocean Atlas 1994, Volume 4: Temperature., NOAA/NESDIS E, US Department of Commerce, Washington DC OC21: 1117.Google Scholar
Mernild, S. H., Liston, G. E., Hiemstra, C. A., and Christensen, J. H. (2010). Green land Ice Sheet Surface Mass-Balance Modeling in a 131-Yr Perspective, 1950–2080, Journal of Hydrometeorology 11(1) 325.CrossRefGoogle Scholar
Rahmstorf, S. (1996). On the freshwater forcing and transport of the Atlantic thermohaline circulation, Clim. Dyn. 12, 799811.CrossRefGoogle Scholar
Rahmstorf, S., Crucifix, M., Ganopolski, A., et al. (2005). Thermohaline circulation hysteresis: a model intercomparison, Geophysical Research Letters L23605, 1–5.CrossRefGoogle Scholar
Rignot, E., Velicogna, I., van den Broeke, M., Monaghan, A., and Lenaerts, J. (2011). Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise, Geophysical Research Letters 38, doi:10.1029/2011GL046583.CrossRefGoogle Scholar
Sterl, A., Severijns, C., Dijkstra, H. A., et al. (2008). When can we expect extremely high surface temperatures?, Geophysical Research Letters 35, L14703.CrossRefGoogle Scholar
Stommel, H. (1961). Thermohaline convection with two stable regimes of flow, Tellus 2, 244230.Google Scholar
Weijer, W., De Ruijter, W. P. M., Dijkstra, H. A., and Van Leeuwen, P. J. (1999). Impact of interbasin exchange on the Atlantic overturning circulation, Journal Of Physical Oceanography 29, 22662284.2.0.CO;2>CrossRefGoogle Scholar
Weijer, W., Maltrud, M., Hecht, M., Dijkstra, H., and Kliphuis, M. (2012). Atlantic Ocean Circulation to Greenland Ice Sheet Melting, Geophysical Research Letters 39, L09606, doi:10.1029/2012GL051611.CrossRefGoogle Scholar
Wunsch, C. (2002). What is the thermohaline circulation?, Science 298, 11791180.CrossRefGoogle ScholarPubMed

References

Barlow, M., Nigam, S., and Berbery, E. (2001). ENSO, Pacific decadal variability, and US summertime precipitation, drought, and stream flow. Journal of Climate 14(9), 21052128.2.0.CO;2>CrossRefGoogle Scholar
Biasutti, M., et al. (2008). SST forcings and Sahel rainfall variability in simulations of the twentieth and twenty-first centuries. Journal of Climate 21(14), 34713486.CrossRefGoogle Scholar
Charney, J. (1976). Dynamics of deserts and drought in Sahel-Reply. Quarterly Journal of the Royal Meteorological Society 102(432) 468468.Google Scholar
Charney, J. and Stone, P. (1976). Drought in Sahara – Insufficient biogeophysical feedback. Science 191(4222), 100102.CrossRefGoogle Scholar
Compo, G., et al. (2011). The twentieth century reanalysis project. Quarterly Journal of the Royal Meteorological Society 137(654), 128.CrossRefGoogle Scholar
Cook, B., Miller, R., and Seager, R. (2009). Amplification of the North American “Dust Bowl” drought through human-induced land degradation. Proceedings of the National Academy of Sciences of the United States of America 106(13), 49975001.CrossRefGoogle ScholarPubMed
Dai, A., Trenberth, K., and Qian, T. (2004). A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming. Journal of Hydrometeorology 5(6), 11171130.CrossRefGoogle Scholar
Deser, C., Phillips, A., and Hurrell, J. (2004). Pacific interdecadal climate variability: Linkages between the tropics and the North Pacific during boreal winter since 1900. Journal of Climate 17(16), 31093124.2.0.CO;2>CrossRefGoogle Scholar
Enfield, D. and Cid-Serrano, L. (2010). Secular and multidecadal warmings in the North Atlantic and their relationships with major hurricane activity. International Journal of Climatology 30(2), 174184.CrossRefGoogle Scholar
Enfield, D., Mestas-Nunez, A., and Trimble, P. (2001). The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophysical Research Letters 28(10), 20772080.CrossRefGoogle Scholar
Folland, C., Palmer, T., and Parker, D. (1986). Sahel rainfall and worldwide sea surface temperatures, 1901–85. Nature 320(6063) 602607.CrossRefGoogle Scholar
