Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-16T09:29:51.806Z Has data issue: false hasContentIssue false

7 - Immunophenotyping

from Part II - Cell biology and pathobiology

Published online by Cambridge University Press:  01 July 2010

Fred G. Behm
Affiliation:
Associate Member and Vice Chair, Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
Ching-Hon Pui
Affiliation:
St. Jude Children's Research Hospital, Memphis
Get access

Summary

Introduction

The diagnosis and treatment of childhood leukemia rest on the recognition of a leukemic cell population and its cell lineage and, sometimes, the stage of maturation. The presence in leukemic blasts of myeloperoxidase, Auer rods, or monocyte-associated esterases readily identify most cases of acute myeloid leukemia (AML). By contrast, the leukemic blasts of acute lymphoblastic leukemia (ALL) have no unique morphologic or cytochemical features. Malignant megakaryoblasts also lack defining cytologic and cytochemical features and may be mistaken for ALL. Although rare in children, chronic lymphoid malignancies, such as large granular lymphocyte leukemia or HTLV-1-associated leukemia can be confused with reactive lymphocytosis or acute leukemia. The prognosis and therapy for ALL, AML, and chronic leukemias differ greatly; thus, it is crucial to document the lineage and stage of maturation of leukemias. In the absence of diagnostic morphologic features, accurate diagnosis requires contemporary immunologic and molecular analyses. Immunologic testing, or immunophenotyping, is an essential component of the diagnostic work-up by confirming or establishing the leukemic cell lineage, stage of differentiation, and sometimes clonality. The results of immunophenotyping also correlate with cytogenetic abnormalities, facilitate minimal residual disease studies, and provide prognostic information.

The earliest immunophenotyping studies of leukemias were performed with polyclonal antisera produced to T lymphocytes, immunoglobulin (Ig) heavy and light chains, the common acute lymphoblastic leukemia antigen (CALLA), the minor histocompatibility antigen HLA-DR, and terminal deoxynucleotidyl transferase (TDT).

Type
Chapter
Information
Childhood Leukemias , pp. 150 - 209
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mason, D., Andre, P., Bensussan, A., et al., eds., Leucocyte Typing Ⅶ. White Cell Differentiation Antigens (New York: Oxford University Press, 2002).Google Scholar
Jaffe, E. S., Harris, N. L., Stein, H., & Vardiman, J. W., eds. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Hematopoietic and Lymphoid Tissues. (Lyon, France: IARC Press, 2001).Google Scholar
LeBein, T. W.Fates of human B-cell precursors. Blood, 2000; 96: 9–23.Google Scholar
Campana, D., Janossy, G., Bofill, M., et al.Human B cell development. I. Phenotypic differences of B lymphocytes in the bone marrow and peripheral lymphoid tissues. J Immunol, 1985; 134: 1524–9.Google Scholar
Lochem, E. G., Velden, V. H. J., Wind, H. K., et al.Immunophenotypic differentiation patterns of normal hematopoiesis in human bone marrow: reference patterns for age-related changes and disease-induced shifts. Cytometry, 2004; 60B: 1–13.CrossRefGoogle Scholar
Loken, M. R., Shah, V. O., Hollander, Z., et al.Flow cytometric analysis of normal lymphoid development. Pathol Immunopathol Res, 1988; 7: 357–70.CrossRefGoogle Scholar
Caldwell, C. W. & Patterson, W. P.Relationship of T200 antigen expression to stages of B-cell differentiation in resurgent hyperplasia of bone marrow. Blood, 1987; 70: 1165–72.Google ScholarPubMed
Burrows, P. D., Stephan, R. F., Wang, Y.-H., et al.The transient expression of pre-B cell receptors governs B cell development. Immunology, 2002; 14: 343–9.Google ScholarPubMed
Meffre, E., Fougereau, M., Argenson, J.-N., et al.Cell surface expression of surrogate light chain (ψL) in the absence of μ on human pro-B cell lines and normal pro-B cells. Eur J Immunol, 1996; 26: 2172–80.CrossRefGoogle Scholar
Melchers, F., Boekel, E. ten, Seidl, T., et al.Repertoire selection by pre-B-cell receptors and B-cell receptors, and genetic control of B-cell development from immature to mature B cells. Immunol Rev, 2000; 175: 33–46.CrossRefGoogle ScholarPubMed
Sabbattini, P. & Dillon, N.The λ5-VpreB1 locus – a model system for studying gene regulation during early B cell development. Semin Immunol, 2005; 17: 121–7.CrossRefGoogle ScholarPubMed
Ghia, P., Boekel, E. ten, Sanz, E., et al.Ordering of human bone marrow B lymphocyte precursors by single-cell polymerase chain reaction analyses of the rearrangement of the immunoglobulin H and L chain gene loci. J Exp Med, 1996; 184: 2217–29.CrossRefGoogle ScholarPubMed
Young, F., Mizoguchi, E., Bhan, A. K., et al.Constitutive Bcl-2 expression during immunoglobulin heavy chain-promoted B cell differentiation expands novel precursor B cells. Immunity, 1997; 6: 23–33.CrossRefGoogle ScholarPubMed
Muljo, S. A. & Schlissel, M. S.Pre-B and pre-T-cell receptors: conservation strategies in regulating early lymphocyte development. Immunol Rev, 2000; 175: 80–93CrossRefGoogle ScholarPubMed
Schiff, C., Milili, M., Bossy, D., et al.λ-like and Vpre-B genes expression: an early B-lineage marker of human leukemias. Blood, 1991; 78: 1516–25.Google Scholar
Clark, M. R., Campbell, K. S., Kazlauskas, A., et al.The B cell antigen receptor complex: association of Ig-α and Ig-β with distinct cytoplasmic effectors. Science, 1992; 258: 123–6.CrossRefGoogle Scholar
Duchosal, M. A.B-cell development and differentiation. Sem Hematol, 1997; 34(Suppl. 1): 2–12.Google ScholarPubMed
McHeyzer-Williams, L. J., Driver, D. J., & McHeyzer-Williams, M. G.Germinal center reaction. Curr Opin Hematol, 2001; 8: 52–9.CrossRefGoogle ScholarPubMed
Kurtzberg, J., Denning, S. M., Nycum, L. M., et al.Immature human thymocytes can be driven to differentiate into nonlymphoid lineages by cytokines and thymic epithelial cells. Proc Natl Acad Sci U S A, 1989; 86: 5829.CrossRefGoogle ScholarPubMed
Blom, B., Res, P., Noteboom, E., et al.Prethymic CD34+ progenitors capable of developing into T cells are not committed to the T cell lineage. J Immunol, 1997; 158: 3571–7.Google Scholar
Prockop, S. & Petrie, H.Cell migration and the anatomic control of thymocyte precursor differentiation. Semin Immunol, 2000; 12: 435–44.CrossRefGoogle ScholarPubMed
Anderson, G., Harman, B. C., Hare, K. J., & Jenkins, E. J.Microenvironmental regulation of T cell development in the thymus. Semin Immunol, 2000; 12: 457–64.CrossRefGoogle ScholarPubMed
Hao, Q. L., Zhu, J., Price, M. L., et al.Identification of a novel, human multilymphoid progenitor in cord blood. Blood, 2001; 97: 3683–90.CrossRefGoogle ScholarPubMed
Res, P., Martinez-Cáceres, E., Jaleco, A. C., et al.CD34+CD38dim cells in the human thymus can differentiate into T, natural killer, and dendritic cells but are distinct from pluripotent stem cells. Blood, 1996; 87: 5196–206.Google Scholar
Res, P. & Spits, H.Developmental stages in the human thymus. Semin Immunol, 1999; 11: 39–46.CrossRefGoogle ScholarPubMed
Campana, D.The developmental stages of the human T cell receptors. Thymus, 1989; 13: 3–18.Google ScholarPubMed
Michie, A. M. & Zuniga-Pflucker, J. C.Regulation of thymocyte differentiation: pre-TCR signals and β-selection. Immunology, 2002; 14: 311–23.Google ScholarPubMed
Carrasco, Y. R., Navarro, M. N., de Yebenes, V. G., et al.Regulation of surface expression of the human pre-T cell receptor complex. Immunology, 2002; 14: 325–34.Google ScholarPubMed
Savino, W., Mendes-da-Cruz, D. A., Silva, J. S., et al.Intrathymic T-cell migration: a combinatorial interplay of extracellular matrix and chemokines ?Trends Immunol, 2002; 23: 305–13.CrossRefGoogle ScholarPubMed
Mari, B., Breittmayer, J.-P., Guerin, S., et al.High levels of functional endopeptidase 24.11 (CD10) activity on human thymocytes: preferential expression on immature subsets. Immunology, 1994; 82: 433–8.Google ScholarPubMed
Fischer, E. M., Mouhoub, A., Maillet, F., et al.Expression of CD21 is developmentally regulated during thymic maturation of human T lymphocytes. Int Immunol, 1999; 11: 1841–9.CrossRefGoogle ScholarPubMed
Kussick, S. J., Fromm, J. R., Rossini, A., et al.Four-color flow cytometry shows strong concordance with bone marrow morphology and cytogenetics in the evaluation for myelodysplasia. Am J Clin Pathol, 2005; 124: 170–81.CrossRefGoogle ScholarPubMed
Gaipa, G., Coustan-Smith, E., Todisco, E., et al.Characterization of CD34+, CD13+, CD33− cells, a rare subset of immature human hematopoietic cells. Hematologica, 2002; 87: 347–56.Google ScholarPubMed
Lübbert, M., Herrmann, F., Koeffler, H. P.Expression and regulation of myeloid-specific genes in normal and leukemic myeloid cells. Blood, 1991; 77: 909–24.Google ScholarPubMed
Parravicini, C. L., Soligo, D., Berti, E., et al. Immunohistochemical reactivity of anti-platelet mAb in normal human tissues and bone marrow. In , W. Knapp, , B. Dörken, , W. R. Gilks, et al., eds., Leucocyte Typing IV. White Cell Differentiation Antigens (New York: Oxford University Press, 1989), pp. 981–5.Google Scholar
Borne, A. E. G. Kr. von dem, Modderman, P. W., Admiraal, L. G., et al. Platelet antibodies, the overall results. In , W. Knapp, , B. Dörken, , W. R. Gilks, et al., eds, Leucocyte Typing IV. White Cell Differentiation Antigens (New York: Oxford University Press, 1989), pp. 951–66.Google Scholar
Erber, W. N., Breton-Gorius, J., Villeval, J. L., et al.Detection of cells of megakaryocytic lineage in haematopoietic malignancies by immuno-alkaline phosphatase labeling of cell smears with a panel of monoclonal antibodies. Br J Haematol, 1987; 65: 87–94.CrossRefGoogle Scholar
Ayala, I. A., Tomer, A., & Kellar, K. L.Flow cytometric analysis of megakaryocyte-associated antigens on CD34 cells and their progeny in liquid culture. Stem Cells, 1996; 14: 320–9.CrossRefGoogle ScholarPubMed
Basch, R. S., Dolzhanskiy, A., Zhang, X.-M., et al.The development of human megakaryocytes. II. CD4 expression occurs during haematopoietic differentiation and is an early step in megakaryocyte maturation. Br J Haematol, 1996; 94: 433–42.CrossRefGoogle ScholarPubMed
Dolzhanskiy, A., Basch, R. S., & Karpatkin, S.Development of human megakaryocytes: I. Hematopoietic progenitors (CD34+ bone marrow cells) are enriched with megakaryocytes expressing CD4. Blood, 1996; 87: 1353–60.Google ScholarPubMed
Bellucci, S., Han, Z. C., Pidard, D., et al.Identification of a normal human bone marrow cell population co-expressing megakaryocytic and erythroid markers in culture. Eur J Haematol, 1992; 48: 259–65.CrossRefGoogle ScholarPubMed
Bettaieb, A., Villeval, J. L., Kieffer, N., et al.Early erythroid markers as probes for normal and leukemic erythroid differentiation. Ann Inst Pasteur Immunol, 1987; 138: 877–83.CrossRefGoogle Scholar
Debili, N., Kieffer, N., Mitjavila, M. T., et al.Expression of platelet glycoproteins by erythroid blasts in four cases of trisomy 21. Leukemia, 1989; 3: 669–78.Google ScholarPubMed
Loken, M. R., Shah, V. O., Dattilo, K. L., et al.Flow cytometric analysis of human bone marrow: I. Normal erythroid development. Blood, 1987; 69: 255–63.Google ScholarPubMed
Chuang, S.-S. & Li, C.-Y.Useful panel of antibodies for the classification of acute leukemia by immunohistochemical methods in bone marrow trephine biopsy specimens. Am J Clin Pathol, 1997; 107: 410–18.CrossRefGoogle ScholarPubMed
Bavikatty, N. R., Ross, C. W., Finn, W. G., et al.Anti-CD10 immunoperoxidase staining of paraffin-embedded acute leukemias: comparison with flow cytometric immunophenotyping. Hum Pathol, 2000; 31: 1051–4.CrossRefGoogle ScholarPubMed
Manaloor, E. J., Neiman, R. S., Heilman, D. K., et al.Immunohistochemistry can be used to subtype acute myeloid leukemia in routinely processed bone marrow biopsy specimens. Comparison with flow cytometry. Am J Clin Pathol, 2000; 113: 814–22.CrossRefGoogle ScholarPubMed
Kurec, A. S., Cruz, V. E., Barrett, D., et al.Immunophenotyping of acute leukemias using paraffin-embedded tissue sections. Am J Clin Pathol, 1990; 93: 502–9.CrossRefGoogle ScholarPubMed
Orazi, A., Cotton, J., Cattaretti, G., et al.Terminal deoxynucleotidyl transferase staining in acute leukemia and normal bone marrow in routinely processed paraffin sections. Am J Clin Pathol, 1994; 102: 640–5.CrossRefGoogle ScholarPubMed
Hanson, C. A., Ross, C. W., & Schnitzer, B.Anti-CD34 immunoperoxidase staining in paraffin sections of acute leukemia: comparison with flow cytometric immunophenotyping. Hum Pathol, 1992; 23: 26–32.CrossRefGoogle ScholarPubMed
Pileri, S. A., Ascani, S., Milani, M., et al.Acute leukaemia immunophenotyping in bone-marrow routine sections. Br J Haematol, 1999; 105: 394–401.CrossRefGoogle ScholarPubMed
Toth, B., Wehrmann, M., Kaiserling, E., et al.Immunophenotyping of acute lymphoblastic leukemia in routinely processed bone marrow biopsy specimens. J Clin Pathol, 1999; 52: 688–92.CrossRefGoogle ScholarPubMed
Krober, S. M., Greschniok, A., Kaiserling, E., et al.Acute lymphoblastic leukemia: correlation between morphologic/immunohistochemical and molecular biological findings in bone marrow biopsy specimens. Mol Pathol, 2000; 53: 83–7.CrossRefGoogle Scholar
Hashimoto, M., Yamashita, Y., & Mori, N.Immunohistochemical detection of CD79a expression in precursor T cell lymphoblastic lymphoma/leukemia. J Pathol, 2002; 197: 341–7.CrossRefGoogle Scholar
Dunphy, C. H., Polski, J. M., Evans, H. L., et al.Evaluation of bone marrow specimens with acute myelogenous leukemia for CD34, CD15, CD117, and myeloperoxidase. Arch Pathol Lab Med, 2001; 125: 1063–9.Google ScholarPubMed
Huang, M.-J., Li, C.-Y., Nichols, W. L., et al.Acute leukemia with megakaryocytic differentiation: a study of 12 cases identified immunocytochemically. Blood, 1984; 64: 427–39.Google ScholarPubMed
Wong, K. F. & Chan, J. K. C.Antimyeloperoxidase: antibody of choice for labeling of myeloid cells including diagnosis of granulocytic sarcoma. Adv Anat Pathol, 1995; 2: 65–8.CrossRefGoogle Scholar
