Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T15:00:03.859Z Has data issue: false hasContentIssue false

9 - Edge and Corner Interface Cracks

Published online by Cambridge University Press:  13 July 2017

Matthew R. Begley
Affiliation:
University of California, Santa Barbara
John W. Hutchinson
Affiliation:
Harvard University, Massachusetts
Get access

Summary

Chapters 4 and 5 cover delamination in multilayers that have interface crack lengths that are extremely large in comparison to other dimensions, in which case the energy release rate becomes independent of the crack size (i.e., the steady-state limit). However, when the interface crack length is comparable to other dimensions in the problem, the energy release rate generally depends on the interface crack length, and as such, numerical solutions are needed. This chapter describes the relationship between crack length and crack tip parameters, and in so doing provides guidelines that identify crack lengths for which the steady-state solution is accurate.

The focus of coverage is on plane strain (two-dimensional) geometries, with a limited discussion of an interface crack at the corner of a thin film, which is inherently three-dimensional. It will be demonstrated that the two-dimensional results provide the necessary insight for most cases of interest. The two-dimensional results in this chapter were generated using the software described in Chapter 16 and are essentially a reiteration of the results in original papers by Zhuk, Evans, Hutchinson & Whitesides (1998) and Yu, He & Hutchinson (2001). Related coverage of three-dimensional problems is also provided in Chapter 11, which addresses interface cracks between a semi-infinite substrate and patterned lines, that is, thin film strips bonded to very thick substrates.

Interface Edge-Cracks: The Transition to Steady State

Consider the interface cracks located at the edge of a film bonded to a substrate, as illustrated in Figure 9.1. One of the remarkable aspects of thin film mechanics is how quickly a short edge-crack approaches the steady-state limit for a semi-infinite crack. The rapidity of this transition depends on whether the film edge is aligned with the edge of the substrate, as in Figure 9.1(a), or whether the film edge is interior to the edge of the substrate, as in Figure 9.1(b). In this section, we focus on two-dimensional film/substrate systems in plane strain with an infinitely long crack front in the out-ofplane direction. A limited discussion of semicircular crack fronts is provided in the next section, while three-dimensional aspects of debonding of finite width features are considered in Chapter 11.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×