Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-04-30T17:49:17.564Z Has data issue: false hasContentIssue false

Part III - Tropical cyclones

Published online by Cambridge University Press:  05 March 2016

Jianping Li
Affiliation:
Beijing Normal University
Richard Swinbank
Affiliation:
Met Office, Exeter
Richard Grotjahn
Affiliation:
University of California, Davis
Hans Volkert
Affiliation:
Deutsche Zentrum für Luft- und Raumfahrt eV (DLR)
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Belanger, J. I., Curry, J. A., and Webster, P. J. (2010). Predictability of North Atlantic tropical cyclone activity on intraseasonal timescales. Monthly Weather Review, 138, 43624374.CrossRefGoogle Scholar
Camargo, S. J., Barnston, A. G., Klotzbach, P. J., and Landsea, C. W. (2007). Seasonal tropical cyclone forecasts. WMO Bull., 56, 297309.Google Scholar
Elsberry, R. L. (2007). Advances in tropical cyclone motion prediction and recommendations for the future. World Meteorological Organization Bulletin, 56, 131135.Google Scholar
Elsberry, R. L., and Harr, P. A., 2008: Tropical Cyclone Structure (TCS08) field experiment: Science basis, observational platforms, and strategy. Asian Pacific Journal of Atmospheric Science, 44, 209231.Google Scholar
Elsberry, R. L., Jordan, M. S., and Vitart, F. (2010). Predictability of tropical cyclone events on intraseasonal timescales with the ECMWF monthly forecast model. Asia-Pacific Journal of Atmospheric Sciences, 46, 135153.CrossRefGoogle Scholar
Elsberry, R. L., Jordan, M. S., and Vitart, F. (2011). Evaluation of the ECMWF 32-day ensemble predictions during 2009 season of western North Pacific tropical cyclone events on intraseasonal timescales. Asia-Pacific Journal of Atmospheric Sciences, 47, 305318.CrossRefGoogle Scholar
Elsberry, R. L., Tsai, H.-C., and Jordan, M. S. (2014). Extended-range forecasts of Atlantic tropical cyclone events during 2012 using the ECMWF 32-day ensemble predictions. Weather and Forecasting, 29, 271288.CrossRefGoogle Scholar
Tsai, H.-C. and Elsberry, R. L. (2013). Opportunities and challenges for extended-range predictions of tropical cyclone impacts on hydrological predictions. Journal Hydrology, 506, 4254, doi.10.1016/j.hydrol.2012.12.025.CrossRefGoogle Scholar
Tsai, H.-C., Elsberry, R. L., and Jordan, M. S. (2013). Objective verifications and false alarm analyses of western North Pacific tropical cyclone event forecasts by the ECMWF 32-day ensemble. Asia-Pacific Journal of Atmospheric Sciences, 49, doi:10.1007/s13143-013-0038-6.CrossRefGoogle Scholar
Vitart, F., (2009). Impact of the Madden-Julian Oscillation on tropical storms and risk of landfall in the ECMWF 32-day ensemble. Geophysical Research Letters, 36, L15802, doi: 10:1029/2009GL035089.CrossRefGoogle Scholar
Vitart, F., Prates, F., Bonet, A., and Sahin, C. (2012). New tropical cyclone products on the web. European Centre Medium-range Weather Forecasts Newsletter, No. 130, 17–23.Google Scholar

References

Bei, N. and Zhang, F. (2007). Impacts of initial condition errors on mesoscale predictability of heavy precipitation along the Mei-Yu front of China. Quarterly Journal of the Royal Meteorological Society, 133, 8399.CrossRefGoogle Scholar
Hawblitzel, D. P., Zhang, F., Meng, Z., and Davis, C. (2007). Probabilistic evaluation of the dynamics and predictability of the mesoscale convective vortex of 10–13 June 2003. Monthly Weather Review, 135, 15441562.CrossRefGoogle Scholar
Langland, R. H., Shapiro, M. A., and Gelaro, R. (2002). Initial condition sensitivity and error growth in forecasts of the 25 January 2000 east coast snowstorm. Monthly Weather Review, 130, 957974.2.0.CO;2>CrossRefGoogle Scholar
Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20, 130141.2.0.CO;2>CrossRefGoogle Scholar
Lorenz, E. N. (1969). The predictability of a flow which possesses many scales of motion. Tellus, 21, 289307.CrossRefGoogle Scholar
Lorenz, E. N. (1982). Atmospheric predictability experiments with a large numerical model. Tellus, 34, 505513.CrossRefGoogle Scholar
Lorenz, E. N. (1996). Predictability—A problem partly solved. Proc. Seminar on Predictability, Reading, United Kingdom, ECMWF, 118.Google Scholar
