Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-11T19:18:55.364Z Has data issue: false hasContentIssue false

H2OAthletes study protocol: effects of hydration changes on neuromuscular function in athletes

Published online by Cambridge University Press:  01 February 2024

Rúben Francisco*
Affiliation:
Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, 1499–002 Cruz-Quebrada, Lisbon, Portugal
Filipe Jesus
Affiliation:
Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, 1499–002 Cruz-Quebrada, Lisbon, Portugal
Catarina L. Nunes
Affiliation:
Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, 1499–002 Cruz-Quebrada, Lisbon, Portugal
Paulo Santos
Affiliation:
Neuromuscular Research Lab, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
Marta Alvim
Affiliation:
National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
Francesco Campa
Affiliation:
Department of Biomedical Sciences, University of Padua, Padua, Italy
Dale A. Schoeller
Affiliation:
Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
Henry Lukaski
Affiliation:
Department of Kinesiology and Public Health Education, Hyslop Sports Center, University of North Dakota, Grand Forks, ND, USA
Goncalo V. Mendonca
Affiliation:
Neuromuscular Research Lab, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
Luís Fernando Cordeiro Bettencourt Sardinha
Affiliation:
Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, 1499–002 Cruz-Quebrada, Lisbon, Portugal
Analiza Mónica Lopes de Almeida Silva
Affiliation:
Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, 1499–002 Cruz-Quebrada, Lisbon, Portugal
*
*Corresponding author: Rúben Francisco, email rubenfrancisco@fmh.ulisboa.pt

Abstract

We aim to understand the effects of hydration changes on athletes’ neuromuscular performance, on body water compartments, fat-free mass hydration and hydration biomarkers and to test the effects of the intervention on the response of acute dehydration in the hydration indexes. The H2OAthletes study (clinicaltrials.gov ID: NCT05380089) is a randomised controlled trial in thirty-eight national/international athletes of both sexes with low total water intake (WI) (i.e. < 35·0 ml/kg/d). In the intervention, participants will be randomly assigned to the control (CG, n 19) or experimental group (EG, n 19). During the 4-day intervention, WI will be maintained in the CG and increased in the EG (i.e. > 45·0 ml/kg/d). Exercise-induced dehydration protocols with thermal stress will be performed before and after the intervention. Neuromuscular performance (knee extension/flexion with electromyography and handgrip), hydration indexes (serum, urine and saliva osmolality), body water compartments and water flux (dilution techniques, body composition (four-compartment model) and biochemical parameters (vasopressin and Na) will be evaluated. This trial will provide novel evidence about the effects of hydration changes on neuromuscular function and hydration status in athletes with low WI, providing useful information for athletes and sports-related professionals aiming to improve athletic performance.

Type
Protocol Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Maughan, R & Shirreffs, S (2010) Dehydration and rehydration in competative sport. Scand J Med Sci Sports 20, 4047.CrossRefGoogle ScholarPubMed
Casa, DJ (1999) Exercise in the heat. I. Fundamentals of thermal physiology, performance implications, and dehydration. J Athletic Train 34, 246.Google ScholarPubMed
Suchomel, TJ, Nimphius, S, Bellon, CR, et al. (2018) The importance of muscular strength: training considerations. Sports Med 48, 765785.CrossRefGoogle ScholarPubMed
Barley, OR, Chapman, DW, Blazevich, AJ, et al. (2018) Acute dehydration impairs endurance without modulating neuromuscular function. Front Physiol 9, 1562.CrossRefGoogle ScholarPubMed
