Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-18T04:22:33.236Z Has data issue: false hasContentIssue false

53 - The hereditary spastic paraplegias

from Part IX - Motor neuron diseases

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
John K. Fink
Affiliation:
Department of Neurology, University of Michigan and Geriatric Research Education and Care Center, Ann Arbor Veterans Affairs Medical Center, MI, USA
Get access

Summary

Introduction and classification

Inherited disorders in which the predominant clinical syndrome is gait disturbance due to lower extremity spastic weakness are referred to collectively as the hereditary spastic paraplegias (HSPs). The various types of HSP are classified clinically according to the mode of inheritance (dominant, recessive, and X-linked); and whether lower extremity spasticity and weakness and often urinary urgency and subtle dorsal column impairment occur alone (“uncomplicated HSP”), or are accompanied by additional neurologic or systemic symptoms for which alternative causes are excluded (“complicated HSP”) (Harding, 1983).

There are at least 20 genetically distinct types of HSP (Table 53.1) including ten dominant, seven recessive, and three X-linked HSP syndromes. Eight of these HSP syndromes are “uncomplicated;” eight of these are “complicated” by the presence of additional neurologic signs; and four of these may present as either “uncomplicated” or “complicated” HSP syndromes. For some of these latter syndromes, both “uncomplicated” and “complicated” HSP phenotypes may coexist even in the same family (Table 53.1).

It is important to recognize that the HSPs are classified clinically, rather than on the basis of subclinical involvement or neuropathologic findings. Certainly, lower extremity spastic weakness may be an important feature of many other disorders, both inherited and apparently sporadic including such diverse disorders as amyotrophic lateral sclerosis, Friedreich's ataxia (Berciano et al., 2002; Ragno et al., 1977), Machado Joseph disease (spinocerebellar ataxia type 3), Charlevoix–Sanguenay syndrome (Engert et al., 2000), primary lateral sclerosis, and familial Alzheimer's disease due to presenilin 1 mutation (Brooks et al., 2003; Assini et al., 2003; Tabira et al., 2002).

