We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we define and study an equivariant analogue of Cohen, Farber and Weinberger’s parametrized topological complexity. We show that several results in the non-equivariant case can be extended to the equivariant case. For example, we establish the fibrewise equivariant homotopy invariance of the sequential equivariant parametrized topological complexity. We obtain several bounds on sequential equivariant topological complexity involving the equivariant category. We also obtain the cohomological lower bound and the dimension-connectivity upper bound on the sequential equivariant parametrized topological complexity. In the end, we use these results to compute the sequential equivariant parametrized topological complexity of equivariant Fadell–Neuwirth fibrations and some equivariant fibrations involving generalized projective product spaces.
We prove that the classical map comparing Adams’ cobar construction on the singular chains of a pointed space and the singular cubical chains on its based loop space is a quasi-isomorphism preserving explicitly defined monoidal $E_\infty $-coalgebra structures. This contribution extends to its ultimate conclusion a result of Baues, stating that Adams’ map preserves monoidal coalgebra structures.
Given a height at most two Landweber exact $\mathbb {E}_\infty$-ring $E$ whose homotopy is concentrated in even degrees, we show that any complex orientation of $E$ which satisfies the Ando criterion admits a unique lift to an $\mathbb {E}_\infty$-complex orientation $\mathrm {MU} \to E$. As a consequence, we give a short proof that the level $n$ elliptic genus lifts uniquely to an $\mathbb {E}_\infty$-complex orientation $\mathrm {MU} \to \mathrm {tmf}_1 (n)$ for all $n\, {\geq}\, 2$.
We show that every orbispace satisfying certain mild hypotheses has ‘enough’ vector bundles. It follows that the $K$-theory of finite rank vector bundles on such orbispaces is a cohomology theory. Global presentation results for smooth orbifolds and derived smooth orbifolds also follow.
During the last decades, the structure of mod-2 cohomology of the Steenrod ring $\mathscr {A}$ became a major subject in Algebraic topology. One of the most direct attempt in studying this cohomology by means of modular representations of the general linear groups was the surprising work [Math. Z.202 (1989), 493–523] by William Singer, which introduced a homomorphism, the so-called algebraic transfer, mapping from the coinvariants of certain representation of the general linear group to mod-2 cohomology group of the ring $\mathscr A.$ He conjectured that this transfer is a monomorphism. In this work, we prove Singer's conjecture for homological degree $4.$
There is a problem with the proofs of [1], Lemma 4.4 and the related Theorems 4.5, 4.8 and 4.12 regarding the computation of zero-divisor cup-length of real Grassmann manifolds ${G_k({{\mathbb {R}}}^{n})}$. The correct statements and improved estimates of the topological complexity of ${G_k({{\mathbb {R}}}^{n})}$ will appear in a separate paper by M. Radovanović [2].
Given any topological group G, the topological classification of principal G-bundles over a finite CW-complex X is long known to be given by the set of free homotopy classes of maps from X to the corresponding classifying space BG. This classical result has been long-used to provide such classification in terms of explicit characteristic classes. However, even when X has dimension 2, there is a case in which such explicit classification has not been explicitly considered. This is the case where G is a Lie group, whose group of components acts nontrivially on its fundamental group
$\pi_1G$
. Here, we deal with this case and obtain the classification, in terms of characteristic classes, of principal G-bundles over a finite CW-complex of dimension 2, with G is a Lie group such that
$\pi_0G$
is abelian.
We observe a fundamental relationship between Steenrod operations and the Artin–Schreier morphism. We use Steenrod's construction, together with some new geometry related to the affine Grassmannian, to prove that the quantum Coulomb branch is a Frobenius-constant quantization. We also demonstrate the corresponding result for the $K$-theoretic version of the quantum Coulomb branch. At the end of the paper, we investigate what our ideas produce on the categorical level. We find that they yield, after a little fiddling, a construction which corresponds, under the geometric Satake equivalence, to the Frobenius twist functor for representations of the Langlands dual group. We also describe the unfiddled answer, conditional on a conjectural ‘modular derived Satake’, and, though it is more complicated to state, it is in our opinion just as neat and even more compelling.
Let $G$ be a finite group with cyclic Sylow $p$-subgroups, and let $k$ be a field of characteristic $p$. Then $H^{*}(BG;k)$ and $H_*(\Omega BG{{}^{{}^{\wedge }}_p};k)$ are $A_\infty$ algebras whose structure we determine up to quasi-isomorphism.
Let
$\mathscr {A}$
be a topological Azumaya algebra of degree
$mn$
over a CW complex X. We give conditions for the positive integers m and n, and the space X so that
$\mathscr {A}$
can be decomposed as the tensor product of topological Azumaya algebras of degrees m and n. Then we prove that if
$m<n$
and the dimension of X is higher than
$2m+1$
,
$\mathscr {A}$
may not have such decomposition.
In this paper we develop methods for classifying Baker, Richter, and Szymik's Azumaya algebras over a commutative ring spectrum, especially in the largely inaccessible case where the ring is nonconnective. We give obstruction-theoretic tools, constructing and classifying these algebras and their automorphisms with Goerss–Hopkins obstruction theory, and give descent-theoretic tools, applying Lurie's work on $\infty$-categories to show that a finite Galois extension of rings in the sense of Rognes becomes a homotopy fixed-point equivalence on Brauer spaces. For even-periodic ring spectra $E$, we find that the ‘algebraic’ Azumaya algebras whose coefficient ring is projective are governed by the Brauer–Wall group of $\pi _0(E)$, recovering a result of Baker, Richter, and Szymik. This allows us to calculate many examples. For example, we find that the algebraic Azumaya algebras over Lubin–Tate spectra have either four or two Morita equivalence classes, depending on whether the prime is odd or even, that all algebraic Azumaya algebras over the complex K-theory spectrum $KU$ are Morita trivial, and that the group of the Morita classes of algebraic Azumaya algebras over the localization $KU[1/2]$ is $\mathbb {Z}/8\times \mathbb {Z}/2$. Using our descent results and an obstruction theory spectral sequence, we also study Azumaya algebras over the real K-theory spectrum $KO$ which become Morita-trivial $KU$-algebras. We show that there exist exactly two Morita equivalence classes of these. The nontrivial Morita equivalence class is realized by an ‘exotic’ $KO$-algebra with the same coefficient ring as $\mathrm {End}_{KO}(KU)$. This requires a careful analysis of what happens in the homotopy fixed-point spectral sequence for the Picard space of $KU$, previously studied by Mathew and Stojanoska.