Ftaiti, F, Grélot, L, Coudreuse, JM, et al. (2001) Combined effect of heat stress, dehydration and exercise on neuromuscular function in humans. Eur J Appl Physiol 84, 8794.CrossRefGoogle ScholarPubMed
Evetovich, TK, Boyd, JC, Drake, SM, et al. (2002) Effect of moderate dehydration on torque, electromyography, and mechanomyography. Muscle Nerve: Offic J Am Assoc Electrodiagnostic Med 26, 225231.CrossRefGoogle ScholarPubMed
Bigard, AX, Sanchez, H, Claveyrolas, G, et al. (2001) Effects of dehydration and rehydration on EMG changes during fatiguing contractions. Med Sci Sports Exerc 33, 16941700.CrossRefGoogle ScholarPubMed
Rodger, A & Papies, EK (2022) ‘I don’t just drink water for the sake of it’: understanding the influence of value, reward, self-identity and early life on water drinking behaviour. Food Qual Prefer 99, 104576.CrossRefGoogle Scholar
Cheuvront, SN & Kenefick, RW (2014) Dehydration: physiology, assessment, and performance effects. Compr Physiol 4, 257285.CrossRefGoogle ScholarPubMed
Juett, LA, James, LJ & Mears, SA (2020) Effects of exercise on acute kidney injury biomarkers and the potential influence of fluid intake. Ann Nutr Metab 76, 5359.CrossRefGoogle ScholarPubMed
Armstrong, LE, Muñoz, CX & Armstrong, EM (2020) Distinguishing low and high water consumers—a paradigm of disease risk. Nutrients 12, 858.CrossRefGoogle ScholarPubMed
Johnson, EC, Muñoz, CX, Jimenez, L, et al. (2016) Hormonal and thirst modulated maintenance of fluid balance in young women with different levels of habitual fluid consumption. Nutrients 8, 302.CrossRefGoogle ScholarPubMed
Perrier, E, Vergne, S, Klein, A, et al. (2013) Hydration biomarkers in free-living adults with different levels of habitual fluid consumption. Br J Nutr 109, 16781687.CrossRefGoogle ScholarPubMed
Pross, N, Demazières, A, Girard, N, et al. (2014) Effects of changes in water intake on mood of high and low drinkers. PloS one 9, e94754.CrossRefGoogle ScholarPubMed
Zhang, J, Zhang, N, Li, Y, et al. (2022) Habitual total drinking fluid intake did not affect plasma hydration biomarkers among young male athletes in Beijing, China: a cross-sectional study. Nutrients 14, 2311.CrossRefGoogle Scholar
Silva, AM, Fields, DA, Heymsfield, SB, et al. (2010) Body composition and power changes in elite judo athletes. Int J Sports Med 31, 737741.CrossRefGoogle ScholarPubMed
Silva, AM, Fields, DA, Heymsfield, SB, et al. (2011) Relationship between changes in total-body water and fluid distribution with maximal forearm strength in elite judo athletes. J Strength Condit Res 25, 24882495.CrossRefGoogle ScholarPubMed
Silva, AM, Matias, CN, Santos, DA, et al. (2014) Increases in intracellular water explain strength and power improvements over a season. Int J Sports Med 35, 11011105.Google ScholarPubMed
Armstrong, LE (2007) Assessing hydration status: the elusive gold standard. J Am Coll Nutr 26, 575s584s.CrossRefGoogle ScholarPubMed
Armstrong, LE, Maughan, RJ, Senay, LC, et al. (2013) Limitations to the use of plasma osmolality as a hydration biomarker. Am J Clin Nutr 98, 503504.CrossRefGoogle Scholar
Cheuvront, SN, Ely, BR, Kenefick, RW, et al. (2010) Biological variation and diagnostic accuracy of dehydration assessment markers. Am J Clin Nutr 92, 565573.CrossRefGoogle ScholarPubMed
Barley, OR, Chapman, DW & Abbiss, CR (2020) Reviewing the current methods of assessing hydration in athletes. J Int Soc Sports Nutr 17, 113.CrossRefGoogle ScholarPubMed
Santos, DA, Silva, AM, Matias, CN, et al. (2010) Accuracy of DXA in estimating body composition changes in elite athletes using a four compartment model as the reference method. Nutr Metab 7, 19.CrossRefGoogle ScholarPubMed