Giannini, A., Saravanan, R., and Chang, P. (2003). Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science 302(5647) 10271030.CrossRefGoogle ScholarPubMed
Guan, B. (2008). Pacific sea surface temperatures in the twentieth century: Variability, trend, and connections to long‐term hydroclimate variations over the Great Plains, Ph.D. thesis, 116 pp., Univ. of Maryland, College Park.Google Scholar
Guan, B. and Nigam, S. (2008). Pacific sea surface temperatures in the twentieth century: An evolution-centric analysis of variability and trend. Journal of Climate 21(12), 27902809.CrossRefGoogle Scholar
Guan, B. and Nigam, S. (2009). Analysis of Atlantic SST variability factoring interbasin links and the secular trend: Clarified structure of the Atlantic Multidecadal Oscillation. Journal of Climate 22(15), 42284240.CrossRefGoogle Scholar
Hare, S. and Mantua, N. (2000). Empirical evidence for North Pacific regime shifts in 1977 and 1989. Progress in Oceanography 47(2-4), 103145.CrossRefGoogle Scholar
Held, I., et al. (2005). Simulation of Sahel drought in the 20th and 21st centuries. Proceedings of the National Academy of Sciences of the United States of America 102(50), 1789117896.CrossRefGoogle ScholarPubMed
Huang, J., vandenDool, H., and Georgakakos, K. (1996). Analysis of model-calculated soil moisture over the United States (1931–1993) and applications to long-range temperature forecasts. Journal of Climate 9(6), 13501362.2.0.CO;2>CrossRefGoogle Scholar
Hulme, M. (1992). Rainfall changes in Africa – 1931–1960 to 1961–1990. International Journal of Climatology 12(7) 685699.CrossRefGoogle Scholar
Joseph, R. and Nigam, S. (2006). ENSO evolution and teleconnections in IPCC's twentieth-century climate simulations: Realistic representation? Journal of Climate 19(17) 43604377.CrossRefGoogle Scholar
Kalnay, E., et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society 77(3), 437471.2.0.CO;2>CrossRefGoogle Scholar
Kushnir, Y., et al. (2002). Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. Journal of Climate 15(16), 22332256.2.0.CO;2>CrossRefGoogle Scholar
Kushnir, Y., et al. (2010). Mechanisms of tropical Atlantic SST influence on North American precipitation variability. Journal of Climate 23(21), 56105628.CrossRefGoogle Scholar
McCabe, G., et al. (2008). Associations of multi-decadal sea-surface temperature variability with US drought. Quaternary International 188 3140.CrossRefGoogle Scholar
McCabe, G., Palecki, M., and Betancourt, J. (2004). Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proceedings of the National Academy of Sciences of the United States of America 101(12), 41364141.CrossRefGoogle ScholarPubMed
Mitchell, T. and Jones, P. (2005). An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology 25(6), 693712.CrossRefGoogle Scholar
Mo, K., Schemm, J., and Yoo, S. (2009). Influence of ENSO and the Atlantic Multidecadal Oscillation on Drought over the United States. Journal of Climate 22(22) 59625982.CrossRefGoogle Scholar
Namias, J. (1966). Nature and possible causes of northeastern United States drought during 1962–65. Monthly Weather Review 94(9), 543554.2.3.CO;2>CrossRefGoogle Scholar
Nigam, S. and Guan, B. (2011). Atlantic tropical cyclones in the twentieth century: natural variability and secular change in cyclone count. Climate Dynamics 36(11–12), 22792293.CrossRefGoogle Scholar
Nigam, S., Guan, B., and Ruiz-Barradas, A. (2011). Key role of the Atlantic Multidecadal Oscillation in 20th century drought and wet periods over the Great Plains. Geophysical Research Letters 38.CrossRefGoogle Scholar
Nigam, S. and Ruiz-Barradas, A. (2006). Seasonal hydroclimate variability over north America in global and regional reanalyses and AMIP simulations: Varied representation. Journal of Climate 19(5), 815837.CrossRefGoogle Scholar