Melhauser, C. and Zhang, F. (2012). Practical and intrinsic predictability of severe convective weather at the mesoscales. Journal of the Atmospheric Sciences, 69, 33503371.CrossRefGoogle Scholar
Munsell, E. B. and Zhang, F. (2014). Prediction and uncertainty of Hurricane Sandy (2012) explored through a real-time cloud-permitting ensemble analysis and forecast system assimilating airborne Doppler observations. Journal of Advanced Modeling in Earth Sciences, 6, 120.Google Scholar
Munsell, E. B., Zhang, F., and Stern, D. P. (2013). Predictability and dynamics of a non-intensifying tropical storm: Erika (2009). Journal of the Atmospheric Sciences, 70, 25052524.CrossRefGoogle Scholar
Poterjoy, J. and Zhang, F. (2014a). Predictability and genesis of Hurricane Karl (2010) examined through the EnKF assimilation of field observations collected during PREDICT. Journal of the Atmospheric Sciences, 71, 12601275.CrossRefGoogle Scholar
Poterjoy, J. and Zhang, F. (2014b). Inter-comparison and coupling of ensemble and variational data assimilation approaches for the analysis and forecasting of Hurricane Karl (2010). Monthly Weather Review, 142, 33473364.CrossRefGoogle Scholar
Sippel, J. A. and Zhang, F. (2008). A probabilistic analysis of the dynamics and predictability of tropical cyclogenesis. Journal of the Atmospheric Sciences, 65, 34403459.CrossRefGoogle Scholar
Sippel, J. A. and Zhang, F. (2010). Factors affecting the predictability of hurricane Humberto (2007). Journal of the Atmospheric Sciences, 67, 17591778.CrossRefGoogle Scholar
Sun, Y. Q. and Zhang, F. (2014). Predictability and error growth dynamics of moist baroclinic waves under varying baroclinic and convective instabilities. WMO Weather Open Science Conference (WWOSC), Montreal, Canada, August 2014 (Abstract # 56057).Google Scholar
Tan, Z. M., Zhang, F., Rotunno, R., and Snyder, C. (2004). Mesoscale predictability of moist baroclinic waves: Experiments with parameterized convection. Journal of the Atmospheric Sciences, 61, 17941804.2.0.CO;2>CrossRefGoogle Scholar
Tao, D. and Zhang, F. (2014). Effect of environmental shear, sea-surface temperature and ambient moisture on the formation and predictability of tropical cyclones: an ensemble-mean perspective. Journal of Advanced Modeling in Earth Sciences, 6, 384404.Google Scholar
Tao, D. and Zhang, F. (2014b). Predictability and dynamics of tropical cyclones: sensitivity to environmental shear, sea-surface temperature and moisture. AMS 31st Conference on Hurricanes and Tropical Meteorology, San Diego, Califormia, April 2014 (oral presentation #4A.1).Google Scholar
Zhang, F. (2005). Dynamics and structure of mesoscale error covariance of a winter cyclone estimated through short-range ensemble forecasts. Monthly Weather Review, 133, 28762893.CrossRefGoogle Scholar
Zhang, F. and Sippel, J. A. (2009). Effects of moist convection on hurricane predictability. Journal of the Atmospheric Sciences, 66, 19441961.CrossRefGoogle Scholar
Zhang, F. and Tao, D. (2013). Effects of vertical wind shear on the predictability of tropical cyclones. Journal of the Atmospheric Sciences, 70, 975983.CrossRefGoogle Scholar
Zhang, F. and Weng, Y. (2015). Modernizing the prediction of hurricane intensity and associated hazards: a five-year real-time forecast experiment concluded by Superstorm Sandy (2012). Bulletin of the American Meteorological Society, 96, 2532.CrossRefGoogle Scholar
Zhang, F., Odins, A., and Nielsen-Gammon, J. (2006). Mesoscale predictability of an extreme warm-season precipitation event. Weather and Forecasting, 21, 149166.CrossRefGoogle Scholar
Zhang, F., Snyder, C., and Rotunno, R. (2002). Mesoscale predictability of the "surprise" snowstorm of 24–25 January 2000. Monthly Weather Review, 130, 16171632.2.0.CO;2>CrossRefGoogle Scholar
Zhang, F., Snyder, C., and Rotunno, R. (2003). Effects of moist convection on mesoscale predictability. Journal of the Atmospheric Sciences, 60, 11731185.2.0.CO;2>CrossRefGoogle Scholar
Zhang, F., Weng, Y., Gamache, J. F., and Marks, F. D. (2011). Performance of convection-permitting hurricane initialization and prediction during 2008–2010 with ensemble data assimilation of inner-core airborne Doppler radar observations. Geophysical Research Letters, 38, L15810, doi:10.1029/2011GL048469.CrossRefGoogle Scholar