Menasce, L. P., Bancrjee, S. S., Beckett, E., et al.Extra-medullary myeloid tumour (granulocytic sarcoma) is often misdiagnosed: a study of 26 cases. Histopathology, 1999; 34: 391–8.CrossRefGoogle ScholarPubMed
Chen, J., Yanuck, R. R. III, Abbondanzo, S. L., et al.c-Kit (CD117) reactivity in extramedullary myeloid tumor/granulocytic sarcoma. Arch Pathol Lab Med, 2001; 125: 1448–52.Google ScholarPubMed
Steltzer, G. T., Shults, K. E., & Loken, M. R.CD45 gating for routine flow cytometric analysis of human bone marrow specimens. Ann N Y Acad Sci, 1993; 677: 265–80.CrossRefGoogle Scholar
Borowitz, M. J., Guenther, K. L., Shults, K. E., et al.Immunophenotyping of acute leukemia by flow cytometric analysis. Use of CD45 and right-angle light scatter to gate on leukemic blasts in three-color analysis. Am J Clin Pathol, 1993; 100: 534–40.CrossRefGoogle ScholarPubMed
Rainer, R. O., Hodges, L., & Stelzer, G. T.CD45 gating correlates with bone marrow differential. Cytometry, 1995; 22: 139–45.CrossRefGoogle ScholarPubMed
Sun, T., Sangaline, R., Ryder, J., et al.Gating strategy for immunophenotyping of leukemia and lymphoma. Am J Clin Pathol, 1997; 108: 152–7.CrossRefGoogle ScholarPubMed
Paietta, E.Proposals for the immunological classification of acute leukemias. Leukemia, 1995; 9: 2147–57.Google ScholarPubMed
Rothe, G. & Schmitz, G.Consensus protocol for the flow cytometric immunophenotyping of hematopoietic malignancies. Leukemia, 1996; 10: 877–95.Google ScholarPubMed
Knapp, W., Strobl, H., & Majdic, O.Flow cytometric analysis of cell-surface and intracellular antigens in leukemia diagnosis. Cytometry, 194; 18: 187–98.CrossRefGoogle Scholar
Verschuren, M. C. M., Comans-Bitter, W. M., Kapteijn, C. A. C., et al.Transcription and protein expression of mb-1 and B26 genes in human hematopoietic malignancies and cell lines. Leukemia, 1993; 7: 1939–47.Google Scholar
Groeneveld, K., te Marvelde, J. G., Beemd, M. W. M., et al.Flow cytometric detection of intracellular antigens for immunophenotyping of normal and malignant leukocytes. Leukemia, 1996; 10: 1383–9.Google ScholarPubMed
Irie-Sasaki, J., Sasaki, T., & Penninger, J. M.CD45 regulated signaling pathways. Curr Top Med Chem, 2003; 3: 783–96.CrossRefGoogle ScholarPubMed
Behm, F. G., Raimondi, S. C., Schell, M. J., et al.Lack of CD45 antigen on blast cells in childhood acute lymphoblastic leukemia is associated with chromosome hyperdiploidy and other favorable prognostic features. Blood, 1992; 79: 1011–16.Google Scholar
Borowitz, M. J., Shuster, J., Carroll, A. J., et al.Prognostic significance of fluorescence intensity of surface marker expression in childhood B-precursor ALL. A Pediatric Oncology Group study. Blood, 1997; 89: 3960–6.Google Scholar
Boue, D. R. & LeBein, T. W.Expression and structure of CD22 in acute leukemia. Blood, 1988; 71: 1480–6.Google ScholarPubMed
Dworzak, M. N., Fritsch, G., Froschl, G., et al.Four-color flow cytometric investigation of terminal deoxynucleotidyl transferase-positive lymphoid precursors in pediatric bone marrow: CD79a expression precedes CD19 in early B-cell ontogeny. Blood, 1998; 91: 3203–9.Google Scholar
Mason, D. Y., Cordell, J. L., Tse, A. G. D., et al.The IgM-associated protein mb-1 as a marker of normal and neoplastic B cells. J Immunol, 1991; 147: 2474–82.Google ScholarPubMed
Astsaturov, I. A., Matutes, E., Morilla, R., et al.Differential expression of B29 (CD79b) and mb-1 (CD79a) proteins in acute lymphoblastic leukaemia. Leukemia, 1996; 10: 769–73.Google ScholarPubMed
Arber, D. A., Jenkins, K. A., & Slovak, M. L.CD79 alpha expression in acute myeloid leukemia. High frequency of expression in acute promyelocytic leukemia. Am J Pathol, 1996; 149: 1105–10.Google ScholarPubMed
Arber, D. A. & Jenkins, K. A.Paraffin section immunophenotyping of acute leukemias in bone marrow specimens. Am J Clin Pathol, 1996; 109: 116–17.Google Scholar
Pilozzi, E., Pulford, K., Jones, M., et al.Co-expression of CD79a (JCB117) and CD3 by lymphoblastic lymphoma. J Pathol, 1998; 186: 140–3.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Pilozzi, E., Muller-Hermelink, H.-K., De Wolf-Peters, C., et al.Gene rearrangements in T-cell lymphoblastic lymphoma. J Pathol, 1999; 188: 267–70.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Lai, R., Juco, J., Lee, S. F., et al.Flow cytometric detection of CD79a expression in T-cell acute lymphoblastic leukemias. Am J Clin Pathol, 2000; 113: 823–30.CrossRefGoogle ScholarPubMed
Ben-Ezra, J., Weinberg, C. D., Wu, A., et al.Leu-9 (CD7) positivity in acute leukemias: a marker of T-cell lineage ?Hematol Pathol, 1987; 1: 147–56.Google ScholarPubMed
Jensen, A. W., Hokland, M., Jorgensen, H., et al.Solitary expression of CD7 among T-cell antigens in acute myeloid leukemia: identification of a group of patients with similar T-cell receptor beta and delta rearrangements and course of disease suggestive of poor prognosis. Blood, 1991; 78: 1292–1300.Google ScholarPubMed
Kita, K., Mina, H., Nakase, K., et al.Clinical importance of CD7 expression in acute myeloid leukemia. Blood, 1993; 81: 2399–405.Google Scholar
Del Pota, G., Stasi, R., Venditti, A., et al.Prognostic value of cell marker analysis in de novo acute myeloid leukemia. Leukemia, 1994; 8: 388–94.Google Scholar
Spits, H., Lanier, L. L., & Phillips, J. H.Development of human T and natural killer cells. Blood, 1995; 85: 2654–70.Google Scholar
Campana, D., Thompson, J. S., Amlot, P., et al.The cytoplasmic expression of CD3 antigens in normal and malignant cells of the T lymphoid lineage. J Immunol, 1987; 138: 648–55.Google ScholarPubMed
Janossy, G., Coustan-Smith, E., & Campana, D.The reliability of cytoplasmic CD3 and CD22 antigen expression in the immunodiagnosis of acute leukemia: a study of 500 cases. Leukemia, 1989; 3: 170–81.Google ScholarPubMed
Dongen, J. J. M.Krissansen, G. W., Wolvers-Tettero, I. L. M., et al.Cytoplasmic expression of the CD3 antigen as a diagnostic marker for immature T-cell malignancies. Blood, 1988; 71: 603–12.Google ScholarPubMed
Salmerón, A., Sánchez-Madrid, F., Ursa, M. A., et al.A conformational epitope expressed upon association of CD3-epsilon with either CD3-delta or CD3-gamma is the main target for recognition by anti-CD3 monoclonal antibodies. J Immunol, 1991; 147: 3047–52.Google ScholarPubMed
Peiper, S. C. & Guo, H.-H. CD33 workshop panel report. In , T. Kishimoto, , H. Kikutani, Borne, A. E. G. von dem Kr., et al., eds., Leucocyte Typing Ⅵ. White Cell Differentiation Antigens (New York: Garland Publishing Inc., 1997), pp. 972–4.Google Scholar
Goyert, S. M. CD13 workshop panel report. In , T. Kishimoto, , H. Kikutani, , A. E. G. Kr. von dem Borne, et al. eds., Leucocyte Typing Ⅵ. White Cell Differentiation Antigens (New York: Garland Publishing Inc., 1997), pp. 962–3.Google Scholar
Orfao, C. S., Vidriales, B., Macedo, A., et al.Immunophenotypic analysis of CD19+ precursors in normal adult bone marrow: implications for minimal residual disease detection. Haematology, 1998; 83: 1069–75.Google Scholar
Rieman, D., Kehlen, A., Thiele, K., et al.Induction of aminopeptidase N/CD13 on human lymphocytes after adhesion to fibroblast-like synoviocytes, endothelial cells, epithelial cells, and monocytes/macrophages. J Immunol, 1997; 158: 3425–32.Google Scholar
Makrynikola, V., Favaloro, E. J., Browning, T., et al.Functional and phenotypic up regulation of CD13/aminopeptidase-N on precursor-B acute lymphoblastic leukemia after in vitro stimulation. Exp Hematol, 1995; 23: 1173–9.Google Scholar
Casasnovas, R. O., Slimane, F. K., Garand, R., et al.Immunological classification of acute myeloblastic leukemias: relevance to patient outcome. Leukemia, 2003; 17: 515–27.CrossRefGoogle ScholarPubMed
Bennett, J. M., Catovsky, D., Daniel, M.-T., et al.Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med, 1985; 103: 626–9.Google ScholarPubMed
Zaki, S. R., Austin, G. E., Swan, D. C., et al.Studies of myeloperoxidase gene expression at the cellular level by in situ hybridization. Leukemia, 1990; 4: 813–18.Google ScholarPubMed
Austin, G. E., Chan, W. C., Zhao, W., et al.Myeloperoxidase gene expression in normal granulopoiesis and acute leukemias. Leuk Lymphoma, 1994; 15: 209–26.CrossRefGoogle ScholarPubMed
Strobl, H., Takimoto, M., Majdic, O., et al.Myeloperoxidase expression in CD34+ normal hematopoietic cells. Blood, 1993; 82: 2069–78.Google Scholar
Tien, H.-F., Chou, C.-C., Wang, C.-H., et al.Putative normal counterparts of leukaemic cells from CD7-positive acute myeloid leukaemia can be demonstrated in human haemopoietic tissues. Br J Haematol, 1996; 94: 501–6.Google ScholarPubMed
Bello-Fernández, C., Matyash, M., Strobl, H., et al.Analysis of myeloid-associated genes in human hematopoietic progenitor cells. Exp Hematol, 1997; 251: 1158–66.Google Scholar
Stoor, J., Dolan, G., Coustan-Smith, E., et al.Value of monoclonal anti-myeloperoxidase (MPO7) for diagnosing acute leukaemia. J Clin Pathol, 1990; 43: 847–9.CrossRefGoogle Scholar
Buccheri, V., Shetty, V., Yoshida, N., et al.The role of an anti-myeloperoxidase antibody in the diagnosis and classification of acute leukaemia: a comparison with light and electron microscopy cytochemistry. Br J Haematol, 1992; 80: 62–8.CrossRefGoogle ScholarPubMed
Immamura, N. & Kuramoto, A.Analysis of peroxidase negative acute leukemias by monoclonal antibodies: III. Acute lymphoblastic leukemia. J Clin Lab Anal, 1989; 3: 88–94.CrossRefGoogle Scholar
Shoot, C. E., Daams, G. M., Pinkster, J., et al.Monoclonal antibodies against myeloperoxidase are valuable immunological reagents for the diagnosis of acute myeloid leukemia. Br J Haematol, 1990; 74: 173–8.CrossRefGoogle Scholar
Nguyen, P. L., Olszak, I., Haris, N. L., & Prefer, F. I.Myeloperoxidase detection by three-color flow cytometry and by enzyme cytochemistry in the classification of acute leukemia. Am J Clin Pathol, 1998; 110: 163–9.CrossRefGoogle ScholarPubMed
Kheiri, S. A., Mackerrell, T., Bonagura, V. R., et al.Flow cytometry with or without cytochemistry for the diagnosis of acute leukemias. Cytometry, 1998; 34: 82–6.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
DeLatour, R. P., LeGrand, O., Moreau, D., et al.Comparison of flow cytometry and enzyme cytochemistry for the detection of myeloperoxidase in acute myeloid leukaemia: interests of a new positivity threshold. Br J Haematol, 2003; 122: 211–16.Google Scholar
Dijkstra, K. & Kluin-Nelemans, H. C.No difference between cytochemical and immunological detection of myeloperoxidase in AML. Br J Haematol, 1990; 75: 630.CrossRefGoogle ScholarPubMed
Nakase, K., Sartor, M., & Bradstock, K.Detection of myeloperoxidase by flow cytometry in acute leukemia. Cytometry, 1998; 34: 198–202.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Hammer, R. D., Collins, R. D., Ebrahimi, S., & Casey, T. K.Rapid immunocytochemical analysis of acute leukemias. Am J Clin Pathol, 1992; 97: 876–84.CrossRefGoogle ScholarPubMed
Escribano, L., Ocqueteau, M., Almeida, J., et al.Expression of the c-kit (CD117) molecule in normal and malignant hematopoiesis. Leuk Lymphoma, 1998; 30: 459–66.CrossRefGoogle ScholarPubMed
Ashman, L. K.The biology of stem cell factor and its receptor C-kit. Int J Biochem Cell Biol, 1999; 31: 1037–51.CrossRefGoogle ScholarPubMed
Reuss-Borst, M. A., Bühring, H. J., Schmidt, H., et al.AML: immunophenotypic heterogeneity and prognostic significance of c-kit expression. Leukemia, 1994; 8: 258–63.Google ScholarPubMed
Ashman, L. K., Roberts, M. M., Gadd, S. J., et al.Expression of a 150-kD cell surface antigen identified by monoclonal antibody YB5.B8 is associated with poor prognosis in acute non-lymphoblastic leukaemia. Leuk Res, 1988; 12: 923–8.CrossRefGoogle ScholarPubMed
Morita, S., Tsuchiya, S., Fujie, H., et al.Cell surface c-kit receptors in human leukemia cell lines and pediatric leukemia: selective preservation of c-kit expression on megakaryoblastic cell lines during adaptation to in vitro culture. Leukemia, 1996; 10: 102–5.Google ScholarPubMed
Di Noto, R., Lo Pardo, C., Schiavone, E. M., et al.Stem cell factor receptor (c-kit, CD117) is expressed on blast cells from most immature types of acute myeloid malignancies but is also a characteristic of a subset of acute promyelocytic leukaemia. Br J Haematol, 1996; 92: 562–4.CrossRefGoogle ScholarPubMed
Valverde, L. R., Matutes, E., Farahat, N., et al.C-kit receptor (CD117) expression in acute leukemia. Ann Hematol, 1996; 72: 11–15.CrossRefGoogle ScholarPubMed
Nomdedeu, J. F., Mateu, R., Altes, A., et al.Enhanced myeloid specificity of CD117 compared with CD13 and CD33. Leukemia Res, 1999; 23: 341–4.CrossRefGoogle ScholarPubMed
Knankura, Y., Ikeda, H., Kitayama, H., et al.Expression, function and activation of the proto-oncogene c-kit product in human leukemia cells. Leuk Lymphoma, 1993; 10: 35–41.CrossRefGoogle Scholar
Thalhammer-Scherrer, R., Mitterbauer, G., Simonitsch, I., et al.The immunophenotype of 325 adult acute leukemias: relationship to morphologic and molecular classification and proposal for a minimal screening program highly predictive for lineage discrimination. Am J Clin Pathol, 2002; 117: 380–9.CrossRefGoogle ScholarPubMed
Smith, F. O., Broudy, V. C., Zsebo, K. M., et al.Cell surface expression of c-kit by childhood acute myeloid leukemia blasts is not of prognostic value: a report for the Children's Cancer Group. Blood, 1994; 84: 847–52.Google ScholarPubMed
Komori, T., Okada, A., Stewart, V., et al.Lack of N regions in antigen receptor variable region genes of TDT-deficient lymphocytes. Science, 1993; 261: 1171–5.CrossRefGoogle ScholarPubMed
Bollum, F. J.Terminal deoxynucleotidyl transferase as a hematopoietic cell marker. Blood, 1979; 54: 1203–15.Google ScholarPubMed
McCaffrey, R., Harrison, T. A., Parkman, P., et al.Terminal deoxynucleotidyl transferase in human leukemic cells and in normal thymocytes. N Engl J Med, 1975; 292: 775–80.CrossRefGoogle Scholar
Strauchen, J. A. & Miller, L. K.Terminal deoxynucleotidyl transferase-positive cells in human tonsils. Am J Clin Pathol, 2001; 116: 12–16.CrossRefGoogle ScholarPubMed