Nigam, S., Barlow, M., and Berbery, E. H. (1999). Analysis links Pacific decadal variability to drought and streamflow in United States, Eos Trans. AGU, 80, 621625, doi:10.1029/99EO00412.CrossRefGoogle Scholar
Quenouille, M. H. (1952). Associated Measurements, Academic, New York.Google Scholar
Palmer, W. C. (1966). Meteorological drought. U.S. Weather Bureau Tech. Paper 45, 58 pp. Available from NOAA/National Weather Service, 1325 East-West Highway, Silver Spring, MD 20910.Google Scholar
Rasmusson, E. and Carpenter, T. (1983). The relationship between eastern equatorial Pacific sea-surface temperatures and rainfall over India and Sri-Lanka. Monthly Weather Review 111(3) 517528.2.0.CO;2>CrossRefGoogle Scholar
Rayner, N., et al. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research-Atmospheres 108(D14).CrossRefGoogle Scholar
Ropelewski, C. and Halpert, M. (1987). Global and regional scale precipitation patterns associated with the El Niño Southern Oscillation. Monthly Weather Review 115(8) 16061626.2.0.CO;2>CrossRefGoogle Scholar
Ruiz-Barradas, A. and Nigam, S. (2005). Warm season rainfall variability over the US great plains in observations, NCEP and ERA-40 reanalyses, and NCAR and NASA atmospheric model simulations. Journal of Climate 18(11) 18081830.CrossRefGoogle Scholar
Ruiz-Barradas, A. and Nigam, S. (2010a). Great Plains precipitation and its SST links in twentieth-century climate simulations, and twenty-first- and twenty-second-century climate projections. Journal of Climate 23(23), 64096429.CrossRefGoogle Scholar
Ruiz-Barradas, A. and Nigam, S. (2010b). SST-North American Hydroclimate Links in AMIP Simulations of the Drought Working Group Models: A Proxy for the Idealized Drought Modeling Experiments. Journal of Climate 23(10), 25852598.CrossRefGoogle Scholar
Ruiz-Barradas, A. and Nigam, S. (2013). Atmosphere-land surface interactions over the Southern Great Plains: Characterization from pentad analysis of DOE ARM field observations and NARR. Journal of Climate 26(3), 875886.CrossRefGoogle Scholar
Schubert, S., et al. (2009). A US CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: Overview and results. Journal of Climate 22(19) 52515272.CrossRefGoogle Scholar
Schubert, S., et al. (2004). Causes of long-term drought in the US Great Plains. Journal of Climate 17(3) 485503.2.0.CO;2>CrossRefGoogle Scholar
Seager, R., et al. (2005). Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. Journal of Climate 18(19) 40654088.CrossRefGoogle Scholar
Slonosky, V., Mysak, L., and Derome, J. (1997). Linking Arctic sea-ice and atmospheric circulation anomalies on interannual and decadal timescales. Atmosphere-Ocean 35(3), 333366.CrossRefGoogle Scholar
Sutton, R. and Hodson, D. (2005). Atlantic Ocean forcing of North American and European summer climate. Science 309(5731), 115118.CrossRefGoogle ScholarPubMed
Ting, M., et al. (2009). Forced and internal twentieth-century SST trends in the North Atlantic. Journal of Climate 22(6), 14691481.CrossRefGoogle Scholar
Ting, M. and Wang, H. (1997). Summertime US precipitation variability and its relation to Pacific sea surface temperature. Journal of Climate 10(8), 18531873.2.0.CO;2>CrossRefGoogle Scholar
van den Dool, H., Huang, J., and Fan, Y. (2003). Performance and analysis of the constructed analogue method applied to US soil moisture over 1981–2001. Journal of Geophysical Research-Atmospheres 108(D16).CrossRefGoogle Scholar
von Storch, H. and Zwiers, F. W. (1999). Statistical Analysis in Climate Research. Cambridge University Press, 494 pp.Google Scholar
Wang, C., et al. (2006). Influences of the Atlantic warm pool on western hemisphere summer rainfall and Atlantic hurricanes. Journal of Climate 19(12), 30113028.CrossRefGoogle Scholar