Zhang, F., Bei, N., Rotunno, R., Snyder, C., and Epifanio, C. C. (2007). Mesoscale predictability of moist baroclinic waves: convection-permitting experiments and multistage error growth dynamics. Journal of the Atmospheric Sciences, 64, 35793594.CrossRefGoogle Scholar
Zhang, F., Weng, Y., Sippel, J. A., Meng, Z., and Bishop, C. H. (2009) Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Monthly Weather Review, 137, 21052125.CrossRefGoogle Scholar

References

Altenhoff, A. M., Martius, O., Croci-Maspoli, M., Schwierz, C., and Davies, H. C. (2008). Linkage of atmospheric blocks and synoptic-scale Rossby waves: a climatological analysis. Tellus, 60, 10531063.CrossRefGoogle Scholar
Archambault, H. M., Bosart, L. F., Keyser, D., and Cordeira, J. M. (2013). A climatological analysis of the extratropical flow response to recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 141, 23252346.CrossRefGoogle Scholar
Archambault, H. M., Keyser, D., Bosart, L. F., Davis, C. A., and Cordeira, J. M. (2015). A composite persepctive of the extratropical flow response to recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 143, 11221141. Doi: http://dx.doi.org/10.1175/MWR-D-14-00270.1CrossRefGoogle Scholar
Agusti-Panareda, A., Thorncroft, C. D., Craig, G. C., and Gray, S. L. (2004). The extratropical transition of hurricane Irene (1999): A potential vorticity perspective. Quart. J. Roy. Meteor. Soc., 130, 10471074.CrossRefGoogle Scholar
Agusti-Panareda, A., Gray, S. L., Craig, G. C., and Thorncroft, C. (2005). The extratropical transition of Tropical Cyclone Lili (1996) and its crucial contribution to a moderate extratropical development. Mon. Wea. Rev., 133, 15621573.CrossRefGoogle Scholar
Anwender, D., Harr, P. A., and Jones, S. C. (2008). Predictability associated with the downstream impacts of the extratropical transition of tropical cyclones: Case studies. Mon. Wea. Rev., 136, 32053225.CrossRefGoogle Scholar
Anwender, D., Jones, S. C., Leutbecher, M., and Harr, P. A. (2010). Sensitivity experiments for ensemble forecasts of the extratropical transition of Typhoon Tokage (2004). Quart. J. Roy. Meteor. Soc., 136, 183200.CrossRefGoogle Scholar
Bosart, L. F. and Lackmann, G. M. (1995). Postlandfall tropical cyclone reintensification in a weakly baroclinic environment: A case study of Hurricane David (September 1979). Mon. Wea. Rev., 123, 32053225.2.0.CO;2>CrossRefGoogle Scholar
Brand, S. and Guard, C. P. (1979). An observational study of extratropical storms that evolved from tropical cyclones in the western North Pacific. J. Meteor. Soc. Japan, 57, 479482.CrossRefGoogle Scholar
Browning, K. A., Vaughan, G., and Panagi, P. (1998). Analysis of an ex-tropical cyclone after reintensifying as a warm-core extratropical cyclone. Quart. J. Roy. Meteor. Soc., 124, 23292356.Google Scholar
Carlson, T. N. (1980). Airflow through midlatitude cyclones and the comma cloud pattern. Mon. Wea. Rev., 108, 14981509.2.0.CO;2>CrossRefGoogle Scholar
Chaboureau, J.-P., Pantillon, F., Lambert, D., Richard, R., and Claud, C. (2012). Tropical transition of a Mediterranean storm by jet crossing. Quart. J. Roy. Meteor. Soc., 138, 596611, doi: 10.1002/qj.960CrossRefGoogle Scholar
Chou, K.-H., Wu, C.-C, Lin, P.-H., et al. (2011). The impact of dropwindsonde observations on typhoon track forecasts in DOTSTAR and T-PARC. Mon. Wea. Rev., 139, 17281743.CrossRefGoogle Scholar
Davis, C. A., Jones, S. C., and Riemer, M. (2008). Hurricane vortex dynamics during Atlantic extratropical transition. J. Atmos. Sci., 65, 714736.CrossRefGoogle Scholar
Evans, J. L. and Hart, R. E. (2003). Objective indicators of the life cycle evolution of extratropical transition for Atlantic tropical cyclones. Mon. Wea. Rev., 131, 909925.2.0.CO;2>CrossRefGoogle Scholar
Foley, G. R. and Hanstrum, B. N. (1994). The capture of tropical cyclones by cold fronts off the west coast of Australia. Wea. Forecasting, 9, 577592.2.0.CO;2>CrossRefGoogle Scholar
Grams, C. M. and Coauthors (2011). The key role of diabatic processes in modifying the upper-tropospheric wave guide: A North Atlantic case study. Quart. J. Roy. Meteor. Soc., 137, 21742193.CrossRefGoogle Scholar