Onciu, M., Lorsbach, R. B., Henry, E. C., & Behm, F. G.Terminal deoxynucleotidyl transferase-positive lymphoid cells in reactive lymph nodes from children with malignant tumors: incidence, distribution pattern, and immunophenotyping in 26 patients. Am J Clin Pathol, 2002; 118: 348–54.CrossRefGoogle ScholarPubMed
Kung, P. C., Long, J. C., McCaffery, R. P., et al.Terminal deoxynucleotidyl transferase in the diagnosis of leukemia and malignant lymphoma. Am J Med, 1978; 64: 788–94.CrossRefGoogle Scholar
Faber, J., Kantarjian, H., Roberts, M. W., et al.Terminal deoxynucleotidyl transferase-negative acute lymphoblastic leukemia. Arch Pathol Lab Med, 2000; 124: 92–7.Google ScholarPubMed
Drexler, H. G., Sperling, C., & Ludwig, W.Terminal deoxynucleotidyl transferase (TdT) expression in acute myeloid leukemia. Leukemia, 1993; 7: 1142–50.Google ScholarPubMed
Stass, S. A., Dean, L., Peiper, S. C., et al.Determination of terminal deoxynucleotidyl transferase on bone marrow smears by immunoperoxidase. Am J Clin Pathol, 1982; 77: 174–6.CrossRefGoogle Scholar
Campana, D., Coustan-Smith, E., & Behm, F. G.The definition of remission in acute leukemia with immunologic techniques. Bone Marrow Transplant, 1991; 8: 429–37.Google ScholarPubMed
Civin, C. I., Trischmann, T. M., Fackler, M. J., et al. Report of the CD34 cluster workshop. In , W. Knapp, ed., Leucocyte Typing IV. White Cell Differentiation Antigens (New York: Oxford University Press, 1989), pp. 818–25.Google Scholar
Fina, L., Molgaard, H. V., Robertson, D., et al.Expression of the CD34 gene in vascular endothelial cells. Blood, 1990; 75: 2417–28.Google ScholarPubMed
Simmons, P. J. & Torok-Storb, B.CD34 expression by stromal precursors in normal human adult bone marrow. Blood, 1991; 78: 2848–53.Google ScholarPubMed
Weiss, S. W. & Nickoloff, B. J.CD34+ is expressed by a distinctive cell population in peripheral nerve, nerve sheath tumors, and related lesions. Am J Surg Pathol, 1993; 17: 1039–45.CrossRefGoogle ScholarPubMed
Kurihara, N., Civin, C., & Roodman, G. D.Multipotent hematopoietic colony forming cells are early precursors for osteoclasts. Exp Hematol, 1988; 16: 473a.Google Scholar
Macedo, A., Orfao, A., Ciudad, I., et al.Phenotypic analysis of CD34 subpopulations in normal human bone marrow and its application for the detection of minimal residual disease. Leukemia, 1995; 9: 1896–1901.Google ScholarPubMed
Selleri, C., Notaro, R., Catalando, L., et al.Prognostic irrelevance of CD34 in acute myeloid leukemia. Br J Haematol, 1992; 82: 479–82.CrossRefGoogle Scholar
Lee, E. J., Yang, J., Leavitt, R. D., et al.The significance of CD34 and TdT determination in patients with untreated de novo acute myeloid leukemia. Leukemia, 1992; 6: 1203–9.Google ScholarPubMed
Myint, H. & Lucie, N. P.The prognostic significance of the CD34 antigen in acute myeloid leukemia. Leuk Lymphoma, 1992; 7: 425–9.CrossRefGoogle Scholar
Solary, E., Casanovas, R.-O., Campos, L., et al.Surface markers in adult acute myeloblastic leukemia: correlation of CD19+, CD34+ and CD14+/DR– phenotypes with shorter survival. Leukemia, 1992; 6: 393–9.Google ScholarPubMed
Geller, R. B., Zahurak, M., Hurwitz, C. A., et al.Prognostic importance of immunophenotyping in adults with acute myelocytic leukaemia: the significance of the stem-cell glycoprotein CD34 (My10). Br J Haematol, 1990; 76: 340–7.CrossRefGoogle Scholar
Smith, F. O., Lampkin, B. C., Versteeg, C., et al.Expression of lymphoid-associated cell surface antigens by childhood acute myeloid leukemia cell lacks prognostic significance. Blood, 1992; 79: 2415–22.Google ScholarPubMed
Kuerbitz, S. J., Civin, C. I., Krischer, J. P., et al.Expression of myeloid-associated and lymphoid-associated cell-surface antigens in acute myeloid leukemia of childhood: a Pediatric Oncology Group Study. J Clin Oncol, 1992; 9: 1419–29.CrossRefGoogle Scholar
Borowitz, M. J., Shuster, J. J., Civin, C. I., et al.Prognostic significance of CD34 expression in childhood B-precursor acute lymphocytic leukemia: a Pediatric Oncology Group study. J Clin Oncol, 1990; 8: 1389–98.CrossRefGoogle ScholarPubMed
Pui, C.-H., Hancock, M. L., Head, D. R., et al.Clinical significance of CD34 expression in childhood acute lymphoblastic leukemia. Blood, 1993; 82: 889–94.Google ScholarPubMed
Pui, C.-H., Behm, F. G., & Crist, W. M.Clinical and biological relevance of immunologic marker studies in childhood acute lymphoblastic leukemia. Blood, 1993; 82: 343–62.Google Scholar
Bene, M. C., Castoldi, G., Knapp, W., et al.Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia, 1995; 9: 1783–6.Google Scholar
Tsugaqnezawa, K., Kiyokawa, N., Matsuo, Y., et al.Flow cytometric diagnosis of the cell lineage and developmental stage of acute lymphoblastic leukemia by novel monoclonal antibodies specific to human pre-B-cell receptor. Blood, 1998; 92: 4317–24.Google Scholar
Lemers, B., Arnoulet, C., Fossat, C., et al.Fine characterization of childhood and adult acute lymphoblastic leukemia (ALL) by a proB and preB surrogate light chain-specific mAb and a proposal for a new B cell ALL classification. Leukemia, 2000; 14: 2103–11.CrossRefGoogle Scholar
Ludwig, W.-D., Haferlach, T., & Schoch, C. Classification of acute leukemias: perspective 1. In , C.-H. Pui, ed., Treatment of Acute Leukemias: New Directions for Clinical Research. (Totowa, NJ: Humana Press, 2003), pp. 3–41.Google Scholar
Lo Coco, F., di Celle, P. F., Alimena, G., et al.Acute lymphoblastic leukemia with the 4:11 translocation exhibiting early T cell features. Leukemia, 1989; 3: 79–82.Google ScholarPubMed
Pui, C.-H., Frankel, L. S., Carroll, A. J., et al.Clinical characteristics and treatment outcome of childhood acute lymphoblastic leukemia with the t(4;11)(q21;q23): a collaborative study of 40 cases. Blood, 1991; 77: 440–7.Google Scholar
Pui, C.-H.Acute leukemias with the t(4;11)(q21;q23). Leuk Lymphoma, 1991; 7: 173–9.CrossRefGoogle Scholar
Rubnitz, J. E., Camitta, B. M., Mahmoud, H., et al.Childhood acute lymphoblastic leukemia with the MLL-ENL fusion and t(11;19)(q23;p13.3) translocation. J Clin Oncol, 1999; 17: 191–6.CrossRefGoogle Scholar
Behm, F. G., Smith, F. O., Raimondi, S. C., et al.The human homologue of the rat chondroitin sulfate proteoglycan, NG2, detected by monoclonal antibody 7.1, identifies childhood acute lymphoblastic leukemias with t(4;11)(q21;q23) or t(11;19)(q23;p13) and MLL gene rearrangements. Blood, 1996; 87: 1134–9.Google Scholar
Smith, F. O., Rauch, C., Williams, D. E., et al.The human homologue of rat NG2, a chondroitin sulfate proteoglycan, is not expressed on the cell surface of normal hematopoietic cells but is expressed by acute myeloid leukemia blasts from poor prognosis patients with abnormalities of chromosome band 11q23. Blood, 1996; 87: 1123–33.Google Scholar
Hilden, J. M., Smith, F. O., Frestedt, J. L., et al.MLL gene rearrangement, cytogenetic 11q23 abnormalities, and expression of the NG2 molecule in infant acute myeloid leukemia. Blood, 1997; 89: 3801–5.Google ScholarPubMed
Mauvieux, L., Delabesse, E., Bourquelot, P., et al.NG2 expression in MLL rearranged acute myeloid leukaemia is restricted to monoblastic cases. Br J Haematol, 1999; 107: 674–6.CrossRefGoogle ScholarPubMed
Wuchter, C., Harbott, J., Schoch, C., et al.Detection of acute leukemia cells with mixed lineage leukemia (MLL) gene rearrangements by flow cytometry using monoclonal antibody 7.1. Leukemia, 2000; 14: 1232–8.CrossRefGoogle ScholarPubMed
Cantu-Rajnoldi, A., Putti, M. C., Schiro, R., et al.Biological and clinical features of B-precursor childhood acute lymphoblastic leukemia showing CD2 and/or E-rosette co-expression. Haematol, 1992; 77: 384–9.Google ScholarPubMed
Dunphy, C. H. & Chu, J. Y.Aberrant CD2 expression in precursor-B acute lymphoblastic leukemia of childhood. Am J Hematol, 1996; 52: 224–6.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Manabe, A., Mori, T., Ebihara, Y., et al.Characterization of leukemic cells in CD2/CD19 double positive acute lymphoblastic leukemia. Int J Hematol, 1998; 67: 45–52.CrossRefGoogle ScholarPubMed
Volger, L. B., Crist, W. M., Bockman, D. E., et al.Pre-B-cell leukemia. A new phenotype of childhood lymphoblastic leukemia. N Engl J Med, 1978; 298: 872–8.Google Scholar
Pui, C.-H., Rivera, G. K., Hancock, M. L., et al.Clinical significance of CD10 expression in childhood acute lymphoblastic leukemia. Leukemia, 1993; 7: 35–40.Google ScholarPubMed
Borowitz, M. J., Hunger, S. P., Carroll, A. J., et al.Predictability of the t(1;19)(q23;p13) from surface antigen phenotype: implications for screening cases of childhood acute lymphoblastic leukemia for molecular analysis: a Pediatric Oncology Group study. Blood, 1993; 82: 1086–91.Google Scholar
Raimondi, S. C., Behm, F. G., Roberson, P. K., et al.Cytogenetics of pre-B-cell acute lymphoblastic leukemia with emphasis on prognostic implications of the t(1;19). J Clin Oncol, 1990; 8: 1380–8.CrossRefGoogle Scholar
Pui, C.-H., Raimondi, S. C., Hancock, M. L., et al.Immunologic, cytogenetic, and clinical characterization of childhood acute lymphoblastic leukemia with the t(1;19)(q23;p13) or its derivative. J Clin Oncol, 1994; 12: 2601–6.CrossRefGoogle ScholarPubMed
Privitera, E., Kamps, M. P., Hayashi, Y., et al.Different molecular consequences of the 1;19 chromosomal translocation in childhood B-cell precursor acute lymphoblastic leukemia. Blood, 1992; 79: 1781–8.Google ScholarPubMed
Sang, B.-C., Shi, L., Dias, P., et al.Monoclonal antibodies to the acute lymphoblastic leukemia t(1;19)-associated E2A/pbx1 chimeric protein characterization and diagnostic utility. Blood, 1997; 89: 2909–14.Google Scholar
Rubnitz, J. E., Downing, J. R., Pui, C.-H., et al.TEL gene rearrangement in acute lymphoblastic leukemia: a new genetic marker with prognostic significance. J Clin Oncol, 1997; 15: 1150–7.CrossRefGoogle ScholarPubMed
Borkhardt, A., Cazzaniga, G., Viehmann, S., et al.Incidence and clinical relevance of TEL/AML1 fusion genes in children with acute lymphoblastic leukemias enrolled in the German and Italian multicenter therapy trials. Blood, 1997; 90: 571–7.Google ScholarPubMed
Baruchel, A., Cayuela, J. M., Ballerini, P., et al.The majority of myeloid-antigen-positive (My+) childhood B-cell precursor acute lymphoblastic leukaemias express TEL-AML1 fusion transcripts. Br J Haematol, 1997; 99: 101–6.CrossRefGoogle ScholarPubMed
Borowitz, M. J., Rubnitz, J., Nash, M., et al.Surface antigen phenotype can predict TEL-AML1 rearrangement in childhood B-precursor ALL: a Pediatric Oncology Group study. Leukemia, 1998; 12: 1764–70.CrossRefGoogle ScholarPubMed
De Zen, I., Orfao, A., Cazzaniga, G., et al.Quantitative multiparameter immunophenotyping in acute lymphoblastic leukemia: correlation with specific genotype. I. ETV6/AML-1 ALLs identification. Leukemia, 2000; 14: 1225–31.CrossRefGoogle Scholar
Koehler, M., Behm, F. G., Shuster, J., et al.Transitional pre-B-cell acute lymphoblastic leukemia of childhood is associated with favorable prognostic clinical features and an excellent outcome: a Pediatric Oncology Group study. Leukemia, 1993; 7: 2064–8.Google ScholarPubMed
Shaffer, A. L., RosenWald, A., & Staudt, L. M.Lymphoid malignancies: dark side of B-cell differentiation. Nat Rev Immunol, 2002; 2: 920–32.CrossRefGoogle ScholarPubMed
Drexler, H. G., Messmore, H. L., Menon, M., et al.A case of Tdt-positive B-cell acute lymphoblastic leukemia. Am J Clin Pathol, 1986; 85: 735–8.CrossRefGoogle ScholarPubMed
Nakamura, F., Tatsumi, E., Tani, A., et al.Coexpression of cell-surface immunoglobulin (sIg), terminal deoxynucleotidyl transferase (TdT) and recombination activating gene 1 (RAG-1): two cases and derived cell lines. Leukemia, 1996; 10: 1159–63.Google ScholarPubMed
Secker-Walker, L. M., Stewart, E., Norton, E., et al.Multiple chromosome abnormalities in a drug resistant Tdt positive B-cell leukemia. Leuk Res, 1987; 11: 155–61.CrossRefGoogle Scholar
Walle, A. J., AI-Katib, A., Wong, G. Y., et al.Multiparameter characterization of L3 leukemia cell population. Leuk Res, 1987; 11: 73–83.CrossRefGoogle Scholar
Del Vecchio, L., Fasanaro, A., Schavone, E. M., et al.B-cell acute lymphoblastic leukemia (B-ALL) heterogeneity. Br J Haematol, 1989; 72: 291–300.CrossRefGoogle ScholarPubMed
Sullivan, M. P., Pullen, D. J., Crist, W. M., et al.Clinical and biological heterogeneity of childhood B cell acute lymphocytic leukemia: implications for clinical trials. Leukemia, 1990; 4: 6–11.Google ScholarPubMed
Mufti, G. J., Hamblin Oscier, P. G., & Johnson, S.Common ALL with pre-B features showing (8;14) and (14;18) chromosome translocations. Blood, 1983; 62: 1142–6.Google ScholarPubMed
Granick, D. J. & Finlay, J. L.Acute lymphoblastic leukemia with Burkitt cell morphology and cytoplasmic immunoglobulin. Blood, 1980; 56: 311–14.Google Scholar
Gluck, W. L., Bigner, S. H., Borowitz, M. J., et al.Acute lymphoblastic leukemia of Burkitt's type (L3 ALL) with 8;22 and 14;18 translocations and absent surface immunoglobulins. Am J Clin Pathol, 1986; 85: 636–40.CrossRefGoogle ScholarPubMed
Navid, F., Mosijczuk, A. D., Head, D. R., et al.Acute lymphoblastic leukemia with the t(8;14)(q24;q32) translocation and FAB-L3 morphology associated with B-precursor immunophenotype: the Pediatric Oncology Group experience. Leukemia, 1999; 13: 135–41.CrossRefGoogle Scholar
Kaplinsky, C. & Rechavi, G.Acute lymphoblastic leukemia of Burkitt type (L3 ALL) with t(8;14) lacking surface and cytoplasmic immunoglobulins. Med Pediatr Oncol, 1998; 31: 36–8.3.0.CO;2-0>CrossRefGoogle Scholar
Komrokji, R., Lancet, J., Felgar, R., et al.Burkitt's leukemia with precursor B-cell immunophenotype and atypical morphology (atypical Burkitt's leukemia/lymphoma): case report and review of literature. Leukemia Res, 2003; 27: 561–6.CrossRefGoogle ScholarPubMed
Matsuo, Y., Drexler, H. G., Takeuchi, M., & Orita, K.Establishment of novel B-cell precursor leukemia sister cell lines NALM-36 and NALM-37: shift of immunoglobulin phenotypes to double light chain positive B-cell. Leukemia Res, 2002; 26: 1–10.CrossRefGoogle ScholarPubMed