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 794 - 802
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarado, D. M., Ming, L., Hedera, P.et al. (2001). Atlastin gene analysis in early onset hereditary spastic paraplegia. Am. J. Hum. Genet., 69, 597(Abstract)Google Scholar
Assini, A., Terreni, L., Borghi, R.et al. (2003). Pure spastic paraparesis associated with a novel presenilin 1 R278K mutation. Neurology, 60, 150CrossRefGoogle ScholarPubMed
Azim, A. C., Hentati, A., Haque, M. F. U., Hirano, M., Ouachi, K. & Siddique, T. (2000). Spastin, a new AAA protein, binds to α and β tubulins. Am. J. Hum. Genet. (Suppl.), 67, 197Google Scholar
Behan, W. & Maia, M. (1974). Strumpell's familial spastic paraplegia: genetics and neuropathology. J. Neurol. Neurosurg. Psychiatr., 37, 8–20CrossRefGoogle ScholarPubMed
Berciano, J., Mateo, I., DePablos, C., Polo, J. M. & Combarros, O. (2002). Friedreich ataxia with minimal GAA expression presenting as adult-onset spastic ataxia. J. Neurol. Sci., 194, 75–82CrossRefGoogle Scholar
Brooks, W. S., Kwok, J. B., Kril, J. J.et al. (2003). Alzheimer's disease with spastic paraparesis and “cotton wool” plaques: two pedigrees with PS-1 exon 9 deletions. Brain, 126, 783–91CrossRefGoogle Scholar
Byrne, P. C., Webb, S., McSweeney, F., Burke, T., Hutchinson, M., & Parfrey, N. (1998). Linkage of AD HSP and cognitive impairment to chromosome 2p: haplotype and phenotype analysis indicates variable expression and low or delayed penetrance. Eur. J. Hum. Genet., 6, 275–82CrossRefGoogle ScholarPubMed
Cambi, F., Tartaglino, L., Lublin, F. D. & McCarren, D. (1995). X-linked pure familial spastic paraparesis: characterization of a large kindred with magnetic resonance imaging studies. Arch. Neurol., 52, 665–9CrossRefGoogle ScholarPubMed
Casari, G., Fusco, M., Ciarmatori, S.et al. (1998). Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell, 93, 973–83CrossRefGoogle ScholarPubMed
Charvin, D., Fonknechten, N., Cifuentes-Diaz, C.et al. (2002). Mutations in SPG4 are responsible for a loss of function of spastin, an abundant neuronal protein localized to the nucleus. Am. J. Hum. Genet., 71, 516 (Abstract)Google Scholar
Claus, D. & Jaspert, A. (1995). Central motor conduction in hereditary spastic paraparesis (Strumpell's disease) and tropical spastic paraparesis. Neurol. Croatic., 44, 23–31Google Scholar
Claus, D., Waddy, H. M. & Harding, A. E. (1990). Hereditary motor and sensory neuropathies and hereditary spastic paraplegia: a magnetic stimulation study. Ann. Neurol., 28, 43–9CrossRefGoogle ScholarPubMed
Crosby, A. H. & Proukakis, C. (2002). Is the transportation highway the right road for hereditary spastic paraplegia?Am. J. Hum. Genet., 71, 1009–16CrossRefGoogle ScholarPubMed
Cross, H. E. & McKusick, V. A. (1967). The Troyer syndrome. A recessive form of spastic paraplegia with distal muscle wasting. Arch. Neurol. 16, 473–85CrossRefGoogle ScholarPubMed
DeMichele, G., DeFusco, M., Cavalcanti, F.et al. (1998). A new locus for autosomal recessive hereditary spastic paraplegia maps to chromosome 16q24.3. Am. J. Hum. Genet., 63, 135–9CrossRefGoogle Scholar
Dube, M.-P., Boutros, M., Figlewicz, D. A. & Rouleau, G. A. (1997). A new pure hereditary spastic paraplegia kindred maps to the proteolipid protein gene locus. Am. J. Hum. Genet., 61, A169 (Abstract)Google Scholar
Engert, J. C., Berube, P., Mercier, J.et al. (2000). ARSACS, a spastic ataxia common in northeastern Quebec, is caused by mutations in a new gene encoding an 11.5-kb ORF. Nat. Genet., 24, 120–5CrossRefGoogle Scholar
Errico, A., Ballabio, A. & Rugarli, E. (2002). Spastin, the protein mutated in autosomal dominant hereditary spastic paraplegia, is involved in microtubule dynamics. Hum. Mol. Genet., 15, 153–63CrossRefGoogle Scholar
Farag, T. I., El-badramany, M. H. & Al-Sharkawy, S. (1994). Troyer Syndrome: report of the first “non-Amish” sibship and review. Am. J. Med. Genet., 52, 383–5CrossRefGoogle Scholar