Campa, F, Gobbo, LA, Stagi, S, et al. (2022) Bioelectrical impedance analysis versus reference methods in the assessment of body composition in athletes. Eur J Appl Physiol 122(3), 561589.CrossRefGoogle ScholarPubMed
Hetherington-Rauth, M, Leu, CG, Júdice, PB, et al. (2021) Whole body and regional phase angle as indicators of muscular performance in athletes. Eur J Sport Sci 21, 16841692.CrossRefGoogle ScholarPubMed
Di Vincenzo, O, Marra, M, Sammarco, R, et al. (2020) Body composition, segmental bioimpedance phase angle and muscular strength in professional volleyball players compared to a control group. J Sports Med Phys Fitness 60, 870874.CrossRefGoogle ScholarPubMed
Marra, M, Di Vincenzo, O, Sammarco, R, et al. (2020) Bioimpedance phase angle in elite male athletes: a segmental approach. Physiol Meas 41, 125007.CrossRefGoogle Scholar
Nescolarde, L, Roca, E, Bogónez-Franco, P, et al. (2020) Relationship between bioimpedance vector displacement and renal function after a marathon in non-elite runners. Front Physiol 11, 352.CrossRefGoogle ScholarPubMed
McKay, AK, Stellingwerff, T, Smith, ES, et al. (2022) Defining training and performance caliber: a participant classification framework. Int J Sports Physiol Perform 17, 317331.CrossRefGoogle ScholarPubMed
EFSA Panel on Dietetic Products N, Allergies (2010) Scientific opinion on dietary reference values for water. EFSA J 8, 1459.Google Scholar
Francisco, R, Jesus, F, Nunes, CL, et al. (2023) Athletes with different habitual fluid intakes differ in hydration status but not in body water compartments. Scand J Med Sci Sports 33, 10721078.CrossRefGoogle ScholarPubMed
Johnson, EC, Muñoz, CX, Le Bellego, L, et al. (2015) Markers of the hydration process during fluid volume modification in women with habitual high or low daily fluid intakes. Eur J Appl Physiol 115, 10671074.CrossRefGoogle ScholarPubMed
Anselmi, F, Cavigli, L, Pagliaro, A, et al. (2021) The importance of ventilatory thresholds to define aerobic exercise intensity in cardiac patients and healthy subjects. Scand J Med Sci Sports 31, 17961808.CrossRefGoogle ScholarPubMed
Mann, T, Lamberts, RP & Lambert, MI (2013) Methods of prescribing relative exercise intensity: physiological and practical considerations. Sports Med 43, 613625.CrossRefGoogle ScholarPubMed
Raman, A, Schoeller, DA, Subar, AF, et al. (2004) Water turnover in 458 American adults 40–79 yr of age. Am J Physiol Renal Physiol 286, F394F401.CrossRefGoogle ScholarPubMed
Pescatello, LS (Ed.) (2014) ACSM’s Guidelines for Exercise Testing and Prescription. Philadelphia, PA: Lippincott Williams & Wilkins.Google Scholar
Binder, RK, Wonisch, M, Corra, U, et al. (2008) Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. Eur J Prev Cardiol 15, 726734.CrossRefGoogle Scholar
Schofield, WN (1985) Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr 39, 541.Google ScholarPubMed
Nunes, CL, Matias, CN, Santos, DA, et al. (2018) Characterization and comparison of nutritional intake between preparatory and competitive phase of highly trained athletes. Medicina (Kaunas, Lithuania) 54, 41.CrossRefGoogle ScholarPubMed
Goldberg, GR, Black, AE, Jebb, SA, et al. (1991) Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur J Clin Nutr 45, 569581.Google ScholarPubMed
Westerterp, KR (2013) Physical activity and physical activity induced energy expenditure in humans: measurement, determinants, and effects. Front Physiol 4, 90.CrossRefGoogle ScholarPubMed
Silva, AM, Santos, DA, Matias, CN, et al. (2013) Total energy expenditure assessment in elite junior basketball players: a validation study using doubly labeled water. J Strength Cond Res 27, 19201927.CrossRefGoogle ScholarPubMed
Silva, AM, Nunes, CL, Matias, CN, et al. (2020) Usefulness of raw bioelectrical impedance parameters in tracking fluid shifts in judo athletes. Eur J Sport Sci 20, 734743.CrossRefGoogle ScholarPubMed