Navid, F., Mosijczuk, A. D., Head, D. R., et al.Acute lymphoblastic leukemia with the t(8;14)(q24:32) translocation. Leukemia, 1999; 13: 135–41.CrossRefGoogle Scholar
Kansal, R., Deeb, G., Barcos, M., et al.Precursor B lymphoblastic leukemia with surface light chain immunoglobulin restriction. Am J Clin Pathol, 2004; 121: 512–25.CrossRefGoogle ScholarPubMed
Frater, J. L., Batanian, J. R., O'Connor, D. M., & Grosso, L. E.Lymphoblastic leukemia with mature B-cell phenotype in infancy. J Pediatr Hematol Oncol, 2004; 26: 672–7.CrossRefGoogle ScholarPubMed
Komrokji, R., Lancet, J., Felgar, R., et al.Burkitt's leukemia with precursor B-cell immunophenotype and atypical morphology (atypical Burkitt's leukemia/lymphoma): case report and review of literature. Leukemia Res, 2003; 27: 561–6.CrossRefGoogle ScholarPubMed
Chan, N. P. H., Ma, E. S. K., Wan, T. S. K., & Chan, L. C.The spectrum of acute lymphoblastic leukemia with mature B-cell phenotype. Leukemia Res, 2003; 27: 231–4.CrossRefGoogle ScholarPubMed
Pui, C.-H., Behm, F. G., Singh, B., et al.Heterogeneity of presenting prognostic features and their relation to treatment outcome in 120 children with T-cell acute lymphoblastic leukemia. Blood, 1990; 75: 174–9.Google Scholar
Behm, F. G., Fitzgerald, T. J., Patton, D., et al. CD21 (CR2) is frequently expressed on blasts of childhood T-cell acute lymphoblastic leukemia (T-ALL). In , W. Knapp, , B. Dörken, , W. R. Giltcs, et al., eds. Leukocyte Typing IV. White cell differentiation antigens. (New York: Oxford University Press, 1989), pp. 61–62.Google Scholar
Behm, F. G., Pui, C.-H., Rivera, G. R., et al.Acute lymphoblastic leukemia (ALL) expressing NK cell-associated CD56 does not arise from NK cell progenitors. Mod Pathol, 1995; 8: 106a.Google Scholar
Reinherz, E. L., Kung, P. C., Goldstein, G., et al.Discrete stages of human intrathymic differentiation: analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage. Proc Natl Acad Sci U S A, 1980; 77: 1588–92.CrossRefGoogle ScholarPubMed
Shuster, J. J., Falletta, J. M., Pullen, D. J., et al.Prognostic factors in childhood T-cell acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood, 1990; 75: 166–73.Google ScholarPubMed
Garand, R., Voisin, P., Papin, S., et al.Characteristics of pro-T ALL subgroups: comparison with late T-ALL. The Groupe d' Etude Immunologique des Leucemies. Leukemia, 1993; 7: 161–7.Google Scholar
Niehues, T., Kapaun, P., Harms, D. O., et al.A classification on T cell selection-related phenotypes identifies a subgroup of childhood T-ALL with favorable outcomes in the COALL studies. Leukemia, 1999; 13: 614–17.CrossRefGoogle Scholar
Ludwig, W. D., Harbott, J., Bartram, C. R., et al.Incidence and prognosis of immunophenotypic subgroups in childhood acute lymphoblastic leukemia: experience of the BFM study 86. Recent Results Cancer Res, 1993; 131: 269–82.CrossRefGoogle ScholarPubMed
Pullen, J., Shuster, J. J., Link, M., et al.Significance of commonly used prognostic factors differs for children with T cell acute lymphoblastic leukemia (ALL) as compared to those with B-precursor ALL. A Pediatric Oncology Group (POG) study. Leukemia, 1999; 13: 1696–707.CrossRefGoogle Scholar
Uckun, F. M., Steinherz, P. G., Sather, H., et al.CD2 expression on leukemic cells as a predictor of event-free survival after chemotherapy for T-lineage acute lymphoblastic leukemia: a Children's Cancer Group study. Blood, 1996; 88: 4288–95.Google ScholarPubMed
Alfsen, G. C., Beiske, K., Holte, H., et al.T-cell receptor taudelta+/CD3+4-8-T-cell acute lymphoblastic leukemias: a distinct subgroup of leukemias in children. A report of five cases. Blood, 1991; 77: 2023–30.Google Scholar
Gouttefangeas, C., Bensusan, A., & Boumsell, L.Study of CD3-associated T-cell receptors reveals further differences between T-cell acute lymphoblastic lymphoma and leukemia. Blood, 1990; 75: 931–4.Google ScholarPubMed
Schott, G., Sperling, C., Schrappe, M., et al.Immunophenotypic and clinical features of T-cell receptor gammadelta+ T-lineage acute lymphoblastic leukaemia. Br J Haematol, 1998; 101: 753–5.CrossRefGoogle ScholarPubMed
Raimondi, S. C., Behm, F. C., Roberson, R. K., et al.Cytogenetics of childhood T-cell leukemia. Blood, 1988; 72: 1560–6.Google ScholarPubMed
Heerema, N. A., Sather, H. N., Sensel, M. G., et al.Frequency and clinical significance of cytogenetic abnormalities in pediatric T-lineage acute lymphoblastic leukemia: a report from the Children's Cancer Group. J Clin Oncol, 1998: 16: 1270–8.CrossRefGoogle ScholarPubMed
Ferrando, A. A., Neuberg, D. S., Staunton, J., et al.Gene expression signatures define novel oncogenic pathways in T-cell acute lymphoblastic leukemia. Cancer Cell, 2002; 1: 75–87.CrossRefGoogle ScholarPubMed
Yeoh, E.-J., Ross, M. B., Shurtleff, S., et al.Classification, subtype discovery and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell, 2002; 1: 133–43.CrossRefGoogle ScholarPubMed
Suzuki, R., Nakamura, S., Suzumiya, J., et al.Blastic natural killer cell lymphoma/leukemia (CD56-positive blastic tumor). Cancer, 2005; 104: 1022–31.CrossRefGoogle Scholar
Susuk, R., Yamamoto, K., Seto, M., et al.CD7+ and CD56+ myeloid/natural killer cell precursor acute leukemia: a distinct hematolymphoid disease entity. Blood, 1997; 90: 2417–28.Google Scholar
Yamada, O., Ichikawa, M., Okamoto, T., et al.Killer T-cell induction in patients with blastic natural killer cell lymphoma/leukaemia: implications for successful treatment and possible therapeutic strategies. Br J Haematol, 2001; 113: 153–60.CrossRefGoogle ScholarPubMed
Susuki, R. & Nakamura, S.Malignancies of natural killer (NK) cell precursor: myeloid/NK cell precursor acute leukemia and blastic NK cell lymphoma/leukemia. Leuk Res, 1999; 23: 615–24.CrossRefGoogle Scholar
Inaba, T., Shimazuki, C., Sumikuma, T., & Nakagawa, M.Myeloid/natural killer cell precursor leukemia seems not rare among acute myeloid leukemia of M0 subtype. Leuk Res, 2000; 24: 551.CrossRefGoogle Scholar
Natkunam, Y., Cherry, A. M., & Cornblett, P. J.Natural killer cell precursor acute lymphoma/leukemia presenting in an infant. Arch Pathol Lab Med, 2001; 125: 413–18.Google ScholarPubMed
Chan, J. K., Sin, V. C., Wong, K. F., et al.Nonnasal lymphoma expressing the natural killer cell marker CD56: a clinicopathologic study of 49 cases of an uncommon aggressive neoplasm. Blood, 1997; 89: 4501–13.Google ScholarPubMed
Ino, T., Tsuzuki, M., Okamoto, M., et al.Acute leukemia with the phenotype of a natural killer cell/T cell bipotential precursor. Ann Hematol, 1999; 78: 43–7.CrossRefGoogle ScholarPubMed
Nagata, T., Higashigawa, M., Naga, M., et al.A child case of CD34+, CD33−, HLA-DR-, CD7+, CD56+ stem cell leukemia with thymic involvement. Leuk Res, 1996; 20: 983–5.CrossRefGoogle ScholarPubMed
Mori, K. L., Egashira, M., & Oshimi, K.Differentiation stage of natural killer cell-lineage lymphoproliferative disorders based on phenotypic analysis. Br J Haematol, 2001; 115: 225–8.CrossRefGoogle ScholarPubMed
Feuillard, J., Jacob, M.-C., Valensi, F., et al.Clinical and biologic features of CD4+CD56+ malignancies. Blood, 2002; 99: 1556–63.CrossRefGoogle ScholarPubMed
Caldwell, C. W., Poje, E., & Helikson, M. A.B-cell precursors in normal pediatric bone marrow. Am J Clin Pathol, 1991; 95: 816–23.CrossRefGoogle ScholarPubMed
Foucar, K.Bone Marrow Pathology, 2nd edn. (Chicago, IL: ASCP Press, 2001), pp. 352–5.Google Scholar
Kroft, S. H.Role of flow cytometry in pediatric hematopathology. Am J Clin Pathol, 2004; 122(Suppl.): S19–32.Google ScholarPubMed
Cornelius, A. S., Campbell, D., Schwartz, E., et al.Elevated common acute lymphoblastic leukemia antigen expression in pediatric immune thrombocytopenic purpura. Am J Pediatr Hematol Oncol, 1991; 13: 57–61.CrossRefGoogle ScholarPubMed
Hirt, A., Morell, A., Frei, H., et al.Proliferation of lymphoid precursor cells in the bone marrow of patients with various disorders of the immune system. Exp Hematol, 1988; 16: 38–41.Google ScholarPubMed
Mandel, M., Rechavi, G., Neumann, Y., et al.Bone marrow cell populations mimicking common acute lymphoblastic leukemia in infants with stage IV-S neuroblastoma. Acta Haematol, 1991; 86: 86–9.CrossRefGoogle ScholarPubMed
Foot, A. B. M., Potter, M. N., Ropner, J. E., et al.Transient erythroblastopenia of childhood with CD10, TdT, and cytoplasmic μ lymphocyte positivity in bone marrow. J Clin Pathol, 1990; 43: 857–9.CrossRefGoogle ScholarPubMed
Vandersteenhoven, A. M., Williams, J. E., & Borowitz, M. J.Marrow B-cell precursors are increased in lymphomas or systemic diseases associated with B-cell dysfunction. Am J Clin Pathol, 1993; 100: 60–6.CrossRefGoogle ScholarPubMed
Kobayashi, S. D., Seki, K., Suwa, N., et al.The transient appearance of small blastoid cells in the marrow after bone marrow transplantation. Am J Clin Pathol, 1991; 96: 191–5.CrossRefGoogle ScholarPubMed
Fisgin, T., Yarali, N., Duru, F., & Kara, A.CMV-induced immune thrombocytopenia and excessive hematogones mimicking an acute B-precursor lymphoblastic leukemia. Leuk Res, 2003; 27: 193–6.CrossRefGoogle ScholarPubMed
Rimsza, L. M., Larson, R. S., Winters, S. S., et al.Benign hematogone-rich lymphoid proliferations can be distinguished from B-lineage acute lymphoblastic leukemia by integration of morphology, immunophenotype, adhesion molecule expression, and architectural features. Am J Clin Pathol, 2000; 114: 66–75.CrossRefGoogle ScholarPubMed
Stass, S. A., McGraw, T. P., Folds, J. D., et al.Terminal transferase in acute lymphoblastic leukemia in remission. Am J Clin Pathol, 1981; 75: 838–41.CrossRefGoogle Scholar
Stekhoven, J. H. S., Langenhuysen, C. A. M., Bakkeren, J. A. J. M., et al.Morphology and incidence of the “post-therapeutic lymphoid cell” in the bone marrow of children with acute lymphoblastic leukemia. Am J Clin Pathol, 1986; 124: 46–52.Google Scholar
Doel, L. J., Pieters, R., Huismans, D. R., et al.Immunological phenotype of lymphoid cells in regenerating bone marrow of children after treatment for acute lymphoblastic leukemia. Eur J Haematol, 1988; 41: 170–5.CrossRefGoogle ScholarPubMed
Longacre, T. A., Foucar, K., Crago, S., et al.Hematogones: a multiparameter analysis of bone marrow precursor cells. Blood, 1993; 73: 543–52.Google Scholar
McKenna, R. W., Asplund, S. L., & Kroft, S. H.Immunophenotype analysis of hematogones (B-lymphocyte precursors) and neoplastic lymphoblasts by 4-color flow cytometry. Leuk Lymphoma, 2004; 45: 277–85.CrossRefGoogle ScholarPubMed
Hurwitz, C. A., Loken, M. R., Graham, M. L., et al.Asynchronous antigen expression in B lineage acute lymphoblastic leukemia. Blood, 1988; 72: 299–307.Google ScholarPubMed
Weir, E. G., Cowan, K., LeBeau, P., et al.A limited antibody panel can distinguish B-precursor acute lymphoblastic leukemia from normal B precursors with four-color flow cytometry: implications for residual disease detection. Leukemia, 1999; 13: 558–67.CrossRefGoogle ScholarPubMed
Lochem, E. G., Wiegers, Y. M., Beemd, R., et al.Regeneration pattern of precursor-B-cells in bone marrow of acute lymphoblastic leukemia patient depends on the type of preceding chemotherapy. Leukemia, 2000; 14: 688–95.CrossRefGoogle ScholarPubMed
Wegelius, R.Preleukaemic states in children. Scand J Haematol, 1986; 36(Suppl. 45): 133–9.CrossRefGoogle Scholar
Breatnach, F., Chessells, J. M., & Greaves, M. F.The aplastic presentation of childhood leukemia: a feature of common-ALL. Br J Haematol, 1981; 49: 387–93.CrossRefGoogle ScholarPubMed
Sills, R. H. & Stockman, J. A. III. Preleukemic states in children with acute lymphoblastic leukemia. Cancer, 1981; 48: 110–12.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Liang, R., Chan, T. K., & Todd, D.Childhood acute lymphoblastic leukemia and aplastic anemia. Leuk Lymphoma, 1994; 13: 411–15.CrossRefGoogle Scholar
Matloub, Y. H., Brunning, R. D., Arthur, D. C., et al.Severe aplastic anemia preceding acute lymphoblastic leukemia. Cancer, 1993; 71: 264–8.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Saarinen, U. M. & Wegelius, R.Preleukemic syndrome in children. Am J Pediatr Hematol Oncol, 1984; 6: 137–45.CrossRefGoogle ScholarPubMed
Schwartz, C. L. & Cohen, H. J.Preleukemic syndromes and other syndromes predisposing to leukemia. Pediatr Clin North Am, 1988; 35: 853–71.CrossRefGoogle Scholar
Stewart, C. C., Behm, F. G., Carey, J. L., et al.U.S.-Canadian consensus recommendations on the immunophenotype analysis of hematologic neoplasia by flow cytometry: selection of antibody combinations. Cytometry, 1997; 30: 231–5.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Neame, P. B., Soamboonsrup, P., Browman, G. P., et al.Classifying acute leukemia by immunophenotyping: a combined FAB-immunologic classification of AML. Blood, 1986; 68: 1255–62.Google ScholarPubMed
San Miguel, J. F., Gonzalez, M., Canizo, M. C., et al.Surface marker analysis in acute myeloid leukemia and correlation with FAB classification. Br J Haematol, 1986; 64: 547–60.CrossRefGoogle ScholarPubMed
Drexler, H. G.Classification of acute myeloid leukemias: a comparison of FAB and immunophenotyping. Leukemia, 1987; 10: 697–705.Google Scholar
Griffin, J. D., Mayer, H. J., Weinstein, H. J., et al.Surface marker analysis of acute myeloblastic leukemia: identification of differentiation-associated phenotypes. Blood, 1983; 62: 557–63.Google ScholarPubMed
Orfao, A., Chillon, M. C., Bortoluci, A. M., et al.The flow cytometric pattern of CD34, CD15 and CD13 expression in acute myeloblastic leukemia is highly characteristic of the presence of PML-RARalpha gene rearrangements. Haematologica, 1999; 84: 405–12.Google ScholarPubMed
Smith, L. J., Curtis, J. E., Messner, H. A., et al.Lineage infidelity in acute leukemia. Blood, 1983; 61: 1138–45.Google ScholarPubMed
Porwitt-MacDonald, A., Jannossy, G., Ivory, K., et al.Leukemia-associated changes identified by quantitative flow cytometry. IV. CD34 overexpression in acute myelogenous leukemia M2 with t(8;21). Blood, 1996; 87: 1162–9.Google Scholar