Fink, J. K. (2001). Progressive spastic paraparesis: hereditary spastic paraplegia and its relation to primary and amyotrophic lateral sclerosis. Semin. Neurol., 21, 199–208CrossRefGoogle ScholarPubMed
Fink, J. K. & Hedera, P. (1999). Hereditary spastic paraplegia: genetic heterogeneity and genotype–phenotype correlation. Semin. Neurol., 19, 301–10CrossRefGoogle ScholarPubMed
Fink, J. K., Heiman-Patterson, T., Bird, T.et al. (1996). Hereditary spastic paraplegia: advances in genetic research. Neurology, 46, 1507–14CrossRefGoogle ScholarPubMed
Fonknecten, N., Mavel, D., Byrne, P.et al. (2000). Spectrum of SPG4 mutations in autosomal dominant spastic paraplegia. Hum. Mol. Genet., 9, 637–44CrossRefGoogle Scholar
Fransen, E., Vits, L., VanCamp, G. & Willems, P. J. (1996). The clinical spectrum of mutations in L1, a neuronal cell adhesion molecule. Am. J. Med. Genet., 64, 73–73.0.CO;2-P>CrossRefGoogle ScholarPubMed
Hansen, J. J., Durr, A., Cournu-Rebeix, I.et al. (2002). Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am. J. Hum. Genet., 70, 000–000CrossRefGoogle ScholarPubMed
Harding, A. E. (1983). Classification of the hereditary ataxias and paraplegias. Lancet, 1, 1151–5CrossRefGoogle ScholarPubMed
Harding, A. E. (1993). Hereditary spastic paraplegias. Semin. Neurol., 13, 333–6CrossRefGoogle ScholarPubMed
Hazan, J., Fonknechten, N., Mavel, D.et al. (1999). Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nat. Genet., 23, 296–303CrossRefGoogle ScholarPubMed
Hedera, P., DiMauro, S., Bonilla, E., Wald, J. J. & Fink, J. K. (2000). Mitochondrial analysis in autosomal dominant hereditary spastic paraplegia. Neurology, 55, 1591–2CrossRefGoogle ScholarPubMed
Heinzlef, O., Paternotte, C., Mahieux, F.et al. (1998). Mapping of a complicated familial spastic paraplegia to locus SPG4 on chromosome 2p. J. Med. Genet., 35, 89–93CrossRefGoogle ScholarPubMed
Hentati, A., Deng, H. X., Zhai, B. A.et al. (2000). Novel mutations in spastin gene and absence of correlation with age at onset of symptoms. Neurology, 55, 1388–90CrossRefGoogle ScholarPubMed
Hodgkinson, C. A., Bohlega, S., Abu-Amero, S. N.et al. (2002). A novel form of autosomal recessive pure hereditary spastic paraplegia maps to chromosome 13q14. Neurology, 59, 1905–9CrossRefGoogle ScholarPubMed
Kenwrick, S., Watkins, A. & Angelis, E.et al. (2000). Neural cell recognition molecule L1: relating biological complexity to human disease mutations. Hum. Mol. Genet., 9, 879–86CrossRefGoogle ScholarPubMed
Lindsey, J. C., Lusher, M. E., McDermott, C. J.et al. (2000). Mutation analysis of the spastin gene (SPG4) in patients with hereditary spastic paraparesis. J. Med. Genet., 37, 759–65CrossRefGoogle ScholarPubMed
Lizcano-Gil, L. A., Garcia-Cruz, D., Bernal-Beltran, M. D. P. & Hernandez, A. (1997). Association of late onset spastic paraparesis and dementia: probably an autosomal dominant form of complicated paraplegia. Am. J. Med. Genet. 68, 1–63.0.CO;2-V>CrossRefGoogle ScholarPubMed
McLeod, J. G., Morgan, J. A. & Reye, C. (1993). Electrophysiological studies in familial spastic paraplegia. Neurol. Neurosurg. Psychiatr., 40, 611–15CrossRefGoogle Scholar
Martinez-Murillo, F. M., Kobayashi, H., Pegoraro, E.et al. (1999). Genetic localization of a new locus for recessive familial spastic paraparesis to 15q13–15. Neurology, 53, 50–6CrossRefGoogle ScholarPubMed
Muglia, M., Magariello, A., Nicoletti, G. et al. (2002). Further evidence that SPG3A gene mutations cause autosomal dominant hereditary spastic paraplegia. Ann. Neurol., in press
Nakamura, A., Izumi, K., Umehara, F.et al. (1995). Familial spastic paraplegia with mental impairment and thin corpus callosum. J. Neurol. Sci., 131, 35–42CrossRefGoogle ScholarPubMed
Ohnishi, J., Tomoda, Y. & Yokoyama, K. (2001). Neuroradiological findings in hereditary spastic paraplegia with a thin corpus callosum. Acta. Neurol. Scand., 104, 191–2CrossRefGoogle ScholarPubMed