Building upon work of Epstein, May and Drury, we define and investigate the mod p Steenrod operations on the de Rham cohomology of smooth algebraic stacks over a field of characteristic
$p>0$
. We then compute the action of the operations on the de Rham cohomology of classifying stacks for finite groups, connected reductive groups for which p is not a torsion prime and (special) orthogonal groups when
$p=2$
.
In this paper a homotopy co-momentum map (à la Callies, Frégier, Rogers and Zambon) transgressing to the standard hydrodynamical co-momentum map of Arnol’d, Marsden, Weinstein and others is constructed and then generalized to a special class of Riemannian manifolds. Also, a covariant phase space interpretation of the coadjoint orbits associated to the Euler evolution for perfect fluids, and in particular of Brylinski’s manifold of smooth oriented knots, is discussed. As an application of the above homotopy co-momentum map, a reinterpretation of the (Massey) higher-order linking numbers in terms of conserved quantities within the multisymplectic framework is provided and knot-theoretic analogues of first integrals in involution are determined.
We use some detailed knowledge of the cohomology ring of real Grassmann manifolds Gk(ℝn) to compute zero-divisor cup-length and estimate topological complexity of motion planning for k-linear subspaces in ℝn. In addition, we obtain results about monotonicity of Lusternik–Schnirelmann category and topological complexity of Gk(ℝn) as a function of n.
We give a necessary and sufficient condition for the existence of an enhancement of a finite triangulated category. Moreover, we show that enhancements are unique when they exist, up to Morita equivalence.
Conjugation spaces are topological spaces equipped with an involution such that their fixed points have the same mod 2 cohomology (as a graded vector space, a ring and even an unstable algebra) but with all degrees divided by two, generalizing the classical examples of complex projective spaces under complex conjugation. Spaces which are constructed from unit balls in complex Euclidean spaces are called spherical and are very well understood. Our aim is twofold. We construct ‘exotic’ conjugation spaces and study the realization question: which spaces can be realized as real loci, i.e., fixed points of conjugation spaces. We identify obstructions and provide examples of spaces and manifolds which cannot be realized as such.
For a path connected space X, the homology algebra $H_*(QX; \mathbb{Z}/2)$ is a polynomial algebra over certain generators QIx. We reinterpret a technical observation, of Curtis and Wellington, on the action of the Steenrod algebra A on the Λ algebra in our terms. We then introduce a partial order on each grading of H*QX which allows us to separate terms in a useful way when computing the action of dual Steenrod operations $Sq^i_*$ on $H_*(QX; \mathbb{Z}/2)$. We use these to completely characterise the A-annihilated generators of this polynomial algebra. We then propose a construction for sequences I so that QIx is A-annihilated. As an application, we offer some results on the form of potential spherical classes in H*QX upon some stability condition under homology suspension. Our computations provide new numerical conditions in the context of hit problem.
The algebraic EHP sequences, algebraic analogues of the EHP sequences in homotopy theory, are important tools in algebraic topology. This note will outline two new proofs of the existence of the algebraic EHP sequences. The first proof is derived from the minimal injective resolution of the reduced singular cohomology of spheres, and the second one follows Bousfield's idea using the loop functor of unstable modules.
In this paper, we develop a new necessary and sufficient condition for the vanishing of $4$-Massey products of elements in the modulo-$2$ Galois cohomology of a field. This new description allows us to define a splitting variety for $4$-Massey products, which is shown in the appendix to satisfy a local-to-global principle over number fields. As a consequence, we prove that, for a number field, all such $4$-Massey products vanish whenever they are defined. This provides new explicit restrictions on the structure of absolute Galois groups of number fields.
This work is motivated by the question of whether there are spaces X for which the Farber–Grant symmetric topological complexity TCS(X) differs from the Basabe–González–Rudyak–Tamaki symmetric topological complexity TCΣ(X). For a projective space ${\open R}\hbox{P}^m$, it is known that $\hbox{TC}^S ({\open R}\hbox{P}^{m})$ captures, with a few potential exceptional cases, the Euclidean embedding dimension of ${\open R}\hbox{P}^{m}$. We now show that, for all m≥1, $\hbox{TC}^{\Sigma}({\open R}\hbox{P}^{m})$ is characterized as the smallest positive integer n for which there is a symmetric ${\open Z}_{2}$-biequivariant map Sm×Sm→Sn with a ‘monoidal’ behaviour on the diagonal. This result thus lies at the core of the efforts in the 1970s to characterize the embedding dimension of real projective spaces in terms of the existence of symmetric axial maps. Together with Nakaoka's description of the cohomology ring of symmetric squares, this allows us to compute both TC numbers in the case of ${\open R}\hbox{P}^{2^{e}}$ for e≥1. In particular, this leaves the torus S1×S1 as the only closed surface whose symmetric (symmetrized) TCS (TCΣ) invariant is currently unknown.