Terstappen, L. W. M. M., Safford, M., Konemann, S., et al.Flow cytometric characterization of acute myeloid leukemia. Part II. Phenotypic heterogeneity at diagnosis. Leukemia, 1991; 5: 757–67.Google Scholar
Terstappen, L. W. M. M. & Loken, M. R.Myeloid differentiation in normal bone marrow and acute myeloid leukemia assessed by multi-dimensional flow cytometry. Anal Cell Pathol, 1990; 2: 229–40.Google ScholarPubMed
Jennings, C. D. & Foon, K. A.Recent advances in flow cytometry: application to the diagnosis of hematologic malignancy. Blood, 1997; 90: 2863–92.Google Scholar
Lacombe, F., Durrieu, F., Briais, A., et al.Flow cytometry CD45 gating for immunophenotyping of acute myeloid leukemia. Leukemia, 1997; 11: 1878–86.CrossRefGoogle ScholarPubMed
Krasinskas, A. M., Wasik, M. A., Kamoun, M., et al.The usefulness of CD64, other monocyte-associated antigens, and CD45 gating in the subclassification of acute myeloid leukemias with monocytic differentiation. Am J Clin Pathol, 1998; 110: 797–805.CrossRefGoogle ScholarPubMed
Behm, F. G. Diagnosis of childhood acute myeloid leukemia. In , S. M. Geagan, ed., Clinics in Laboratory Medicine. Diagnosis of Pediatric Hematology, vol. 19 (Philadelphia, PA: W. B. Saunders, 1999), pp. 187–237.Google Scholar
Piedras, J., Lopez-Karpovitch, X., & Cardenas, R.Light scatter and immunophenotypic characteristics of blast cells in typical acute promyelocytic leukemia and its variant. Cytometry, 1998; 32: 286–90.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Bitter, M. A., Le Beau, M. M., Rowley, J. D., et al.Associations between morphology, karyotype, and clinical features in myeloid leukemias. Hum Pathol, 1987; 18: 211–25.CrossRefGoogle ScholarPubMed
Hurwitz, C. A., Raimondi, S. C., Head, D., et al.Distinctive immunophenotypic features of t(8;21)(q22;q22) acute myeloblastic leukemia in children. Blood, 1992; 80: 3182–8.Google Scholar
Kita, K., Nakase, K., Miwa, H., et al.Phenotypical characteristics of acute myelocytic leukemia associated with the t(8;21)(q22;q22) chromosomal abnormality: frequent expression of immature B-cell antigen CD19 together with stem cell antigen CD34. Blood, 1992; 80: 470–7.Google Scholar
Tsuchiya, H., ElSonbaty, S. S., Nagano, K., et al.Acute myeloblastic leukemia (ANLL-M2) with t(8;21)(q22;q22) variant expressing lymphoid but not myeloid surface antigens with a high number of G-CSF receptors. Leuk Res, 1993; 17: 375–7.CrossRefGoogle Scholar
Arber, D. A., Glackin, C., Lowe, G., et al.Presence of t(8;21)(q22;22) in myeloperoxidase-positive myeloid surface antigen-negative acute myeloid leukemia. Am J Clin Pathol, 1997; 107: 68–73.CrossRefGoogle Scholar
Khalil, S. H., Jackson, J. M., Quri, M. H., et al.Acute myeloblastic leukemia (AML-M2) expressing CD19 B-cell lymphoid antigen without myeloid surface antigens. Leuk Res, 1994; 18: 145.CrossRefGoogle ScholarPubMed
Seymour, S. A., Pierce, H. M., Kantarijian, M. J., et al.Investigation of karyotypic, morphologic and clinical features in patients with acute myeloid leukemia blast cells expressing neural cell adhesion molecule (CD56). Leukemia, 1994; 8: 623–6.Google Scholar
Seshi, B., Kashyap, A., & Bennett, J. M.Acute myeloid leukaemia with an unusual phenotype: myeloperoxidase (+), CD13 (−), CD14 (−) and CD33 (−). Br J Haematol, 1992; 81: 374–7.CrossRefGoogle Scholar
Garcia-Vela, J. A., Martin, M., Delgado, I., et al.Acute myeloid leukemia M2 and t(8;21)(q22;q22) with an unusual phenotype: myeloperoxidase (+), CD13 (−), CD14 (−), and CD33(−). Ann Hematol, 1999; 78: 237–40.CrossRefGoogle Scholar
Lee, J. J., Chung, I. J., Yang, D. H., et al.Clinical significance of CD56 expression in patients with acute myeloid leukemia. Leuk Lymphoma, 202; 43: 1897–9.CrossRefGoogle Scholar
Rubnitz, J. E., Raimondi, S. C., Halbert, A. R., et al.Characteristics and outcome of t(8;21) positive childhood acute myeloid leukemia: a single institution's experience. Leukemia, 2002; 16: 2072–7.CrossRefGoogle Scholar
Baer, M. R., Stewart, C. C., Lawrence, D., et al.Expression of the neural cell adhesion molecule CD56 is associated with short remission duration and survival in acute myeloid leukemia with t(8;21)(q22;q22). Blood, 1997; 90: 1643–8.Google Scholar
Pui, C.-H., Raimondi, S. C., Head, D. R., et al.Characterization of childhood acute leukemia with multiple myeloid and lymphoid markers at diagnosis and at relapse. Blood, 1991; 78: 1327–37.Google ScholarPubMed
Creutzig, U., Harbott, J., Sperling, C., et al.Clinical significance of surface antigen expression in children with acute myeloid leukemia: results of study AML-BFM-87. Blood, 1995; 86: 3097–108.Google ScholarPubMed
Paietta, E., Goloubeva, O., Neuberg, D., et al.A surrogate marker profile for PML/RAR alpha expressing acute promyelocytic leukemia and the association of immunophenotypic markers with morphologic markers and molecular subtypes. Cytometry, 2004; 59B: 1–9.CrossRefGoogle Scholar
Lo Coco, F., Avvisati, G., Diverio, D., et al.Rearrangements of the RAR-α gene in acute promyelocytic leukaemia: correlations with morphology and immunophenotype. Br J Haematol, 1991; 78: 494–9.CrossRefGoogle ScholarPubMed
Stasi, R., Bruno, A., Venditti, A., et al.A microgranular variant of acute promyelocytic leukemia with atypical morpho-cytochemical features and an early myeloid immunophenotype. Leuk Res, 1997; 21: 575–80.CrossRefGoogle ScholarPubMed
Exner, M., Thalhammer, R., Kapiotis, S., et al.The “typical” immunophenotype of acute promyelocytic leukemia (APL-M3): does it prove true for the M3-variant ?Cytometry, 2000; 42: 106–9.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Foley, R., Soamboonsrup, P., Carter, R. F., et al.CD34-positive acute promyelocytic leukemia is associated with leukocytosis, microgranular/hypogranular morphology, expression of CD2 and bcr3 isoform. Am J Hematol, 2001; 67: 34–41.CrossRefGoogle ScholarPubMed
Krause, J. R., Stolc, V., Kaplan, S. S., et al.Microgranular promyelocytic leukemia: a multiparameter examination. Am J Hematol, 1989; 30: 158–63.CrossRefGoogle ScholarPubMed
Vidriales, M. B., Orfao, A., González, M., et al.Expression of NK and lymphoid-associated antigens in blasts of acute myeloblastic leukemia. Leukemia, 1993; 7: 2026–9.Google Scholar
Claxton, D. F., Reading, C. L., Nagarajan, L., et al.Correlation of CD2 expression with PML gene breakpoints in patients with acute promyelocytic leukemia. Blood, 1992; 80: 582–6.Google ScholarPubMed
Maslak, P., Miller, W. H., Heller, G., et al.CD2 expression and PML/RAR-α transcripts in acute promyelocytic leukemia. Blood, 1993; 81: 1666.Google ScholarPubMed
Rovelli, A., Biondi, A., Rajnoldi, A. C., et al.Microgranular variant of acute promyelocytic leukemia in children. J Clin Oncol, 1992; 10: 413–18.CrossRefGoogle ScholarPubMed
Dunphy, C. H.Comprehensive review of adult acute myelogenous leukemia: cytomorphological, enzyme cytochemical, flow cytometric immunophenotypic, and cytogenetic findings. J Clin Lab Anal, 1999; 13: 19–26.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Murray, C. K., Estey, E., Paietta, E., et al.CD56 expression in acute promyelocytic leukemia: a possible indicator of poor treatment outcome. J Clin Oncol, 1999; 17: 293–7.CrossRefGoogle ScholarPubMed
Ferrara, F., Morabito, F., Martino, B., et al.CD56 expression is an indicator of poor clinical outcome in patients with acute promyelocytic leukemia treated with simultaneous all-trans-retinoic acid and chemotherapy. J Clin Oncol, 2000; 18: 1295–300.CrossRefGoogle ScholarPubMed
Di Bona, E., Sartori, R., Zambello, R., et al.Prognostic significance of CD56 antigen expression in acute myeloid leukemia. Haematologica, 2002; 87: 250–6.Google ScholarPubMed
Guglielmi, C., Martelli, M. P., Diverio, D., et al.Immunophenotype of adult and childhood acute promyelocytic leukaemia: correlation with morphology, type of PML gene breakpoint and clinical outcome. A cooperative Italian study on 1196 cases. Br J Haematol, 1998; 102: 1035–41.CrossRefGoogle Scholar
Biondi, A., Luciano, A., Bassan, R., et al.CD2 expression in acute promyelocytic leukemia is associated with microgranular morphology (FAB M3v) but not with any PML breakpoint. Leukemia, 1995; 9: 1461–6.Google Scholar
Nagendra, S., Meyerson, H., Skallerud, G., & Rosenthal, N.Leukemias resembling acute promyelocytic leukemia, microgranular variant. Am J Clin Pathol, 2002; 117: 651–7.CrossRefGoogle ScholarPubMed
Borrow, J., Shipley, J., Howe, K., et al.Molecular analysis of simple variant translocations in acute promyelocytic leukemia. Genes Chromosomes Cancer, 1994; 9: 234–43.CrossRefGoogle ScholarPubMed
Rizzatti, E. G., Portieres, F. L., Martins, S. L. R., et al.Microgranular and t(11;17)/PLZF-RARα variants of acute promyelocytic leukemia also present the flow cytometric pattern of CD13, CD34, and CD15 expression characteristic of PML-RARα gene rearrangement. Am J Hematol, 2004; 76: 44–51.CrossRefGoogle Scholar
Head, D. R., Behm, F. G., Raimondi, S. C., et al.Genetic heterogeneity of acute myeloid leukemia (AML) with FAB-AML M3 morphology. Mod Pathol, 1995; 8: 112A.Google Scholar
Licht, J. D., Chomienne, C., Goy, A., et al.Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17). Blood, 1995; 85: 1083–94.Google Scholar
Scott, A. A., Head, D. R., Kopecky, K. J., et al.HLA-DR−, CD33+, CD56+, CD16− myeloid/natural killer cell acute leukemia: a previously unrecognized form of acute leukemia potentially misdiagnosed as French-American-British acute myeloid leukemia-M3. Blood, 1994; 84: 244–55.Google ScholarPubMed
Rizzatti, E. G., Garcia, A. B., Portieres, F. L., et al.Expression of CD117 and CD11b in bone marrow can differentiate acute promyelocytic leukemia for recovering benign myeloid proliferation. Am J Clin Pathol, 2002; 118: 31–7.CrossRefGoogle ScholarPubMed
Boccuni, P., Di Noto, R., Lo Pardo, C., et al.CD66c antigen expression is myeloid restricted in normal bone marrow but is a common feature of CD10+ early-B-cell malignancies. Tissue Antigens, 1998; 52: 1–8.CrossRefGoogle ScholarPubMed
Veillon, D. M., Nordberg, M. L., Neupane, P., & Cotelingam, J. D.Spontaneous resolution of RARalpha rearrangement in bone marrow recovery with a predominance of CD117- and CD11b-negative promyelocytes. Am J Clin Pathol, 2002; 118: 956–6.Google ScholarPubMed
Falni, B., Flenghi, L., Fagioli, M., et al.Immunocytochemical diagnosis of acute promyelocytic leukemia (M3) with the monoclonal antibody PG-M3 (anti-PML). Blood, 1997; 90: 4046–53.Google Scholar
Samoszuk, M. K., Tynan, W., Sallash, G., et al.An immunofluorescent assay for acute promyelocytic leukemia cells. Am J Clin Pathol, 1998; 109: 205–10.CrossRefGoogle ScholarPubMed
Villamor, N., Costa, D., Aymerich, M., et al.Rapid diagnosis of acute promyelocytic leukemia by analyzing the immunocytochemical pattern of the PML protein with the monoclonal antibody PG-M3. Am J Clin Pathol, 2000; 114: 786–92.CrossRefGoogle ScholarPubMed
Adriaansen, H. J., te Boekhorst, P. A. W., Hagemeijer, A. M., et al.Acute myeloid leukemia M4 with bone marrow eosinophilia (M4Eo) and inv(16)(p13q22) exhibits a specific immunophenotype with CD2 expression. Blood, 1993; 81: 3043–51.Google ScholarPubMed
Paietta, E., Wiernik, P. H., Andersen, J., et al.Acute myeloid leukemia M4 with inv(16)(p13q22) exhibits a specific immunophenotype with CD2 expression. Blood, 1993; 82: 2595.Google ScholarPubMed
Liu, P. P., Wijmenga, C., Hajra, A., et al.Identification of the chimeric protein product of the CBFB-MYHII fusion gene in inv(16) leukemia cells. Genes Chromosomes Cancer, 1996; 16: 77–87.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Viswanatha, D. S., Chen, I., Liu, P. P., et al.Characterization and use of an antibody to the CBFβ-SMMHC protein in inv(16)/t(16;16)-associated acute myeloid leukemias. Blood, 1998; 91: 1882–90.Google Scholar
Haferlach, T., Winkemann, H., Loffler, H., et al.The abnormal eosinophils are part of the leukemic cell population in acute myelomonocytic leukemia with abnormal eosinophils (AML M4Eo) and carry the pericentric inversion 16: a combination of May-Grunwald-Giemsa staining and fluorescence in situ hybridization. Blood, 1996; 87: 2459–63.Google ScholarPubMed
Alsavbeh, R., Brynes, R. K., Slovak, M. L., & Arber, D. A.Acute myeloid leukemia with t(6;9)(p23;q34): association with myelodysplasia, basophilia, and initial CD34 negative immunophenotype. Am J Clin Pathol, 1997; 107: 430–7.CrossRefGoogle Scholar
Khalidi, H. S., Medeiros, L. J., Chang, K. L., et al.The immunophenotype of adult acute myeloid leukemia: high frequency of lymphoid antigen expression and comparison of immunophenotype, French-American-British classification, and karyotypic abnormalities. Am J Clin Pathol, 1998; 109: 211–20.CrossRefGoogle ScholarPubMed
Lillington, D. M., MacCallum, P. K., Lister, T. A., & Gibbon, B.Translocation t(6;9)(p23;q34) in acute myeloid leukemia without myelodysplasia or basophilia: two cases and a review of the literature. Leukemia, 1993; 7: 527–31.Google Scholar
Adriaansen, H. J., Dongen, J. J. M., Hooijkaas, H., et al.Translocation (6;9) may be associated with a specific TdT-positive immunological phenotype in ANLL. Leukemia, 1988; 2: 136–40.Google ScholarPubMed
Ross, M. E., Mahfouz, R., Onciu, M., et al.Gene expression profiling of pediatric acute myelogenous leukemia. Blood, 2004; 104: 3679–87.CrossRefGoogle ScholarPubMed
Betz, S. A., Foucar, K., Head, D. R., et al.False-positive flow cytometric platelet glycoprotein IIb/IIIa expression in myeloid leukemias secondary to platelet adherence to blasts. Blood, 1992; 79: 2399–403.Google ScholarPubMed
Breton-Gorius, J., Lewis, J. C., Guichard, J., et al.Monoclonal antibodies specific for human platelet membrane glycoproteins bind to monocytes by focal absorption of platelet membrane fragments: an ultrastructural immunogold study. Leukemia, 1987; 1: 131–41.Google ScholarPubMed
Krissansen, G. W., Lucas, C. M., Stomski, F. C., et al.Blood leukocytes bind platelet glycoprotein (IIb-IIIa) but do not express the vitronectin receptor. Int Immunol, 1990; 2: 267–77.CrossRefGoogle Scholar