Grams, C. M., Jones, S. C., Davis, C. A., Harr, P. A., and Weissmann, M. (2013a). The impact of Typhoon Jangmi (2008) on the midlatitude flow. Part I: Upper-level ridge building and modification of the jet. Quart. J. Roy. Meteor. Soc., 139, 21482164, doi: 10.1002/qj.2091.CrossRefGoogle Scholar
Grams, C. M., Jones, S. C., and Davis, C. A. (2013b). The impact of Typhoon Jangmi (2008) on the midlatitude flow. Part II: Downstream evolution. Quart. J. Roy. Meteor. Soc., 139, 21652180, doi: 10.1002/qj.2119.CrossRefGoogle Scholar
Hamill, T. M., Bates, G. T., Whitaker, J. S., et al. (2013). NOAA's Second-generation global medium-range ensemble reforecast dataset. Bull. Amer. Meteor. Soc.,94, 1553-1565.CrossRefGoogle Scholar
Harnisch, F. and Weissmann, M. (2010). Sensitivity of typhoon forecasts to different subsets of targeted dropsonde observations. Mon. Wea. Rev., 138, 26642680.CrossRefGoogle Scholar
Harr, P. A. (2010). The extratropical transition of tropical cyclones: Structural characteristics, downstream impacts, and forecast challenges. Global Perspectives on Tropical Cyclones, World Scientific Series on Asia-Pacific Weather and Climate, Vol. 4, Chan, J. C. L. and Kepert, J. D., Eds. World Scientific Press, pp. 149177.CrossRefGoogle Scholar
Harr, P. A. and Elsberry, R. L. (2000). Extratropical transition of tropical cyclones over the western North Pacific. Part I: Evolution of structural characteristics during the transition process. Mon. Wea. Rev.,128, 26132633.2.0.CO;2>CrossRefGoogle Scholar
Harr, P. A., Elsberry, R. L., and Hogan, T. F. (2000). Extratropical transition of tropical cyclones over the western North Pacific. Part II: The impact of midlatitude circulation characteristics. Mon. Wea. Rev.,128, 26342653.2.0.CO;2>CrossRefGoogle Scholar
Harr, P. A., Anwender, D., and Jones, S. C. (2008). Predictability associated with the downstream impacts of the extratropical transition of tropical cyclones: Methodology and a case study of Typhoon Nabi (2005). Mon. Wea. Rev., 136, 32053225.CrossRefGoogle Scholar
Harr, P. A. and Dea, J. M. (2009). Downstream development associated with the extratropical transition of tropical cyclones over the western North Pacific. Mon. Wea. Rev., 137, 12951319.CrossRefGoogle Scholar
Harr, P. A. and Wu, C.-C. (2011). Tropical cyclone characteristics and monsoon circulations. The Global Monsoon System: Research and Forecast, 2nd Edition, World Scientific Series on Asia-Pacific Weather and Climate, Vol. 5, Chang, C. –P., Ding, Y., Lau, N.-C., Johnson, R. H., Wang, B., and Yasunari, T., Eds., World Scientific Press, 357372, 634–652.CrossRefGoogle Scholar
Hart, R. E., Evans, J. L., and Evans, C. (2006). Synoptic composites of the extratropical transition lifecycle of North Atlantic tropical cyclones: Factors determining post-transition evolution. Mon. Wea. Rev., 134, 553578.CrossRefGoogle Scholar
Jones, S. C. and Coauthors (2003). The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting. 18, 1656.2.0.CO;2>CrossRefGoogle Scholar
Kitabatake, N. (2002). Extratropical transition of Typhoon Vicki (9807): Structural changes and the role of upper-tropospheric disturbances. J. Meteor. Soc. Japan, 80, 229247.CrossRefGoogle Scholar
Klein, P. M., Harr, P. A., and Elsberry, R. L. (2000). Extratropical transition of western North Pacific tropical cyclones: An overview and conceptual model of the transformation stage. Wea. Forecasting, 15, 373395.2.0.CO;2>CrossRefGoogle Scholar
Klein, P. M., Harr, P. A., and Elsberry, R. L. (2002). Extratropical transition of western North Pacific tropical cyclones: Midlatitude and tropical cyclone contributions to reintensification. Mon. Wea. Rev., 132, 22402259.2.0.CO;2>CrossRefGoogle Scholar
Madden, R. A. and Julian, P. R. (1994). Observations of the 40–50 day tropical oscillation – A review. Mon. Wea. Rev., 122, 814837.2.0.CO;2>CrossRefGoogle Scholar
Matano, H. and Sekioka, M. (1971). Some aspects of extratropical transformation of a tropical cyclone. J. Meteor. Soc. Japan, 49, 282295.CrossRefGoogle Scholar
McTaggart-Cowan, R., Gyakum, J. R., and Yau, M. K. (2001). Sensitivity testing of extratropical transitions using potential vorticity inversions to modify initial conditions. Hurricane Earl case study.Mon. Wea. Rev.,129, 16171636.2.0.CO;2>CrossRefGoogle Scholar