Matias, CN, Silva, AM, Santos, DA, et al. (2012) Validity of extracellular water assessment with saliva samples using plasma as the reference biological fluid. Biomed Chromatogr 26, 13481352.CrossRefGoogle ScholarPubMed
Campa, F, Toselli, S, Mazzilli, M, et al. (2021) Assessment of body composition in athletes: a narrative review of available methods with special reference to quantitative and qualitative bioimpedance analysis. Nutrients 13, 1620.CrossRefGoogle ScholarPubMed
Bongiovanni, T, Mascherini, G, Genovesi, F, et al. (2020) Bioimpedance vector references need to be period-specific for assessing body composition and cellular health in elite soccer players: a brief report. J Funct Morphol Kinesiol 5, 73.CrossRefGoogle ScholarPubMed
Campa, F, Matias, CN, Marini, E, et al. (2020) Identifying athlete body fluid changes during a competitive season with bioelectrical impedance vector analysis. Int J Sports Physiol Perform 15, 361367.CrossRefGoogle ScholarPubMed
Stagi, S, Silva, AM, Jesus, F, et al. (2022) Usability of classic and specific bioelectrical impedance vector analysis in measuring body composition of children. Clin Nutr (Edinburgh, Scotland) 41, 673679.CrossRefGoogle ScholarPubMed
Silva, AM, Matias, CN, Nunes, CL, et al. (2019) Lack of agreement of in vivo raw bioimpedance measurements obtained from two single and multi-frequency bioelectrical impedance devices. Eur J Clin Nutr 73, 10771083.CrossRefGoogle ScholarPubMed
Heymsfield, SB, Wang, J, Heshka, S, et al. (1989) Dual-photon absorptiometry: comparison of bone mineral and soft tissue mass measurements in vivo with established methods. Am J Clin Nutr 49, 12831289.CrossRefGoogle ScholarPubMed
Cronin, J, Lawton, T, Harris, N, et al. (2017) A brief review of handgrip strength and sport performance. J Strength Condit Res 31, 31873217.CrossRefGoogle ScholarPubMed
Elias, LJ, Bryden, MP & Bulman-Fleming, MB (1998) Footedness is a better predictor than is handedness of emotional lateralization. Neuropsychologia 36, 3743.CrossRefGoogle ScholarPubMed
Gomes, M, Santos, P, Correia, P, et al. (2021) Sex differences in muscle fatigue following isokinetic muscle contractions. Sci Rep 11, 112.CrossRefGoogle ScholarPubMed
Tredinnick, TJ & Duncan, PW (1988) Reliability of measurements of concentric and eccentric isokinetic loading. Phys Ther 68, 656659.CrossRefGoogle ScholarPubMed
Balshaw, TG, Massey, GJ, Maden-Wilkinson, TM, et al. (2019) Neural adaptations after 4 years v. 12 weeks of resistance training v. untrained. Scand J Med Sci Sports 29, 348359.CrossRefGoogle Scholar
Pääsuke, M, Ereline, J & Gapeyeva, H (1999) Neuromuscular fatigue during repeated exhaustive submaximal static contractions of knee extensor muscles in endurance-trained, power-trained and untrained men. Acta Physiol Scand 166, 319326.CrossRefGoogle ScholarPubMed
Correia, P, Santos, P, Mil-Homens, P, et al. (2020) Rapid hamstrings to quadriceps ratio at long muscle lengths in professional football players with previous hamstring strain injury. Eur J Sport Sci 20, 14051413.CrossRefGoogle ScholarPubMed
Aagaard, P, Simonsen, EB, Andersen, JL, et al. (2002) Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses. J Appl Physiol 92, 23092318.CrossRefGoogle ScholarPubMed
Stegeman, D & Hermens, H (2007) Standards for surface electromyography: the European project Surface EMG for non-invasive assessment of muscles (SENIAM). Enschede: Roessingh Res Dev 10, 812.Google Scholar
Rodrigues, R, Baroni, BM, Pompermayer, MG, et al. (2014) Effects of acute dehydration on neuromuscular responses of exercised and nonexercised muscles after exercise in the heat. J Strength Condit Res 28, 35313536.CrossRefGoogle ScholarPubMed