Dercksen, M. W., Weimar, I. S., Rihel, D. J., et al.The value of flow cytometric analysis of platelet glycoprotein expression on CD34+ cells measured under conditions that prevent p-selectin-mediated binding of platelets. Blood, 1995; 86: 3771–82.Google ScholarPubMed
Baer, M. R., Stewart, C. C., Lawrence, D., et al.Acute myeloid leukemia with 11q23 translocations: myelomonocytic immunophenotype by multiparameter flow cytometry. Leukemia, 1998; 12: 317–25.CrossRefGoogle ScholarPubMed
Mann, K. P., DeCastro, C. M., Liu, J., et al.Neural cell adhesion molecule (CD56)-positive acute myelogenous leukemia and myelodysplastic and myeloproliferative syndromes. Am J Clin Pathol, 1997; 107: 653–60.CrossRefGoogle ScholarPubMed
Delgado, J., Morado, M., Jimenez, M. C., et al.CD56 expression in myeloperoxidase-negative FAB M5 acute myeloid leukemia. Am J Hematol, 2002; 69: 28–30.CrossRefGoogle ScholarPubMed
Raspadori, D., Damiani, D., Lenoci, M., et al.CD56 antigenic expression in acute myeloid leukemia identifies patients with poor clinical prognosis. Leukemia, 2001; 15: 1161–4.CrossRefGoogle ScholarPubMed
Mazzella, F. & Schumacher, H. R.Acute erythroleukemia, M6b. Arch Pathol Lab Med, 2000; 124: 330–1.Google ScholarPubMed
Shichishima, T.Minimally differentiated erythroleukemia: recognition of erythroid precursors and progenitors. Intern Med, 2000; 39: 761–2.CrossRefGoogle ScholarPubMed
Hasserjain, R. P., Howard, J., Wood, A., et al.Acute erythremic myelosis (true erythroleukemia): a variant of AML FAB-M6. J Clin Pathol, 2001; 54: 205–9.CrossRefGoogle Scholar
Mazzella, F. M. & Schumacher, H. R.Acute erythremic myelosis (true erythroleukaemia): a variant of AML FAB-M6. J Clin Pathol, 2002; 55: 800.CrossRefGoogle ScholarPubMed
Malkin, D. & Freedman, M. H.Childhood erythroleukemia: review of clinical and biological features. Am J Pediatr Hematol Oncol, 1989; 11: 348–59.Google ScholarPubMed
Yamada, S., Hongo, T., Okada, S., et al.Distinctive multidrug sensitivity and outcome of acute erythroblastic and megakaryoblastic leukemia in children with Down syndrome. Int J Hematol, 2001; 74: 428–36.CrossRefGoogle ScholarPubMed
Hadjiyannakis, A., Fletcher, W. A., Lebrun, D. P., et al.Congenital erythroleukemia in a neonate with severe hypoxic ischemic encephalopathy. Am J Perinatol, 1998; 15: 689–94.CrossRefGoogle Scholar
Villeval, J. L., Cramer, P., Lemoine, F., et al.Phenotype of early erythroblastic leukemias. Blood, 1986; 68: 1167–74.Google ScholarPubMed
Breton-Gorius, J., Villeval, J. L., Mitjavila, M. T., et al.Ultrastructural and cytochemical characterization of blasts from early erythroblastic leukemias. Leukemia, 1987; 1: 173–81.Google ScholarPubMed
Garand, R., Duchayne, E., Blanchard, D., et al.Minimally differentiated erythroleukemia (AML M6 ‘variant’): a rare subset of AML distinct from AML M6. Br J Haematol, 1995; 90: 868–75.CrossRefGoogle ScholarPubMed
Day, D. S., Gay, J. N., Kraus, J. S., et al.Erythroleukemia of childhood and infancy: a report of two cases. Ann Clin Lab Sci, 1997; 27: 142–50.Google ScholarPubMed
Breton-Gorius, J., Villeval, J. L., Kieffer, N., et al.Limits of phenotypic markers for the diagnosis of megakaryoblastic leukemia. Blood Cells, 1989; 15: 259–77.Google Scholar
Debili, N., Coulombel, L., Croisille, L., et al.Characterization of a bipotent erythromegkaryocytic progenitor in human bone marrow. Blood, 1996; 88: 1284–96.Google ScholarPubMed
Muroi, K., Tarumoto, T., Akioka, T., et al.Sialyl-Tn- and neuron-specific enolase-positive minimally differentiated erythroleukemia. Intern Med, 2000; 39: 761–2.CrossRefGoogle ScholarPubMed
Koike, T., Aoki, S., Maruyama, S., et al.Cell surface phenotyping of megakaryoblasts. Blood, 1987; 69: 957–60.Google ScholarPubMed
Ribeiro, R. C., Oliveira, M. S. P., Fairclough, D., et al.Acute megakaryoblastic leukemia in children and adolescents: a retrospective analysis of 24 cases. Leuk Lymphoma, 1993; 10: 299–306.CrossRefGoogle ScholarPubMed
Athale, U. H., Razzouk, B. I., Raimondi, S. C., et al.Biology and outcome of acute megakaryoblastic leukemia: a single institution's experience. Blood, 2001; 97: 3727–32.CrossRefGoogle ScholarPubMed
Kafer, G., Willer, A., Ludwig, W., et al.Intracellular expression of CD61 precedes surface expression. Ann Hematol, 1999; 78: 472–4.Google ScholarPubMed
Duchayne, E., Fenneteau, O., Pages, M.-P., et al.Acute megakaryoblastic leukaemia: a national clinical and biological study of 53 adult and childhood cases by the Groupe Francais d'Hematologie Cellulaire (GFHC). Leuk Lymphoma, 2003; 44: 39–58.CrossRefGoogle Scholar
Quentmeier, H., Zaborski, M., Graf, G., et al.Expression of the receptor for MPL and proliferative effects of its ligand thrombopoietin on human leukemic cells. Leukemia, 1996; 10: 297–310.Google Scholar
Lion, T., Haas, O. A., Harbott, J., et al.The translocation t(1;22)(p13;q13) is a nonrandom marker specifically associated with acute megakaryocytic leukemia in young children. Blood, 1992; 79: 3325–30.Google Scholar
Chan, W. C., Carroll, A., Alvarado, C. S., et al.Acute megakaryoblastic leukemia in infants with t(1;22)(p13;q13) abnormality. Am J Clin Pathol, 1992; 98: 214–21.CrossRefGoogle Scholar
Helleberg, C., Knudsen, H., Hansen, P. B., et al.CD34+ megakaryoblastic leukaemic cells are CD38−, but CD61+ and glycophorin A+; improved criteria for diagnosis of AML-M7 ?Leukemia, 1997; 11: 830–4.CrossRefGoogle ScholarPubMed
Athale, U. H., Kaste, S. C., Razzouk, B. T., et al.Skeletal manifestations of pediatric acute megakaryoblastic leukemia. J Pediatr Hematol Oncol, 2002; 24: 561–5.CrossRefGoogle ScholarPubMed
Das, D. K., Shome, D. K., Garg, A., et al.Pediatric acute leukemia presenting as bilateral renal enlargement. Report of a case with fine aspiration cytologic features suggestive of megakaryocytic differentiation. Acta Cytol, 2000; 44: 819–23.CrossRefGoogle ScholarPubMed
Bennett, J. M., Catovsky, D., Daniel, M.-T., et al.Proposals for the classification of acute leukemia. Br J Haematol, 1976; 33: 451–8.CrossRefGoogle Scholar
Campos, L., Guyotat, D., Archimbaus, E., et al.Surface marker expression in adult acute myeloid leukemia: correlations with initial characteristics, morphology and response to therapy. Br J Haematol, 1989; 72: 161–2.CrossRefGoogle ScholarPubMed
Lee, E. J., Pollack, A., Leavitt, R. D., et al.Minimally differentiated acute nonlymphocytic leukemia: a distinct entity. Blood, 1987; 70: 1400–6.Google ScholarPubMed
Matutes, E., Pombo de Oliveira, M., Foroni, L., et al.The role of ultrastructural cytochemistry and monoclonal antibodies in clarifying the nature of undifferentiated cells in acute leukaemia. Br J Haematol, 1988; 69: 205–11.CrossRefGoogle ScholarPubMed
Wering, E. R., Brederoo, P., Dijk-de Leeuw, J. H., et al.Electron microscopy: a contribution to further classification of acute unclassifiable childhood leukemia. Blut, 1990; 60: 291–6.CrossRefGoogle ScholarPubMed
Bennett, J. M., Catovsky, D., Daniel, M.-T., et al.Proposal for the recognition of minimally differentiated acute myeloid leukemia (AML-MO). Br J Haematol, 1991; 78: 325–9.CrossRefGoogle Scholar
Matutes, E., Buccheri, V., Morilla, R., et al.Immunological, ultrastructural and molecular features of unclassifiable acute leukaemia. Recent Results Cancer Res, 1993; 131: 41–52.CrossRefGoogle ScholarPubMed
Stasi, R., , Del Poeta G., Venditti, A., et al.Lineage identification of acute leukemias: relevance of immunologic and ultrastructural techniques. Hematol Pathol, 1995; 9: 79–94.Google ScholarPubMed
Thalhammer-Scherrer, R., Mitterbauer, G., Simonitsch, I., et al.The immunophenotype of 325 acute leukemias: relationship to morphologic and molecular classification and proposal for a minimal screening program highly predictive for lineage discrimination. Am J Clin Pathol, 2002; 117: 380–9.CrossRefGoogle ScholarPubMed
Kaleem, Z. & White, G.Diagnostic criteria for minimally differentiated acute myeloid leukemia (AML-M0). Evaluation and a proposal. Am J Clin Pathol, 2001; 115: 876–84.CrossRefGoogle Scholar
Stasi, R. & Amadori, S.AML-M0: a review of laboratory features and proposal of new diagnostic criteria. Blood Cells Mol Dis, 1999; 25: 120–9.CrossRefGoogle ScholarPubMed
Praxedes, M. K., de Oliveira, L. Z., Pereira, W. D. V., et al.Monoclonal antibody anti-MPO is useful in recognizing minimally differentiated acute myeloid leukaemia. Leuk Lymphoma, 1994; 12: 233–9.CrossRefGoogle ScholarPubMed
Venditti, A., Del Poeta, G., Stasi, R., et al.Biological profile of 23 cases of minimally differentiated acute myeloid leukemia (AML-MO) and its clinical implications. Blood, 1996; 87: 418–20.Google Scholar
Venditti, A., Del Poeta, G., Buccisano, F., et al.Minimally differentiated acute myeloid leukemia (AML-MO): comparison of 25 cases with other French-American-British subtypes. Blood, 1997; 89: 621–9.Google Scholar
Villamor, N., Zarco, M. A., Rozman, M., et al.Acute myeloblastic leukemia with minimal myeloid differentiation: phenotypical ultrastructural characteristics. Leukemia, 1998; 12: 1071–5.CrossRefGoogle ScholarPubMed
Kotylo, P. K., Seo, I. S., Smith, F. O., et al.Flow cytometric immunophenotypic characterization of pediatric and adult minimally differentiated acute myeloid leukemia (AML-MO). Am J Clin Pathol, 2000; 113: 193–200.CrossRefGoogle Scholar
Huang, S. Y., Tang, J. L., Jou, S. T., et al.Minimally differentiated acute myeloid leukemia in Taiwan: predominantly occurs in children less than 3 years and adults between 51 and 70 years. Leukemia, 1999; 13: 1506–12.CrossRefGoogle ScholarPubMed
Cohen, P. L., Hoyer, J. D., Kurtin, P. J., et al.Acute myeloid leukemia with minimal differentiation. A multiple parameter study. Am J Clin Pathol, 1998; 109: 32–8.CrossRefGoogle ScholarPubMed
Segeren, C. M., de Jong-Gerrits, G. C., Veer, M. B. van't.AML-MO: clinical entity or waste basket for immature blastic leukemias ? A description of 14 patients. Dutch Slide Review Committee of Leukemias in Adults. Ann Hematol, 1995; 70: 297–300.CrossRefGoogle ScholarPubMed
Béné, M. C., Bernier, M., Casasnovas, R. O., et al.Acute myeloid leukaemia M0: haematological, immunophenotypic and cytogenetic characteristics and their prognostic significance: an analysis in 241 patients. Br J Haematol, 2001; 113: 737–45.CrossRefGoogle ScholarPubMed
Amadori, S., Venditti, A., Del Poeta, G., et al.Minimally differentiated acute myeloid leukemia (AML MO): a distinct clinico-biologic entity with poor prognosis. Ann Hematol, 1996; 72: 208–15.CrossRefGoogle Scholar
Venditti, A., Del Poeta, G., Stasi, R., et al.Minimally differentiated acute myeloid leukemia (AML MO): cytochemical, immunophenotypic and cytogenetic analysis of 19 cases. Br J Haematol, 1994; 88: 784–93.CrossRefGoogle Scholar
Carlson, K. M., Vignon, C., Bohlander, S., et al.Identification and molecular characterization of CALM/AF10 fusion subsets of acute leukemia with translocation t(10;11): both rearrangements are associated with a poor prognosis. Leukemia, 2000; 14: 100–4.CrossRefGoogle Scholar
Dreyling, M. H., Schrader, K., Fonatsch, C., et al.MLL and CALM are fused to AF10 in morphologically distinct subsets of acute leukemia with translocation t(10;11): both rearrangements are associated with a poor prognosis. Blood, 1998; 91: 4662–7.Google Scholar
Traweek, S. T., Liu, J., Braziel, R. M., et al.Detection of myeloperoxidase gene expression in minimally differentiated acute myelogenous leukemia (AML-MO) using in situ hybridization. Diagn Mol Pathol, 1995; 4: 212–19.CrossRefGoogle Scholar
Cascavilla, N., Melillo, L., D'Arena, G., et al.Minimally differentiated acute myeloid leukemia (AML MO): clinico-biological findings of 29 cases. Leuk Lymphoma, 2000; 37: 105–13.CrossRefGoogle Scholar
Cuneo, A., Ferrant, A., Michaux, J. L., et al.Cytogenetic profile of minimally differentiated (FAB MO) acute myeloid leukemia: correlation with clinicobiologic findings. Blood, 1995; 85: 3688–94.Google ScholarPubMed
Stasi, R., Del Poeta, G., Venditti, A., et al.Analysis of treatment failure in patients with minimally differentiated acute myeloid leukemia (AML-MO). Blood, 1994; 83: 1619–25.Google Scholar
Fujisawa, S., Tanabe, J., Harano, H., et al.Acute minimally differentiated myeloid leukemia (M0) with inv (3)(q21q26). Leuk Lymphoma, 1999; 35: 627–30.CrossRefGoogle Scholar
Costello, R., Mallet, F., Chambost, H., et al.The immunophenotype of minimally differentiated acute myeloid leukemia (AML-MO): reduced immunogenicity and high frequency of CD34+/CD38− leukemic progenitors. Leukemia, 1999; 13: 1513–18.CrossRefGoogle Scholar
Yokose, N., Ogata, K., Ito, T., et al.Chemotherapy for minimally differentiated acute myeloid leukemia (AML-MO). Ann Hematol, 1993; 66: 67–70.CrossRefGoogle Scholar
Segeren, C. M., de Jong-Gerritis, G. C. M. M., & Veer, M. B. van't.AML-MO: clinical utility or waste basket for immature blastic leukemias ? A description of 14 patients. Ann Hematol, 1995; 70: 297–300.CrossRefGoogle ScholarPubMed
Sempere, A., Jarque, I., Guinot, M., et al.Acute myeloblastic leukemia with minimal myeloid differentiation (FAB AML-MO): a study of eleven cases. Leuk Lymphoma, 1993; 12: 103–8.CrossRefGoogle Scholar
Kanda, Y., Hamaki, T., Yamamoto, R., et al.The clinical significance of CD34 expression in response to therapy of patients with acute myeloid leukemia: an overview of 2483 patients from 22 studies. Cancer, 2000; 88: 2529–33.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Campana, D., Hansen-Hagge, T. E., Matutes, E., et al.Phenotypic, genotypic, cytochemical, and ultrastructural characterization of acute undifferentiated leukemia. Leukemia, 1990; 4: 620–4.Google ScholarPubMed
Brito-Babapulle, F., Pullon, H., Layton, D. M., et al.Clinicopathological features of acute undifferentiated leukaemia with a stem cell phenotype. Br J Hematol, 1990; 76: 210–4.CrossRefGoogle ScholarPubMed
Asou, N., Suzushima, H., Hattori, T., et al.Acute unclassifiable leukemia originating from undifferentiated cells with the aberrant rearrangement and expression of immunoglobulin and T-cell receptors genes. Leukemia, 1991; 5: 293–9.Google Scholar