Molinari, J. and Vollaro, D. (1989). External influences on hurricane intensity. Part I: Outflow-layer eddy angular momentum fluxes. J. Atmos. Sci., 46, 10931105.2.0.CO;2>CrossRefGoogle Scholar
Molinari, J., Skubis, S., and Vollaro, D. (1995). External influences on hurricane intensity. Part III: Potential vorticity structure. J. Atmos. Sci., 52, 35933606.2.0.CO;2>CrossRefGoogle Scholar
Orlanski, I. and Sheldon, J. P. (1995) Stages in the energetics of baroclinic systems. Tellus, 47, 605628.CrossRefGoogle Scholar
Pantillon, F. J., Chaboureau, J.-P., Lac, C., and Mascart, P. (2013). On the role of a Rossby wave train during the extratropical transition of Hurricane Helene (2006). Quart. J. Roy. Meteor. Soc., 139, 370386.CrossRefGoogle Scholar
Petterssen, S. and Smebye, S. J. (1971). On the development of extratropical storms. Quart. J. Meteor. Soc., 97, 457482.CrossRefGoogle Scholar
Rasmussen, E. M. and Carpenter, T. H. (1982). Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Nino. Mon. Wea. Rev., 110, 354384.2.0.CO;2>CrossRefGoogle Scholar
Riemer, M. and Jones, S. C. (2010). The downstream impact of tropical cyclones on a developing baroclinic wave in idealized scenarios of extratropical transition. Quart. J. Roy. Meteor. Soc., 136, 617637.CrossRefGoogle Scholar
Riemer, M., Jones, S. C., and Davis, C. A. (2008). The impact of extratropical transition on the downstream flow: An idealized modeling study with a straight jet. Quart. J. Roy. Meteor. Soc., 134, 6991.CrossRefGoogle Scholar
Rodwell, M. and Coauthors (2013). Characteristics of occasional poor medium-range weather forecasts for Europe. Bull. Amer. Meteor. Soc., 94, 13931405.CrossRefGoogle Scholar
Saha, S. and Coauthors (2010). The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057.CrossRefGoogle Scholar
Sekioka, M. (1956). A hypothesis on complex of tropical and extratropical cyclones for typhoon in middle latitudes. I. Synoptic structure of typhoon Marie over the Japan Sea. J. Meteor. Soc. Japan, 34, 5253.Google Scholar
Sinclair, M. (1993). Synoptic-scale diagnosis of the extratropical transition of a southwest Pacific tropical cyclone. Mon. Wea. Rev., 11, 941960.2.0.CO;2>CrossRefGoogle Scholar
Thorncroft, C. D. and Jones, S. C. (2000). The extratropical transition of Hurricane Felix and Iris in 1995. Mon. Wea. Rev.,128, 947972.2.0.CO;2>CrossRefGoogle Scholar
Wheeler, M. C. and Hendon, H. H. (2004). An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932.2.0.CO;2>CrossRefGoogle Scholar
Wolter, K. and Timlin, M. S. (1993). Monitoring ENSO in COADS with a seasonally adjusted principal component index. Proc. of the 17th Climate Diagnostics Workshop, Norman, OK, NOAA/NMC/CAC, NSSL, Oklahoma Clim. Survey, CIMMS and the School of Meteor., Univ. of Oklahoma, 52–57.Google Scholar
Wolter, K. and Timlin, M. S. (1998). Measuring the strength of ENSO events – how does 1997/98 rank? Weather, 53, 315324.CrossRefGoogle Scholar

References

Abarca, S. F. and Corbosiero, K. L. (2011). Secondary eyewall formation in WRF simulations of hurricanes Rita and Katrina (2005). Geophys. Res. Lett., 38, L07802, doi:10.1029/2011GL047015.CrossRefGoogle Scholar
Abarca, S. F. and Montgomery, M. T. (2013). Essential dynamics of secondary eyewall formation. J. Atmos. Sci., 70, 32163230.CrossRefGoogle Scholar
Black, M. L. and Willoughby, H. E. (1992). The concentric eyewall cycle of Hurricane Gilbert. Mon. Wea. Rev. 120, 947957.2.0.CO;2>CrossRefGoogle Scholar
Bell, M. M., Montgomery, M. T., and Lee, W.-C. (2012). An axisymmetric view of eyewall evolution in Hurricane Rita (2005). J. Atmos. Sci., 8, 24142432.CrossRefGoogle Scholar
Chen, Y. and Yau, M. K. (2001). Spiral bands in a simulated hurricane. Part I: Vortex Rossby wave verification, J. Atmos. Sci., 58, 21282145.2.0.CO;2>CrossRefGoogle Scholar
Chen, Y., Brunet, G., and Yau, M. K. (2003). Spiral bands in a simulated hurricane. Part II: Wave activity diagnostics, J. Atmos. Sci., 60, 12391256.2.0.CO;2>CrossRefGoogle Scholar
Corbosiero, K. L., Molinari, J., Aiyyer, A. R., and Black, M. L. (2006). The structure and evolution of Hurricane Elena (1985). Part II: Convective asymmetries and evidence for vortex Rossby waves. Mon. Wea. Rev., 134, 30733091.CrossRefGoogle Scholar