Weare, B. and Nasstrom, J. (1982). Examples of extended empirical orthogonal function analyses. Monthly Weather Review 110(6), 481485.2.0.CO;2>CrossRefGoogle Scholar
Weaver, S. and Nigam, S. (2008). Variability of the great plains low-level jet: Large-scale circulation context and hydroclimate impacts. Journal of Climate 21(7), 15321551.CrossRefGoogle Scholar
White, W. B., Gershunov, A., and Annis, J. (2008). Climatic influences on Midwest drought during the twentieth century, Journal of Climate 21, 517553.CrossRefGoogle Scholar
Zhang, R. and Delworth, T. (2006). Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophysical Research Letters 33(17).CrossRefGoogle Scholar

References

Acheampong, P. K. (1982). Rainfall anomaly along the coast of Ghana−its nature and causes. Geografiska Annaler, 64, 199211.Google Scholar
Biasutti, M., Held, I. M., Sobel, A. H., and Giannini, A. (2008). SST forcings and Sahel rainfall variability in simulations of the twentieth and twenty-first centuries. J. Clim., 21, 34713486.CrossRefGoogle Scholar
Giannini, A. Saravanan, R., and Chang, P. (2003). Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science, 302, 10271030.CrossRefGoogle ScholarPubMed
Held, I. M., Delworth, T. L., Lu, J., Findell, K. L., and Knutson, T. R. (2005). Simulation of Sahel drought in the 20th and 21st centuries. Proc. Natl. Acad. Sci., 102, 1789117896.CrossRefGoogle ScholarPubMed
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H. (2014). Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 dataset. Int. J. Climatol., 34, 623642.CrossRefGoogle Scholar
Hayward, D. F. and Oguntoyinbo, J. S. (1987). The Climatology of West Africa. Hutchinson, London.Google Scholar
Li, J. and Zeng, Q. (2002). A unified monsoon index. Geophys. Res. Lett., 29, 1274, doi:10.1029/2001GL013874.CrossRefGoogle Scholar
Li, J. and Zeng, Q. (2003). A new monsoon index and the geographical distribution of the global monsoons. Adv. Atmos. Sci., 20, 299302.Google Scholar
Losada, T., Rodriguez-Fonseca, B., Janicot, S., et al. (2010). A multi-model approach to the Atlantic Equatorial mode: Impact on the West African monsoon. Clim. Dyn., 35, 2943.CrossRefGoogle Scholar
Nnamchi, H. C. (2013). Diagnosis and Modelling of an Intrinsic Dipole Oscillation in the South Atlantic Ocean. Unpublished Sc.D Thesis, Institute of Atmospheric Physics, Chinese Academy of Sciences.Google Scholar
Nnamchi, H. C., Li, J., Kang, I-S., and Kurchaski, F. (2013). Simulated impacts of the South Atlantic Ocean Dipole on summer precipitation at the Guinea Coast. Clim. Dyn., 41, 677694.CrossRefGoogle Scholar
Nnamchi, H. C., Li, J., and Anyadike, R. N. C. (2011). Does a dipole mode really exist in the South Atlantic Ocean? J. Geophys. Res., 116, D15104, doi:10.1029/2010JD015579.CrossRefGoogle Scholar
Nnamchi, H. C. and Li, J. P. (2011). Influence of the South Atlantic Ocean Dipole on West African summer precipitation. J. Clim., 24, 11841197.CrossRefGoogle Scholar
Peterson, T. C. and Coauthors. (2013). Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: State of knowledge. Bull. Amer. Meteor. Soc., 94, 821834.CrossRefGoogle Scholar
Population Reference Bureau (2013).World population data sheet. Population Reference Bureau, Washington DC (Available from:http://www.prb.org/pdf13/2013-population-data-sheet_eng.pdf).Google Scholar
Rayner, N. A., Parker, D. E., Horton, E. B., et al. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, D14, 4407, doi: 10.1029/2002JD002670.CrossRefGoogle Scholar
Rodríguez-Fonseca, B., Janicot, S., Mohino, E., et al. (2011). Interannual and decadal SST-forced responses of the West African monsoon. Atmos. Sci. Let., 12, 6774.CrossRefGoogle Scholar