Zwarts, M, Van Weerden, T & Haenen, H (1987) Relationship between average muscle fibre conduction velocity and EMG power spectra during isometric contraction, recovery and applied ischemia. Eur J Appl Physiol Occup Physiol 56, 212216.CrossRefGoogle ScholarPubMed
Krogh-Lund, C (1993) Myo-electric fatigue and force failure from submaximal static elbow flexion sustained to exhaustion. Eur J Appl Physiol Occup Physiol 67, 389401.CrossRefGoogle ScholarPubMed
Gerdle, B, Karlsson, S, Crenshaw, A, et al. (1997) The relationships between EMG and muscle morphology throughout sustained static knee extension at two submaximal force levels. Acta Physiol Scand 160, 341351.CrossRefGoogle ScholarPubMed
Lochbaum, M, Zanatta, T, Kirschling, D, et al. (2021) The profile of moods states and athletic performance: a meta-analysis of published studies. Eur J Investig Health, Psychol Educ 11, 5070.Google ScholarPubMed
Francisco, R, Matias, CN, Santos, DA, et al. (2020) The predictive role of raw bioelectrical impedance parameters in water compartments and fluid distribution assessed by dilution techniques in athletes. Int J Environ Res Public Health 17, 759.CrossRefGoogle ScholarPubMed
Sims, ST, Ware, L & Capodilupo, ER (2021) Patterns of endogenous and exogenous ovarian hormone modulation on recovery metrics across the menstrual cycle. BMJ Open Sport Exerc Med 7, e001047.CrossRefGoogle ScholarPubMed
Sims, ST & Heather, AK (2018) Myths and methodologies: reducing scientific design ambiguity in studies comparing sexes and/or menstrual cycle phases. Exp Physiol 103, 13091317.CrossRefGoogle ScholarPubMed
Pallarés, JG, Martínez-Abellán, A, López-Gullón, JM, et al. (2016) Muscle contraction velocity, strength and power output changes following different degrees of hypohydration in competitive olympic combat sports. J Int Soc Sports Nutr 13, 10.CrossRefGoogle ScholarPubMed
Zubac, D, Šimunič, B, Buoite Stella, A, et al. (2020) Neuromuscular performance after rapid weight loss in Olympic-style boxers. Eur J Sport Sci 20, 10511060.CrossRefGoogle ScholarPubMed
Marino, FE, Cannon, J & Kay, D (2010) Neuromuscular responses to hydration in moderate to warm ambient conditions during self-paced highintensity exercise. Br J Sports Med 44, 961967.CrossRefGoogle ScholarPubMed
Lim, CL, Byrne, C & Lee, JK (2008) Human thermoregulation and measurement of body temperature in exercise and clinical settings. Ann Acad Med Singap 37, 347.CrossRefGoogle ScholarPubMed
Casa, DJ, Becker, SM, Ganio, MS, et al. (2007) Validity of devices that assess body temperature during outdoor exercise in the heat. J Athletic train 42, 333.Google ScholarPubMed
Adams, J, Sekiguchi, Y, Suh, HG, et al. (2018) Dehydration impairs cycling performance, independently of thirst: a blinded study. Med Sci Sports Exerc 50, 16971703.CrossRefGoogle ScholarPubMed
Cheung, S, McGarr, G, Mallette, M, et al. (2015) Separate and combined effects of dehydration and thirst sensation on exercise performance in the heat. Scand J Med Sci Sports 25, 104111.CrossRefGoogle ScholarPubMed
Wall, BA, Watson, G, Peiffer, JJ, et al. (2015) Current hydration guidelines are erroneous: dehydration does not impair exercise performance in the heat. Br J Sports Med 49, 10771083.CrossRefGoogle Scholar
Sawka, MN & Coyle, EF (1999) Influence of body water and blood volume on thermoregulation and exercise performance in the heat. Exerc Sport Sci Rev 27, 167218.Google ScholarPubMed
Périard, JD, Travers, GJ, Racinais, S, et al. (2016) Cardiovascular adaptations supporting human exercise-heat acclimation. Auton Neurosci 196, 5262.CrossRefGoogle ScholarPubMed
Oberholzer, L, Siebenmann, C, Mikkelsen, CJ, et al. (2019) Hematological adaptations to prolonged heat acclimation in endurance-trained males. Front Physiol 10, 1379.CrossRefGoogle ScholarPubMed