Corbosiero, K. L., Abarca, S., and Montgomery, M. T. (2012). Vortex Rossby waves and secondary eyewall formation in a high-resolution simulation of Hurricane Katrina (2005). 30th Conference on Hurricanes and Tropical Meteorology. Amer. Meteor. Soc., Jacksonville, FL. 1A.6.Google Scholar
Didlake, A. C. and Houze, R. A. Jr. (2011). Kinematics of the secondary eyewall observed in Hurricane Rita (2005). J. Atmos. Sci., 68, 16201636.CrossRefGoogle Scholar
Dritschel, D. G. and Waugh, D. (1992). Quantification of the inelastic interaction of unequal vortices in two-dimensional vortex dynamics. Phys. Fluids, 4A, 17371744.CrossRefGoogle Scholar
Eliassen, A. (1951). Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Norv., 5, 1960.Google Scholar
Elsberry, R. L. and Harr, P. A. (2008). Tropical cyclone structure (TCS08) field experiment science basis, observational platforms, and strategy. Asia-Pacific J. Atmos. Sci., 44, 3, 209231.Google Scholar
Fang, J. and Zhang, F. (2012). Effect of beta shear on simulated tropical cyclones. Mon. Wea. Rev., 140, 33273346.CrossRefGoogle Scholar
Fuentes, O. U. V. (2004). Vortex filamentation its onset and its role on axisymmetrization and merger. Dyn. Atmos. Oceans, 40, 2342.CrossRefGoogle Scholar
Hack, J. J. and Schubert, W. H. (1986). Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 15591573.2.0.CO;2>CrossRefGoogle Scholar
Hawkins, J. D. and Helveston, M. (2008). Tropical cyclone multiple eyewall characteristics. 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL. Amer. Meteor. Soc., 14B.1.Google Scholar
Hence, D. A. and Houze, R. A. Jr. (2012). Vertical structure of tropical cyclones with concentric eyewalls as seen by the TRMM precipitation radar. J. Atmos. Sci., 69, 10211036.CrossRefGoogle Scholar
Hill, K. A. and Lackmann, G. M. (2009). Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 32943315.CrossRefGoogle Scholar
Houze, R. A. Jr., Chen, S. S., Lee, W.-C., et al. (2006). The Hurricane Rainband and Intensity Change Experiment: Observations and modeling of Hurricanes Katrina, Ophelia, and Rita. Bull. Am. Meteor. Soc. 87, 15031521.CrossRefGoogle Scholar
Houze, R. A. Jr., Chen, S. S., Smull, B. F., Lee, W.-C., and Bell, M. M. (2007). Hurricane intensity and eyewall replacement, Science, 315, 12351239.CrossRefGoogle ScholarPubMed
Huang, H.-P. and Robinson, W. A. (1998). Two-dimensional turbulence and persistent zonal jets in a global barotropic model, J. Atmos. Sci., 55, 611632.2.0.CO;2>CrossRefGoogle Scholar
Huang, Y.-H., Montgomery, M. T., and Wu, C.-C. (2012). Concentric eyewall formation in Typhoon Sinlaku (2008). Part II: Axisymmetric dynamical processes. J. Atmos. Sci., 69, 662674.CrossRefGoogle Scholar
Kepert, J. D. (2013). How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones? J. Atmos. Sci., 70, 28082830.CrossRefGoogle Scholar
Kepert, J. D. and Nolan, D. S. (2014). Analysis of a simulated tropical cyclone eyewall replacement cycle. 31st Conference on Hurricanes and Tropical Meteorology. Amer. Meteor. Soc., San Diego, CA. 11C.3.Google Scholar
Kossin, J. P. and Sitkowski, M. (2009). An objective model for identifying secondary eyewall formation in hurricanes. Mon. Weather Rev., 137, 876892.CrossRefGoogle Scholar
Kuo, H.-C., Lin, L.-Y., Chang, C.-P., and Williams, R. T. (2004). The formation of concentric vorticity structures in typhoons. J. Atmos. Sci., 61, 27222734.CrossRefGoogle Scholar
Kuo, H.-C., Schubert, W. H., Tsai, C.-L., and Kuo, Y.-F. (2008). Vortex interaction and barotropic aspects of concentric eyewall formation. Weather Rev., 137, 51825198.Google Scholar
Kuo, H.-C., Chang, C.-P., Yang, Y.-T. and Jiang, H.-J. (2009). Western North Pacific typhoons with concentric Eyewalls. Mon. Weather Rev., 137, 3758-3770.CrossRefGoogle Scholar
Judt, F. and Chen, S. S. (2010). Convectively generated potential vorticity in rainbands and formation of the secondary eyewall in Hurricane Katrina of 2005. J. Atmos. Sci., 67, 35813599.CrossRefGoogle Scholar
MacDonald, N. J. (1968). The evidence for the existence of Rossby type waves in the hurricane vortex. Tellus, 20, 138150.CrossRefGoogle Scholar
Martinez, Y., Brunet, G., and Yau, M. K. (2010). On the dynamics of two-dimensional hurricane-like concentric rings vortex formation. J. Atmos. Sci., 67, 32533268.CrossRefGoogle Scholar