Saha, K. (2010). Tropical Circulation Systems and Monsoons. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Sheffield, J., Wood, E. F., Chaney, N., et al. (2014). A drought monitoring and forecasting system for Sub-Sahara African water resources and food security. Bull. Amer. Meteor. Soc., doi/abs/10.1175/BAMS-D-12-00124.1CrossRefGoogle Scholar
Taylor, C. M., Lambin, E. F., Stephenne, N., Harding, R. J., and Essery, R. L. H. (2002). The influence of land use change on climate in the Sahel. J. Clim., 15, 36153629.2.0.CO;2>CrossRefGoogle Scholar
Vizy, E. K. and Cook, K. H. (2001). Mechanisms by which Gulf of Guinea and eastern North Atlantic sea surface temperature anomalies can influence African rainfall. J. Clim., 14, 795821.2.0.CO;2>CrossRefGoogle Scholar
Venegas, S. A., Mysak, L. A., and Straub, D. N. (1996). Evidence for interannual and interdecadal climate variability in the South Atlantic. Geophys. Res. Lett., 23, 26732676.CrossRefGoogle Scholar
Venegas, S. A., Mysak, L. A., and Straub, D. N. (1997). Atmosphere–ocean coupled variability in the South Atlantic. J. Clim., 10, 29042920.2.0.CO;2>CrossRefGoogle Scholar
Wagner, R. G. and Da Silva, A. M. (1994). Surface conditions associated with anomalous rainfall in the Guinea coastal region. Int. J. Climatol., 14, 179199.CrossRefGoogle Scholar
Washington, R. Harrison, M. Conway, D. et al. (2006). African climate change: taking the shorter route. Bull. Amer. Meteor. Soc., 87, 13551366.CrossRefGoogle Scholar
Xue, Y. and Shukla, J. (1993). The influence of land surface properties on Sahel climate. part 1: desertification. J. Clim., 6, 22322245.2.0.CO;2>CrossRefGoogle Scholar

References

Ashok, K., Behera, S. K., Rao, S.A., Weng, H., and Yamagata, T. (2007). El Niño Modoki and its possible teleconnection. J. Geophys. Res. 112, doi:10.1029/2006JC003798, 2007.CrossRefGoogle Scholar
Ashok, K., Guan, Z., and Yamagata, T. (2003). Influence of the Indian Ocean Dipole on the Australian winter rainfall. Geophys. Res. Let. 30, 1821, doi:10.1029/2003GL017926, 15.CrossRefGoogle Scholar
Baines, P. G. (2011). Patterns of decadal climate variability and their impact on global rainfall. Earth System Science 2010: Global Change, Climate and People, Edinburgh; Procedia Environmental Sciences 6, 7087, S. Cornell, C. Downy and M. Rounsevell eds..CrossRefGoogle Scholar
Baldwin, M. P. and 14 others, (2001). The quasi-biennial oscillation, Rev. Geophys. 39, 179229.CrossRefGoogle Scholar
Broecker, W. S. (2010). The Great Ocean Conveyor, Discovering the Trigger for Abrupt Climate Change, Princeton University Press.CrossRefGoogle Scholar
Brönnimann, S., Annis, J. L., Vogler, C., and Jones, P. D. (2007). Reconstructing the quasi-biennial oscillation back to the early 1900s. Geophys. Res. Let. 34, L22805, doi: 10.1029/2007GL031354.CrossRefGoogle Scholar
Davis, R. E. (1976). Predictability of sea-surface temperature and sea-level pressure anomalies over North Pacific Ocean. J. Phys. Oceanog. 6, 249266.2.0.CO;2>CrossRefGoogle Scholar
Di Lorenzo, E. and 11 others, (2008). North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys. Res. Lett. 35, L08607, doi:10.1029/2007GL032838.CrossRefGoogle Scholar
Drosdowsky, W. and Chambers, L. E. (2001). Near-global sea surface temperature anomalies as predictors of Australian seasonal rainfall. 2001 J. Clim. 14, 16771687.2.0.CO;2>CrossRefGoogle Scholar
Ghil, M. and 16 others, (2011). Extreme events: dynamics, statistics and prediction. Nonlin. Processes Geophys., 18, 295350.CrossRefGoogle Scholar
Gray, L. J. and 14 others, (2010). Solar influences on climate, Rev. Geophys. 48, doi: 10.1029/2009RG000282.CrossRefGoogle Scholar
Hurst, H. E. (1951). Long-term storage capacity of reservoirs, Trans. Am. Soc. Civil Eng., 116, 770799.CrossRefGoogle Scholar
Jones, D. A., Wang, W., and Fawcett, R. (2009). High quality spatial climate data-sets for Australia, Aust. Met. Oceanog. J. 59, 233249.Google Scholar