Veer, M. B. van't.The diagnosis of acute leukemia with undifferentiated or minimally differentiated blasts. Ann Hematol, 1992; 64: 161–5.CrossRefGoogle Scholar
Shende, A. C., Bonagura, V. R., Cheah, M. S., et al.Acute undifferentiated leukemia (AUL): a case report and a proposed system of classification. Ann J Hematol, 1992; 40: 234–7.CrossRefGoogle Scholar
Heil, G., Gunsilius, E., Hoelzer, D., et al.Peroxidase expression in acute unclassified leukemias: ultrastructural studies in combination with immunophenotyping. Leuk Lymphoma, 1994; 14: 103–9.CrossRefGoogle ScholarPubMed
Bernier, M., Massy, M., Deleeuw, N., et al.Immunologic definition of acute minimally differentiated myeloid leukemia (M0) and acute undifferentiated leukemia (AUL). Leuk Lymphoma, 1995; 18: 13–17.CrossRefGoogle Scholar
Cuneo, A., Ferrant, A., Michaux, J.-L., et al.Cytogenetic and clinicobiological features of acute leukemia with stem cell phenotype: study of nine cases. Cancer Genet Cytogenet, 1996; 92: 31–6.CrossRefGoogle ScholarPubMed
Béné, M. C., Bernier, M., Casasnovas, R. O., et al.The reliability and specificity of c-kit for the diagnosis of acute myeloid leukemia and undifferentiated leukemias. Blood, 1998; 92: 596–9.Google Scholar
Testa, U., Torelli, G. F., Riccioni, R., et al.Human acute stem cell leukemia with multilineage differentiation potential via cascade activation of growth factor receptors. Blood, 2002; 99: 4634–7.CrossRefGoogle ScholarPubMed
Heil, G., Ganser, A., Raghavachar, A., et al.Induction of myeloperoxidase in five cases of acute unclassified leukemia. Br J Haematol, 1988; 68: 23–32.CrossRefGoogle Scholar
Schoot, C. E., Visser, F. J., Tetteroo, P. A. T., et al.In-vitro differentiation of cells of patients with acute undifferentiated leukemia. Br J Haematol, 1989; 71: 351–5.CrossRefGoogle Scholar
Reuss-Borst, M. A., Jaschonek, K., & Muller, C. A.Acute undifferentiated leukemia with an unusual CD7+CD56+CD33+ immunophenotype of NK progenitors. Leukemia, 1996; 10: 923–4.Google ScholarPubMed
Ben-Bassat, I. & Gale, R. P.Hybrid acute leukemia. Leuk Res, 1986; 8: 929–36.CrossRefGoogle Scholar
Das Gupta, A., Advani, S. H., Nair, C. N., et al.Acute leukemia and coexpression of lymphoid and myeloid phenotypes. Hematol Oncol, 1987; 5: 189–96.CrossRefGoogle ScholarPubMed
Mirro, J., Zipf, T. F., Pui, C.-H., et al.Acute mixed lineage leukemia: clinicopathologic correlations and prognostic significance. Blood, 1985; 66: 1115–23.Google ScholarPubMed
Stass, S. & Mirro, J.Unexpected heterogeneity in acute leukemia: mixed lineages and lineage switch. Hum Pathol, 1985; 16: 864–6.CrossRefGoogle ScholarPubMed
Kuerbitz, S. J., Civin, C. I., Krischer, J. P., et al.Expression of myeloid-associated and lymphoid-associated cell-surface antigens in acute myeloid leukemia of childhood: a Pediatric Oncology Group Study. J Clin Oncol, 1992; 9: 1419–29.CrossRefGoogle Scholar
Matutes, E., Morilla, R., Owusu-Ankomah, K., et al.Definition of acute biphenotypic leukemia. Haematologica, 1997; 82: 64–6.Google ScholarPubMed
Drexler, H. G., Theil, E., & Ludwig, W.-D.Review of the incidence and clinical relevance of myeloid antigen-positive acute lymphoblastic leukemia. Leukemia, 1991; 5: 637–45.Google ScholarPubMed
Drexler, H. G., Theil, E., & Ludwig, W.-D.Acute myeloid leukemia expressing lymphoid-associated antigens: diagnostic incidence and prognostic significance. Leukemia, 1993; 7: 489–98.Google ScholarPubMed
Behm, F. G. Classification of acute leukemias. Perspective 2. In , C.-H. Pui, ed., Treatment of Acute Leukemias: New Directions for Clinical Research (Totowa, NJ: Humana Press, 2002).Google Scholar
Borowitz, M. J., Shuster, J. J., Land, V. J., et al.Myeloid antigen expression in childhood acute lymphoblastic leukemia. N Engl J Med, 1991; 325: 1379–80.Google Scholar
Ludwig, W.-D., Harbott, J., Bartram, C. D., et al. Incidence and prognostic significance of immunophenotypic subgroups in childhood acute lymphoblastic leukemia: experience of BFM Study 86. In , W.-D. Ludwig & , E. Thiel, eds., Recent Advances in Cell Biology of Acute Leukemia (New York: Springer, 1993), pp. 269–82.Google Scholar
Pui, C.-H., Behm, F. G., Singh, B., et al.Myeloid-associated antigen expression lacks prognostic value in childhood acute lymphoblastic leukemia treated with intensive multiagent chemotherapy. Blood, 1990; 75: 198–202.Google ScholarPubMed
Pui, C.-H., Raimondi, S. C., Head, D. R., et al.Characterization of childhood acute leukemia with multiple myeloid and lymphoid markers at diagnosis and at relapse. Blood, 1991; 78: 1327–37.Google ScholarPubMed
Pui, C.-H., Schell, M. J., Raimondi, S. C., et al.Myeloid-antigen expression in childhood acute lymphoblastic leukemia. N Engl J Med, 1991; 325: 1378–9.CrossRefGoogle Scholar
Uckun, F. M., Sather, H. N., Gaynon, P. S., et al.Clinical features and treatment outcomes of children with myeloid antigen positive acute lymphoblastic leukemia: a report from the Children's Cancer Group. Blood, 1997; 90: 28–35.Google ScholarPubMed
Wiersma, S. R., Ortega, J., Sobel, E., et al.Clinical importance of myeloid-antigen expression in acute lymphoblastic leukemia of childhood. N Engl J Med, 1991; 324: 800–8.CrossRefGoogle ScholarPubMed
Fink, F. M., Köller, U., Mayer, H., et al.Prognostic significance of myeloid-associated antigen expression on blast cells in children with acute lymphoblastic leukemia. Med Pediatr Oncol, 1993; 21: 340–6.CrossRefGoogle ScholarPubMed
Behm, F. G., Raimondi, S. C., Frestedt, J. L., et al.Rearrangement of the MLL gene confers a poor prognosis in childhood acute lymphoblastic leukemia, regardless of presenting age. Blood, 1996; 84: 2870–7.Google Scholar
Sobol, R. E., Mick, R., Royson, I., et al.Clinical importance of myeloid antigen expression in adult lymphoblastic leukemia. N Engl J Med, 1987; 316: 1111–17.CrossRefGoogle Scholar
Boldt, D. H., Kopecky, K. J., Head, D., et al.Expression of myeloid antigens by blast cells in acute lymphoblastic leukemia of adults. The Southwest Oncology Group experience. Leukemia, 1994; 8: 2118–26.Google ScholarPubMed
Lauria, F., Raspadori, D., Martinelli, G., et al.Increased expression of myeloid antigen markers in adult acute lymphoblastic leukaemia patients: diagnostic and prognostic implications. Br J Haematol, 1994; 87: 286–92.CrossRefGoogle ScholarPubMed
Larson, R. A., Dodge, R. K., Burns, C. P., et al.A five-drug remission induction regimen with intensive consolidation for adults with acute lymphoblastic leukemia: Cancer and Leukemia Group B study 8811. Blood, 1995; 85: 2025–37.Google Scholar
Saxena, A., Sheridan, D. P., Card, R. T., et al.Biologic and clinical significance of CD7 expression in acute myeloid leukemia. Am J Hematol, 1998; 58: 278–84.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Jensen, A. W., Hokland, M., Jorgensen, H., et al.Solitary expression of CD7 among T-cell antigens in acute myeloid leukemia: identification of a group of patients with similar T-cell receptor β and δ rearrangements and course of disease suggestive of poor prognosis. Blood, 1991; 78: 1292–300.Google ScholarPubMed
Kita, K., Miwa, H., Nakase, K., et al.Clinical importance of CD7 expression in acute myelocytic leukemia. The Japan Cooperative Group of Leukemia/Lymphoma. Blood, 1993; 81: 2399–405.Google ScholarPubMed
Kristensen, J. S., Ellegaard, J., Bendix, K., et al.First-line diagnosis based on immunological phenotyping in suspected acute leukemia: a prospective study. Leuk Res, 1988; 12: 773–82.CrossRefGoogle ScholarPubMed
Cuneo, A., Boogaerts, M., Ferrant, A., et al.Cytogenetics of hybrid leukemias. Leuk Lymphoma, 1995; 18: 19–23.CrossRefGoogle Scholar
Zomas, A. P., Swanbury, G. J., Matutes, E., et al.Bilineal acute leukemia of B and T lineage with a novel translocation t(9;17)(p11;q11). Leuk Lymphoma, 1997; 25: 179–85.CrossRefGoogle Scholar
Akashi, K., Harada, M., Shibuya, T., et al.Clinical characteristics of hybrid leukemia: report of five cases. Leuk Res, 1990; 14: 145–53.CrossRefGoogle ScholarPubMed
Akashi, K., Shibuya, T., Harada, M., et al.Acute ‘bilineal-biphenotypic’ leukaemia. Br J Haematol, 1990; 74: 402–4.CrossRefGoogle ScholarPubMed
Lawlor, E., McGirl, A., Jackson, F., McCann, S. R., & Secker-Walker, L. M.Acute ‘bilineal-biphenotypic’ leukaemia. Br J Haematol, 1991; 77: 566–7.CrossRefGoogle Scholar
Marco, F., Bureo, E., Ortega, J. J., et al.High survival rate in infant acute leukemia treated with early high-dose chemotherapy and stem-cell support. J Clin Oncol, 2000; 18: 3256–61.CrossRefGoogle ScholarPubMed
Issacs, H. Jr.Fetal and neonatal leukemia. J Pediatr Hematol Oncol, 2003; 25: 348–61.CrossRefGoogle Scholar
Pui, C.-H., Ribeiro, R. C., Campana, D., et al.Prognostic factors in the acute lymphoid and myeloid leukemias of infants. Leukemia, 1996; 10: 952–6.Google ScholarPubMed
Greaves, M. F.Infant leukemia biology, aetiology, and treatment. Leukemia, 1996; 10: 372–7.Google Scholar
Gill Super, H. J., Rothberg, P. G., Kobayashi, H., et al.Clonal, nonconstitutional rearrangements of the MLL gene in infant twins with acute lymphoblastic leukemia: in utero chromosome rearrangement of 11q23. Blood, 1994; 83: 641–4.Google ScholarPubMed
Mahmoud, H. H., Ridge, S. A., Behm, F. G., et al.Intrauterine monoclonal origin of neonatal concordant acute lymphoblastic leukemia in monozygotic twins. Med Pediatr Oncol, 1995; 24: 77–81.CrossRefGoogle ScholarPubMed
Bayer, E., Kurczynski, T. W., Robinson, M. G., et al.Monozygotic twins with congenital acute lymphoblastic leukemia (ALL) and t(4;11)(q21;q23). Cancer Genet Cytogenet, 1996; 89: 177–80.CrossRefGoogle Scholar
Pui, C. H., Kane, J. R., & Crist, W. M.Biology and treatment of infant leukemias. Leukemia, 1995; 9: 762–9.Google ScholarPubMed
Heikinheimo, M., Pakkala, S., Juvonen, E., et al.Immuno- and cytochemical characterization of congenital leukemia. Med Pediatr Oncol, 1994; 22: 279–82.CrossRefGoogle ScholarPubMed
Tao, J., Valderrama, E., & Kahn, L.Congenital acute T lymphoblastic leukemia: report of a case with immunohistochemical and molecular characterization. J Clin Pathol, 2000; 53: 150–2.CrossRefGoogle Scholar
McCoy, J. P. & Overton, W. R.Immunophenotyping of congenital leukemia. Cytometry, 1995; 22: 85–8.CrossRefGoogle ScholarPubMed
McCoy, J. P., Travis, S. F., Blumstein, L., et al.Congenital leukemia: report of two cases. Cytometry, 1995; 22: 89–92.CrossRefGoogle ScholarPubMed
Bresters, D., Reus, A. C., Veerman, A. J., et al.Congenital leukaemia: the Dutch experience and review of the literature. Br J Haematol, 2002; 117: 513–24.CrossRefGoogle ScholarPubMed
Cimino, G., Rapanotti, M. C., Rivolta, A., et al.Prognostic relevance of ALL-1 gene rearrangement in infant acute leukemias. Leukemia, 1995; 9: 391–5.Google ScholarPubMed
Biondi, A., Cimino, G., Pieters, R., & Pui, C.-H.Biologic and therapeutic aspects of infant leukemia. Blood, 2000; 96: 24–33.Google Scholar
Carroll, A., Civin, C., Schneider, N., et al.The t(1;220)(p13;q13) is nonrandom and restricted to infants with acute megakaryoblastic leukemia: a Pediatric Oncology Group study. Blood, 191; 78: 48–52.Google Scholar
Zipursky, A., Brown, E. J., Christensen, H., & Doyle, J.Transient myeloproliferative disorder (transient leukemia) and hematologic manifestations of Down syndrome. Diag Pediatr Hematol, 1999; 19: 157–67.Google ScholarPubMed
Pui, C.-H., Raimondi, S. C., Borowitz, M. J., et al.Immunophenotypes and karyotypes of leukemic cells in children with Down syndrome and acute lymphoblastic leukemia. J Clin Oncol, 1993; 11: 1361–7.CrossRefGoogle ScholarPubMed
Levitt, G. A., Stiller, C. A., & Chessells, J. M.Prognosis of Down's syndrome with acute leukemia. Arch Dis Child, 1990; 65: 212–16.CrossRefGoogle Scholar
Litz, C. E., Davies, S., Brunning, R. D., et al.Acute leukemia and the transient myeloproliferative disorder associated with Down syndrome: morphology, immunophenotypic and cytogenetic manifestations. Leukemia, 1995; 9: 1432–9.Google ScholarPubMed
Creutzig, J., Ritter, J., Vormoor, J., et al.Myelodysplasia and acute myelogenous leukemia in Down's syndrome. A report of 40 children of the AML-BFM Study Group. Leukemia, 1996; 10: 1677–86.Google ScholarPubMed
Zipursky, A., Peeters, M., & Poon, A.Megakaryoblastic leukemia and Down's syndrome. A review. Pediatr Hematol Oncol, 1987; 4: 211–30.CrossRefGoogle ScholarPubMed
Zipursky, A., Poon, A., & Doyle, J.Leukemia in Down's syndrome: a review. Pediatr Hematol Oncol, 1992; 9: 139–49.CrossRefGoogle ScholarPubMed
Ravindranath, Y., Abella, E., Krischer, J. P., et al.Acute myeloid leukemia (AML) in Down's syndrome is highly responsive to chemotherapy: experience on Pediatric Oncology Group AML study 8498. Blood, 1992; 80: 2210–14.Google ScholarPubMed
Zipursky, A., Thorner, P., De Harven, E., et al.Myelodysplasia and acute megakaryoblastic leukemia in Down's syndrome. Leuk Res, 1994; 18: 163–71.CrossRefGoogle ScholarPubMed
Yumura-Yagi, K., Hara, J., Kurahashi, H., et al.Mixed phenotype of blasts in acute megakaryocytic leukaemia and transient abnormal myelopoiesis in Down's syndrome. Br J Haematol, 1992; 81: 520–5.CrossRefGoogle ScholarPubMed
Brodeur, G. M., Dahl, G. V., Williams, D. L., et al.Transient leukemoid reaction and trisomy 21 mosaicism in a phenotypically normal newborn. Blood, 1980; 57: 883–7.Google Scholar
Ridgway, D., Benda, G. I., Magenis, E., et al.Transient myeloproliferative disorder of the Down type in the normal newborn. Am J Dis Child, 1990; 144: 1117–19.Google ScholarPubMed
Worth, L. L., Zipursky, A., Christensen, H., & Tubergen, D.Transient leukemia with extreme basophilia in a phenotypically normal infant with blast cells containing a pseudodiploid clone, 46,XY, i(21)(q10). J Pediatr Hematol Oncol, 1999; 21: 63–6.CrossRefGoogle Scholar
Wu, S.-Q., Loh, K. T., Chen, X.-R., et al.Transient myeloproliferative disorder in a phenotypically normal infant with i(21q) mosaicism. Cancer Genet Cytogenet, 2002; 136: 138–40.CrossRefGoogle Scholar
Zipursky, A.Transient leukemia – a benign form of leukaemia in newborn infants with trisomy 21. Br J Haematol, 2003; 120: 930–8.CrossRefGoogle ScholarPubMed