Martinez, Y., Brunet, G., Yau, M. K., and Wang, X. (2011). On the dynamics of concentric eyewall genesis: Space-time empirical normal modes diagnosis. J. Atmos. Sci., 68, 457476.CrossRefGoogle Scholar
McWilliams, J. C. (1990). The vortices of two-dimensional turbulence. J. Fluid. Mech., 219, 361385.Google Scholar
Melander, M. V., McWilliams, J. C., and Zabusky, N. J. (1987). Axisymmetrization and vorticity-gradient intensification of an isolated two-dimensional vortex through filamentation. J. Fluid Mech., 178, 137159.CrossRefGoogle Scholar
Menelaou, K., Yau, M. K., and Martinez, Y. (2012). On the dynamics of the secondary eyewall genesis in Hurricane Wilma (2005). Geophys. Res. Lett., 39, L04801, doi:10.1029/2011GL050699.CrossRefGoogle Scholar
Menelaou, K., Yau, M. K., and Martinez, Y. (2013). Impacts of asymmetric dynamical processes on the structure and intensity change of two-dimensional hurricane-like annular vortices. J. Atmos. Sci., 70, 559582.CrossRefGoogle Scholar
Montgomery, M. T. and Kallenbach, R. J. (1997). A theory for vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes, Q. J. R. Meteorol. Soc., 123, 435465.CrossRefGoogle Scholar
Moon, Y., Nolan, D. S., and Iskandarani, M. (2010). On the use of two-dimensional incompressible flow to study secondary eyewall formation in tropical cyclones. J. Atmos. Sci., 67, 37653773.CrossRefGoogle Scholar
Nong, S. and Emanuel, K. A. (2003). A numerical study of the genesis of concentric eyewalls in hurricane. Quart. J. Roy. Meteor. Soc., 129, 33233338.CrossRefGoogle Scholar
Qiu, X., Tan, Z.-M., and Xiao, Q. (2010). The roles of vortex Rossby waves in Hurricane secondary eyewall formation. Mon. Wea. Rev., 138, 20922019.CrossRefGoogle Scholar
Qiu, X. and Tan, Z.-M. (2013). The roles of asymmetric inflow forcing induced by outer rainbands in tropical cyclone secondary eyewall formation. J. Atmos. Sci., 70, 953974.CrossRefGoogle Scholar
Rozoff, C. M., Schubert, W. H., McNoldy, B. D., and Kossin, J. P. (2006). Rapid filamentation zones in intense tropical cyclones. J. Atmos. Sci., 63, 325340.CrossRefGoogle Scholar
Rozoff, C. M., Nolan, D. S., Kossin, J. P., Zhang, F., and Fang, J. (2012). The roles of an expanding wind field and inertial stability in tropical cyclone secondary eyewall formation. J. Atmos. Sci., 69, 26212643.CrossRefGoogle Scholar
Schubert, W. H. and Hack, J. J. (1982). Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697.2.0.CO;2>CrossRefGoogle Scholar
Shapiro, L. J. and Willoughby, H. E. (1982). The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394.2.0.CO;2>CrossRefGoogle Scholar
Sikowstki, M., Kossin, J. P., and Rozoff, C. M. (2011). Intensity and structure changes during hurricane eyewall replacement cycles. Mon. Wea. Rev., 139, 38293847.CrossRefGoogle Scholar
Skamarock, W. C., Klemp, J. B., Dudhia, J., et al. (2005). A description of the Advanced Research WRF Version 2. NCAR Tech. NoteNCAR/TN-4681ST, 88 pp.Google Scholar
Smith, R. K., Montgomery, M. T., and Nguyen, S. V. (2009). Tropical cyclone spin-up revisited. Q. J. R. Meteorol. Soc. 135, 13211335.CrossRefGoogle Scholar
Sun, Y. Q., Jiang, Y., Tan, B., and Zhang, F. (2013). The governing dynamics of the secondary eyewall formation of Typhoon Sinlaku (2008). J. Atmos. Sci., 70, 38183837.CrossRefGoogle Scholar
Terwey, W. D. and Montgomery, M. T. (2008). Secondary eyewall formation in two idealized, full-physics modeled hurricanes. J. Geophys. Res., 113, D12112.CrossRefGoogle Scholar
Wang, Y. (2002a). Vortex Rossby waves in a numerically simulated tropical cyclone. Part I: Overall structure, potential vorticity, and kinetic energy budgets. J. Atmos. Sci., 59, 12131238.2.0.CO;2>CrossRefGoogle Scholar
Wang, Y. (2002b). Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59, 12391262.2.0.CO;2>CrossRefGoogle Scholar
Wang, Y. (2009). How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273.CrossRefGoogle Scholar
Wang, X., Ma, Y., and Davidson, N. E. (2013). Secondary eyewall formation and eyewall replacement cycles in a simulated hurricane: effect of the net radial force in the hurricane boundary layer. J. Atmos. Sci., 70, 13171341.CrossRefGoogle Scholar
Willoughby, H. E., Clos, J. A., and Shoreibah, M. G. (1982). Concentric eyewalls, secondary wind maxima, and the evolution of the hurricane vortex, J. Atmos. Sci., 39, 395411.2.0.CO;2>CrossRefGoogle Scholar