Jones, D. A., Fogt, R. L., Widmann, M, et al. (2009). Historical SAM variability. Part I: Century-length seasonal reconstructions. J. Clim. 22, 53195345.CrossRefGoogle Scholar
Kug, J.-S., Jin, F.-F., and An, S.-I. (2009). Two types of El Niño events: Cold Tongue El Niño and Warm Pool El Niño. J. Climate 22, 14991515.CrossRefGoogle Scholar
Marshall, G. J. (2003). Trends in the Southern Annular Mode from observations and reanalyses. J. Clim., 16, 41344143.2.0.CO;2>CrossRefGoogle Scholar
McBride, J. L. and Nichols, N. (1983). Seasonal relationships between Australian rainfall and the Southern Oscillation. Mon. Wea. Rev. 111(10), 19982004.2.0.CO;2>CrossRefGoogle Scholar
Meehl, G. A., Arblaster, J. M., Matthes, K., Sassi, F., and van Loon, H. (2009). Amplifying the Pacific climate system response to a small 11 year solar cycle forcing, Science, 325, 11141118, doi:10.1126/science.1172872.CrossRefGoogle ScholarPubMed
Meneghini, B., Simmonds, I., and Smith, I. N. (2007). Association between Australian rainall and the Southern Annular Mode. J. Climatol. 27, 100121.CrossRefGoogle Scholar
Parker, D., Folland, C., Scaife, A., et al. (2007). Decadal to multidecadal variability and the climate change background. J. Geophys. Res., 112, D18115, doi:10.1029/2007JD008411.CrossRefGoogle Scholar
Pittock, A. B. (1978). A critical look at long-term Sun-weather relationships. Rev. Geophys. 16, 400420.CrossRefGoogle Scholar
Power, S., Casey, T., Folland, C., Colman, A., and Mehta, V. (1999). Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn. 15, 319324.CrossRefGoogle Scholar
Prentice, C., Baines, P. G., Scholze, M., and Wooster, M. J. (2012). Fundamentals of climate change science. Chapter 2 of Understanding the Earth System – Global Change Science for Application. Cornell, S. E., Prentice, I. C., House, J. I and Downy, C. J. eds., Cambridge University Press, 267 pp.Google Scholar
Risbey, J. S., Pook, M. J., McIntosh, P. C.,Wheeler, M. C., and Hendon, H. H. (2009). On the remote drivers of rainfall variability in Australia, Mon. Wea. Rev. 137(10), 32333253.CrossRefGoogle Scholar
Smith, T. M., Reynolds, R. W., Peterson, T. C., and Lawrimore, J. (2008). Improvements to NOAA's historical merged land-ocean surface temperature analysis (1880–2006). Journal of Climate, 21, 22832296.CrossRefGoogle Scholar
Trenberth, K. E. and Stepaniak, D. P. (2001). Indices of El Niño evolution. J. Climate, 14, 16971701.2.0.CO;2>CrossRefGoogle Scholar
Vernier, J.-P., et al., (2011). Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade, Geophys. Res. Lett., 38, L12807, doi:10.1029/2011GL047563.CrossRefGoogle Scholar
von Storch, H. and Zwiers, F. W. (2001). Statistical Analysis in Climate Research, Cambridge University Press, 484 pp.Google Scholar
Whiting, J. P., Lambert, M. F., and Metcalfe, A. V. (2003). Modelling persistence in annual Australian point rainfall, Hydr. & Earth System Sci. 7, 197211.CrossRefGoogle Scholar

References

Arino, O., Casadio, S., and Serpe, D. (2011). Global night-time fire season timing and fire count trends using the ATSR instrument series. Remote Sensing of Environment. doi:10.1016/j.rse.2011.05.025CrossRefGoogle Scholar
Brakenridge, G. R. (1996). The Dartmouth Flood Observatory: an electronic research tool and electronic archive for investigations of extreme flood events. Geological Society of America Annual Meeting.Google Scholar
Lau, W.K.M. and Waliser, D. E., Eds. (2011). Intraseasonal Variability of the Atmosphere-Ocean Climate System, 2nd Ed. Springer, Heidelberg, Germany, 613 pp.Google Scholar
Zhang, C. (2013). Madden–Julian Oscillation: Bridging Weather and Climate. Bull. Amer. Met. Soc., 94, .18491870.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×