Patel, H., Cross, H., Proukakis, C.et al. (2002). SPG20 is mutated in Troyer syndrome, an hereditary spastic paraplegia. Nat. Genet., 31, 347–8CrossRefGoogle ScholarPubMed
Pedersen, L. & Trojaborg, W. (1981). Visual, auditory and somatosensory pathway involvement in hereditary cerebellar ataxia, Friedreich's ataxia and familial spastic paraplegia. Electroencephalogr. Clin. Neurophys., 52, 283–97CrossRefGoogle ScholarPubMed
Pelosi, L., Lanzillo, B. & Perretti, A. (1991). Motor and somatosensory evoked potentials in hereditary spastic paraplegia. J. Neurol. Neurosurg. Psychiatr., 54, 1099–102CrossRefGoogle ScholarPubMed
Pericak-Vance, M. A., Kloos, M. T., Reid, E.et al. (2002). A kinesin heavy chain (K1F5A) mutation in Hereditary Spastic Paraplegia (SPG10). Am. J. Hum. Genet., 71, 165 (Abstract)Google Scholar
Polo, J. M., Calleja, J., Combarris, O. & Berciano, J. (1993). Hereditary “pure” spastic paraplegia: a study of nine families. J. Neurol. Neurosurg. Psychiatr., 56, 175–81CrossRefGoogle ScholarPubMed
Ragno, M., DeMichele, G., Cavalcanti, F.et al. (1997). Broadened Friedreich's ataxia phenotype after gene cloning. Neurology, 49, 1617–20CrossRefGoogle ScholarPubMed
Rainier, S., Chai, J.-H., Tokarz, D., Nicholls, R. D. & Fink, J. K. (2003). NIPA1 gene mutations cause autosomal dominant hereditary spastic paraplegia (SPG6). Nat. Genet., submitted:CrossRef
Reid, E., Grayson, C., Rubinsztein, D. C., Rogers, M. T. & Rubinsztein, J. S. (1999). Subclinical cognitive impairment in autosomal dominant ‘pure’ hereditary spastic paraplegia. J. Med. Genet., 36, 797–8CrossRefGoogle ScholarPubMed
Schady, W., Dick, J. P., Sheard, A. & Crampton, S. (1991). Central motor conduction studies in hereditary spastic paraplegia. J. Neurol. Neurosurg. Psychiatr., 54, 775–9CrossRefGoogle ScholarPubMed
Schwarz, G. A. (1952). Hereditary (familial) spastic paraplegia. AMA Arch. Neurol. Psychiatry, 68, 655–82CrossRefGoogle ScholarPubMed
Schwarz, G. A. & Liu, C.-N. (1956). Hereditary (familial) spastic paraplegia. Further clinical and pathologic observations. Arch. Neurol. Psychiatr., 75, 144–62CrossRefGoogle ScholarPubMed
Shibaski, Y., Tanaka, H., Iwabuchi, K.et al. (2000). Linkage of autosomal recessive hereditary spastic paraplegia with mental impairment and thin corpus callosum to chromosome 15q13–15. Ann. Neurol., 48, 108–123.0.CO;2-A>CrossRefGoogle Scholar
Silver, J. R. (1966). Familial spastic paraplegia with amyotrophy of the hands. Ann. Hum. Genet., 30, 69–73CrossRefGoogle ScholarPubMed
Svenson, I. K., Ashley-Koch, A. E., Gaskell, P. C.et al. (2000). Mutation analysis of the spastin gene in hereditary spastic paraplegia type 4 – evidence of aberrant transcript splicing caused by mutations in concanonical splice site sequences. Am. J. Hum. Genet., 67 (suppl. 2), 375Google Scholar
Tabira, T., Chui, D., Nakayama, H., Kuroda, S. & Shibuya, M. (2002). Alzheimer's disease with spastic paresis and cotton wool type plaques. J. Neurosci. Res., 70, 367–72CrossRefGoogle ScholarPubMed
Tedeschi, G., Allocca, S., DiCostanzo, A.et al. (1991). Multisystem involvement of the central nervous system in Strumpell's disease. A neurophysiological and neuropsychological study. J. Neurol. Sci., 103, 55–60CrossRefGoogle ScholarPubMed
Wang, J., Hennigan, A. N., Morini, A., Ananth, U. & Seltzer, W. K. (2002). Molecular diagnostic testing for autosomal dominant hereditary spastic paraplegia: identification of novel mutations in the SPG4 gene. Am. J. Hum. Genet., 71, 386 (Abstract)Google Scholar
Webb, S., Coleman, D., Byrne, P.et al. (1998). Autosomal dominant hereditary spastic paraparesis with cognitive loss linked to chromosome 2p. Brain, 121, 601–9CrossRefGoogle ScholarPubMed
Zhao, X., Alvarado, D., Rainier, S.et al. (2001). Mutations in a novel GTPase cause autosomal dominant hereditary spastic paraplegia. Nat. Genet., 29, 326–31CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×