Willoughby, H. E., Jin, H.-L., Lord, S. J., and Piotrowicz, J. M. (1984). Hurricane structure and evolution as simulated by an axisymmetric, nonhydrostatic numerical model, J. Atmos. Sci., 41, 11691186.2.0.CO;2>CrossRefGoogle Scholar
Willoughby, H. E. and Black, P. G. (1996). Hurricane Andrew in Florida: Dynamics of a disaster, Bull. Am. Meteorol. Soc., 77, 543549.2.0.CO;2>CrossRefGoogle Scholar
Wu, C.-C., Cheng, H.-J., Wang, Y., and Chou, K.-H. (2009). A numerical investigation of the eyewall evolution in a landfalling typhoon. Mon. Wea. Rev., 137, 2140.CrossRefGoogle Scholar
Wu, C.-C., Lien, G.-Y., Chen, J.-H., and Zhang, F. (2010). Assimilation of tropical cyclone track and structure based on the Ensemble Kalman Filter (EnKF). J. Atmos. Sci., 67, 38063822.CrossRefGoogle Scholar
Wu, C.-C., Huang, Y.-H., and Lien, G.-Y. (2012). Concentric eyewall formation in Typhoon Sinlaku (2008). Part I: Assimilation of T-PARC data based on the ensemble Kalman filter (EnKF). Mon. Wea. Rev., 140, 506527.CrossRefGoogle Scholar
Wu, C.-C., Kuan, S.-P., Cheng, Y.-M., and Huang, Y.-H. (2014). Unbalanced dynamics of secondary eyewall formation in tropical cyclones- Part II: Analyses from higher-resolution simulations. 31st Conference on Hurricanes and Tropical Meteorology. Amer. Meteor. Sco., San Diego, CA. 11C.2.Google Scholar
Yano, J.-I. and Emanuel, K. A. (1991). An improved model of the equatorial troposphere and its coupling with the stratosphere, J. Atmos. Sci., 48, 377389.2.0.CO;2>CrossRefGoogle Scholar
Zhou, X. and Wang, B. (2011). Mechanism of concentric eyewall replacement cycles and associated intensity change. J. Atmos. Sci., 68, 972988.CrossRefGoogle Scholar

References

Arribas, Alberto, and coauthors (2011). The GloSea4 Ensemble Prediction System for Seasonal Forecasting. Monthly Weather Review, 139, 18911910.CrossRefGoogle Scholar
Beer, T., Abbs, D., and Alves, O.(2014) Concatenated hazards: tsunamis, climate change, tropical cyclones and floods, In Kontar, Y. A. et al. (eds.), Tsunami Events and Lessons Learned: Environmental and Societal Significance, Advances in Natural and Technological Hazards Research 35, 255270.CrossRefGoogle Scholar
Callaghan, J. and Power, S. B. (2011). Variability and decline in the number of severe tropical cyclones making land-fall over eastern Australia since the late nineteenth century, Clim. Dyn., 37, 647662.CrossRefGoogle Scholar
Christensen, J. H. et al. (2013) Climate phenomena and their relevance for future regional climate change, Chapter 14 of Working Group I Contribution to the IPCC Fifth Assessment Report Climate Change 2013: The Physical Science Basis.Google Scholar
Daloz, A. S., Chauvin, F., Walsh, K., et al. (2012). The ability of general circulation models to simulate tropical cyclones and their precursors over the North Atlantic main development region, Clim. Dyn., 39, 15591576.Google Scholar
Hendon, H., Thompson, D. W. J. and Wheeler, M. C. (2007). Australian rainfall and surface temperature variations associated with the Southern Hemisphere annular mode, J. Climate, 20, 24522467.Google Scholar
Knutson, T. R. et al. (2010). Tropical cyclones and climate change. Nature Geosci., 3, 157163.CrossRefGoogle Scholar
Langford, S. and Hendon, H. 2011. Assessment of international seasonal rainfall forecasts for Australia and the benefit of multi-model ensembles for improving reliability. CAWCR Technical Report No. 039.Google Scholar
Lavender, S. L and Abbs, D. J. (2013). Trends in Australian rainfall: contribution of tropical cyclones and closed lows, Clim. Dyn., 40, 317326.CrossRefGoogle Scholar
McBride, J.L. and Nicholls, N. (1983). Seasonal relationships between Australian rainfall and the Southern Oscillation. Monthly Weather Review, 111, 19982004.2.0.CO;2>CrossRefGoogle Scholar
Stockdale, T.N., Anderson, D.L.T, Balmaseda, M.A., et al. (2011). ECMWF seasonal forecast system 3 and its prediction of sea surface temperature. Clim. Dyn., 37, 317326.CrossRefGoogle Scholar
Wang, G., Hudson, D., Ying, Y., et al. (2011). POAMA-2 SST Skill Assessment and Beyond. CAWCR Research Letters, 6, 4046.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×