Foucar, K., Friedman, K., Llewellyn, A., et al.Prenatal diagnosis of myeloproliferative disorder via percutaneous umbilical blood sampling. Report of two cases in fetuses affected by Down's syndrome. Am J Pathol, 1992; 97: 584–90.Google ScholarPubMed
Avet-Loiseau, H., Mechinaud, F., & Harousseau, J. L.Clonal hematologic disorders in Down syndrome. A review. J Pediatr Hematol Oncol, 1995; 17: 19–24.CrossRefGoogle ScholarPubMed
Coulombel, K., Derycke, M., Villeval, J. L., et al.Characterization of the blast population in two neonates with Down's syndrome and transient myeloproliferative disorder. Br J Haematol, 1987; 66: 69–76.CrossRefGoogle ScholarPubMed
Besso, F., Hayashi, Y., Hayashi, Y., & Ohga, K.Ultrastructural studies of peripheral blood of neonates with Down's syndrome and transient abnormal myelopoiesis. Am J Clin Pathol, 1988; 89: 627–33.CrossRefGoogle Scholar
Eguchi, M., Sakakibara, H., Suda, J., et al.Ultrastructural and ultracytochemical differences between transient myeloproliferative disorder and megkaryoblastic leukaemia in Down's syndrome. Br J Haematol, 1989; 73: 315–22.CrossRefGoogle ScholarPubMed
Fernandez de Castro, M., Salas, S., Martinez, A., et al.Transitory T-lymphoblastic leukemoid reaction in a neonate with Down syndrome. Am J Pediatr Hematol Oncology, 1990; 12: 71–3.CrossRefGoogle Scholar
Bozner, P.Transient myeloproliferative disorder with erythroid differentiation in Down syndrome. Arch Pathol Lab Med, 2002; 126: 474–7.Google ScholarPubMed
Svaldi, M., Moroder, W., Messner, H., et al.Transient myeloproliferative disorder with a CD7+ and CD56+ myeloid/natural killer cell precursor phenotype in a newborn. J Pediatr Hematol Oncol, 2002; 24: 394–6.CrossRefGoogle Scholar
Wechsler, J., Greene, M., McDevitt, M. A., et al.Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet, 2002; 32: 148–52.CrossRefGoogle ScholarPubMed
Shivdasani, R. A.Molecular and transcriptional regulation of megakaryocyte differentiation. Stem Cells, 2001; 19: 397–407.CrossRefGoogle ScholarPubMed
Gurbuxani, S., Vyas, P., & Crispino, J. D.Recent insights into the mechanisms of myeloid leukemogenesis in Down syndrome. Blood, 2004; 103: 399–406.CrossRefGoogle ScholarPubMed
Hitzler, J. & Zipursky, A.Origins of leukaemia in children with Down syndrome. Nat Rev Cancer, 2005; 5: 11–20.CrossRefGoogle ScholarPubMed
Groet, J., McElwaine, S., Spinelli, M., et al.Acquired mutations in GATA1 in neonates with Down's syndrome with transient myeloid disorder. Lancet, 2003; 361: 1617–20.CrossRefGoogle ScholarPubMed
Xu, G., Nagano, M., Kanezak, R., et al.Frequent mutations in the GATA-1 gene in the transient myeloproliferative disorder of Down's syndrome. Blood, 2003; 102: 2960–8.CrossRefGoogle Scholar
Hayashi, Y., Eguchi, M., Sugita, K., et al.Cytogenetic findings and clinical features in acute leukemia and transient myeloproliferative disorder in Down's syndrome. Blood, 1988; 72: 15–23.Google ScholarPubMed
Shen, J. J., Williams, B. J., Zipursky, A., et al.Cytogenetic and molecular studies of Down syndrome individuals with leukemia. Am J Hum Genet, 1995; 56: 915–25.Google ScholarPubMed
Doyle, J. J., Thorner, P., Poon, A., et al.Transient leukemia followed by megakaryoblastic leukemia in a child with mosaic Down syndrome. Leuk Lymphoma, 1995; 17: 345–50.CrossRefGoogle Scholar
Kurahashi, H., Hara, J., Yumura-Yagi, K., et al.Monoclonal nature of transient abnormal myelopoiesis in Down's syndrome. Blood, 1991; 77: 1161–3.Google ScholarPubMed
Miyashita, Y., Asada, M., Fujimoto, J.-I., et al.Clonal analysis of transient myeloproliferative disorder in Down's syndrome. Leukemia, 1991; 5: 56–9.Google ScholarPubMed
Holt, S. E., Brown, E. J., & Zipursky, A.Telomerase and the benign and malignant megakaryoblastic leukemia of Down syndrome. J Pediatr Hematol Oncol, 2002; 24: 14–17.CrossRefGoogle ScholarPubMed
Malkin, D., Brown, E. J., & Zipursky, A.The role of p53 in megakaryocytic leukemia of Down syndrome. Cancer Genet Cytogenet, 2000; 116: 1–5.CrossRefGoogle ScholarPubMed
Martin-Henao, G. A., Quiroga, R., Sureda, A., & Garcia, J.CD7 expression on CD34+ cells from chronic myeloid leukemia in chronic phase. Am J Hematol, 1999; 61: 178–86.3.0.CO;2-8>CrossRefGoogle Scholar
Cho, E. K., Heo, D. S., Seol, J. G., et al.Ontogeny of natural-killer cells and T cells by analysis of BCR-ABL rearrangement from patients with chronic myelogenous leukemia. Br J Haematol, 2000; 111: 216–22.CrossRefGoogle Scholar
Takahashi, N., Miura, I., Saitoh, K., & Miura, A. B.Lineage involvement of stem cells bearing the Philadelphia chromosome in chronic myeloid leukemia in the chronic phase as shown by a combination of fluorescence-activated cell sorting and fluorescence in situ hybridization. Blood, 1998; 92: 4758–63.Google ScholarPubMed
Rambaldi, A., Masuhara, K., Boleri, G.-M., et al.Flow cytometry of leucocyte alkaline phosphatase in normal and pathologic leucocytes. Br J Haematol, 1997; 96: 815–22.CrossRefGoogle ScholarPubMed
Kant, A. M., Advani, S. H., & Zingde, S. M.Heterogeneity in the expression of FcγRIII in morphologically mature granulocytes from patients with chronic myeloid leukemia. Leuk Res, 1997; 21: 225–34.CrossRefGoogle Scholar
Kabutomori, O., Iwatani, Y., Koh, T., et al.CD16 antigen density on neutrophils in chronic myeloproliferative disorders. Am J Clin Pathol, 1997; 197: 661–4.CrossRefGoogle Scholar
Kasimir-Bauer, S., Ottinger, H., Wuttke, M., et al.Chronic myelogenous leukemia: effect of interferon-alpha treatment on phagocytic activity and capacity of circulating neutrophils. Leuk Res, 1998; 22: 115–17.CrossRefGoogle ScholarPubMed
Valiron, O., Clemancy-Marcilla, G., Troesch, A., et al.Immunophenotype of blast cells in chronic myeloid leukemia. Leuk Res, 1988; 12: 861–72.CrossRefGoogle ScholarPubMed
Wadhwa, J., Szydlo, R. M., Apperley, J. F., et al.Factors affecting duration of survival after onset of blastic transformation of chronic myeloid leukemia. Blood, 2002; 99: 2304–9.CrossRefGoogle ScholarPubMed
Chan, L. C., Furley, A. J., Ford, A. M., et al.Clonal rearrangement and expression of the T cell receptor gene and involvement of the breakpoint cluster region in blast crisis of CGL. Blood, 1986; 67: 533–6.Google Scholar
Urbano-Ispizura, A., Cervantes, F., Matutes, E., et al.Immunophenotypic characteristics of blasts crisis of chronic myeloid leukemia: correlations with clinico-biological features and survival. Leukemia, 1993; 7: 1349–54.Google Scholar
Cortes, J. E., Talpaz, M., & Kantarjian, H.Chronic myelogeneous leukemia: a review. Am J Med, 1996; 100: 555–70.CrossRefGoogle Scholar
Saikia, T., Advani, S., Dasgupta, A., et al.Characterization of blast cells during blast phase of chronic myeloid leukemia by immunophenotyping – experience in 60 patients. Leuk Res, 1988; 12: 499–506.CrossRefGoogle Scholar
Nair, C., Chopra, H., Shinde, S., et al.Immunophenotype and ultrastructural studies in blast crisis of chronic myeloid leukemia. Leuk Lymphoma, 1995; 19: 309–13.CrossRefGoogle ScholarPubMed
Khalidi, H., Brynes, R. K., Medeiros, L. J., et al.The immunophenotype of blast transformation of chronic myelogeneous leukemia: a high frequency of mixed lineage phenotype in “lymphoid” blasts and a comparison of morphologic, immunophenotypic, and molecular findings. Mod Pathol, 1998; 11: 1211–21.Google Scholar
Dorfman, D. M., Longtine, J. A., Fox, E. A., et al.T-cell blast crisis in chronic myelogenous leukemia. Immunophenotypic and molecular biologic findings. Am J Clin Pathol, 1997; 107: 168–76.CrossRefGoogle ScholarPubMed
Blattner, W. A., Takatsuki, Y., & Gallo, R.Human T-cell leukemia/lymphoma virus and adult T-cell leukemia. JAMA, 1983; 250: 1074–80.CrossRefGoogle ScholarPubMed
Manns, A., Hisada, M., La Grenada, L.Human T-lymphotropic virus type 1 infection. Lancet, 1999; 353: 1051–8.CrossRefGoogle Scholar
Siegel, R. S., Gartenhaus, R. B., & Kuzel, T. M.Human T-cell lymphotropic-I-associated leukemia/lymphoma. Curr Treat Options Oncol, 2001; 2: 291–300.CrossRefGoogle ScholarPubMed
Takatsuki, K.Adult T-cell leukemia. Intern Med, 1995; 34: 947–52.CrossRefGoogle ScholarPubMed
Ohshima, K., Suzumiya, J., Sato, K., et al.Nodal T-cell lymphoma in HTLV-1-endemic area: proviral HTLV-1 DNA, histologic classification and clinical evaluation. Br J Haematol, 1998; 101: 703–11.CrossRefGoogle Scholar
Fort, J. A., Graham-Pole, J., & Mottshaw, G.Adult-type T-cell lymphoma in an adolescent with human T-lymphotropic virus type 1 seropositivity. Med Pediatr Oncol, 1989; 17: 236–8.CrossRefGoogle Scholar
Lin, B. T., Musset, M., Székely, A.-M., et al.Human T-cell lymphotropic virus-1-positive T-cell leukemia/lymphoma in a child. Arch Pathol Lab Med, 1997; 121: 182–6.Google Scholar
Vilmer, E., Le Deist, F., Fischer, A., et al.Smouldering T lymphoma related to HTLV-1 in a Sicilian child. Lancet, 1985; 2: 1301.CrossRefGoogle Scholar
De Oliveira, P., Matutes, E., Famadas, L. C., et al.Adult T-cell leukaemia/lymphoma in Brazil and its relation to HTLV-1. Lancet, 1990; 336: 987–90.CrossRefGoogle Scholar
Foucar, K., Carroll, T. J., Tannous, R., et al.Nonendemic adult T-cell leukemia/lymphoma in the United States: report of two cases and review of the literature. Am J Clin Pathol, 1985; 83: 18–26.CrossRefGoogle ScholarPubMed
Broniscer, A., Ribeiro, R. C., Srinivas, R. V., et al.An adolescent with HTLV-1-associated adult T cell leukemia treated with interferon-alpha and zidovudine. Leukemia, 1996; 10: 1244–54.Google Scholar
Pombo-de-Oliveira, M. S., Dobbin, J. A., Laureiro, P., et al.Genetic mutation and early onset of T-cell leukemia in pediatric patients infected at birth with HTLV-I. Leuk Res, 2002; 26: 155–61.CrossRefGoogle ScholarPubMed
Wilks, R. J., LaGrenade, L., Hanchard, B., et al.Sibling adult T-cell leukemia/lymphoma and clustering of human T-cell lymphotropic type I infection in a Jamaican family. Cancer, 1993; 72: 2700–4.3.0.CO;2-9>CrossRefGoogle Scholar
Takeshita, M., Akamatsu, M., Ohshima, K., et al.CD30 (Ki-1) expression in adult T-cell leukemia/lymphoma is associated with distinctive immunohistochemical and clinical characteristics. Histopathology, 1995; 26: 539–46.CrossRefGoogle Scholar
McKenna, R. W., Parkin, J., Kersey, J. H., et al.Chronic lymphoproliferative disorder with unusual clinical, morphologic, ultrastructural and membrane surface marker characteristics. Am J Med, 1977; 62: 588–96.CrossRefGoogle ScholarPubMed
Loughran, T. P., Kadin, M. E., Starkebaum, G., et al.Leukemia of large granular lymphocytes: association with clonal chromosomal abnormalities and autoimmune neutropenia, thrombocytopenia, and hemolytic anemia. Ann Intern Med, 1985; 102: 169–75.CrossRefGoogle ScholarPubMed
Loughran, T.Clonal diseases of large granular lymphocytes. Blood, 1993; 82: 1–14.Google ScholarPubMed
Dhodapkar, M. V., Li, C.-Y., Lust, J. A., Tefferi, A., & Phyliki, R. L.Clinical spectrum of clonal proliferations of T-large granular lymphocytes: a T-cell clonopathy of undetermined significance. Blood, 1994; 84: 1620–7.Google ScholarPubMed
Tefferi, A.Chronic natural killer cell lymphocytosis. Leuk Lymphoma, 1996; 20: 245–8.CrossRefGoogle ScholarPubMed
Gianpietro, S., Zambello, R., Starkebaum, G., et al.The lymphoproliferative disease of granular lymphocytes: updated criteria for diagnosis. Blood, 1997; 89: 256–60.Google Scholar
Lamy, T., Loughan, T. P. Jr.Current concepts: large granular lymphocyte leukemia. Blood Rev, 1999; 13: 230–40.CrossRefGoogle ScholarPubMed
Gentile, T. C., Uner, A. H., Hutchison, R. E., et al.CD3−, CD56+ aggressive variant of large granular lymphocyte leukemia. Blood, 1994; 84: 2315–21.Google ScholarPubMed
Sun, T., Brody, J., Susin, M., et al.Aggressive natural killer cell lymphoma/leukemia. A recently recognized clinicopathologic entity. Am J Surg Pathol, 1993; 17: 1289–99.CrossRefGoogle ScholarPubMed
Emile, J.-F., Bouiland, M.-L., Haioun, C., et al.CD5− CD56+ T-cell receptor silent peripheral T-cell lymphomas are natural killer cell lymphomas. Blood, 1996; 87: 1466–73.Google ScholarPubMed
Macon, W. R., Williams, M. E., Greer, J. P., et al.Natural killer-like T-cell lymphomas: aggressive lymphomas of T-large granular lymphocytes. Blood, 1996; 87: 1474–83.Google ScholarPubMed
Le Deist, F., Basile, G., Coulombel, L., et al.A familial occurrence of natural killer cell-T-lymphocyte proliferation disease in two children. Cancer, 1991; 67: 2510–7.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Plantanias, L. C., Larson, R. A., Vardiman, J. W., et al.Complex rearrangement of the T cell receptor in large granular lymphocytosis associated with myeloid suppression. Leukemia, 1990; 4: 863–5.Google Scholar
Imumura, N., Kusunoki, Y., Kawa-Ha, K., et al.Aggressive natural killer cell leukemia/lymphoma: report of four cases and review of the literature. Br J Haematol, 1990; 75: 49–59.CrossRefGoogle Scholar
Morice, W. G., Kurtin, P. J., Leison, P. J., et al.Demonstration of aberrant T-cell and natural killer-cell antigen expression in all cases of granular lymphocyte leukaemia. Br J Haematol, 2003; 120: 1026–36.CrossRefGoogle Scholar
Langerak, A. W., Beemd, R., Wolvers-Tettero, I. L. M., et al.Molecular and flow cytometric analysis of the Vbeta repertoire for clonality assessment in mature TCRalpha/beta T-cell proliferations. Blood, 2001; 98: 165–73.CrossRefGoogle Scholar
Lima, M., Almeida, J., Santos, A. H., et al.Immunophenotypic analysis of the TCR-Vbeta repertoire in 98 persistent expansions of CD3(+)/TCR-alphabeta(+) large granular lymphocytes. Am J Clin Pathol, 2001; 159: 1861–8.CrossRefGoogle ScholarPubMed
Weidmann, E.Hepatosplenic T cell lymphoma. A review on 45 cases since the first report describing the disease as a distinct lymphoma entity in 1990. Leukemia, 2000; 14: 991–7.CrossRefGoogle ScholarPubMed
Lai, R., Larratt, L. M., Etches, W., et al.Hepatosplenic T-cell lymphoma of alphabeta lineage in a 16-year-old boy presenting with hemolytic anemia and thrombocytopenia. Am J Surg Pathol, 2000; 24: 45–63.CrossRefGoogle Scholar
Suarez, F., Wlodarska, I., Rigal-Huguet, F., et al.Hepatosplenic alphabeta T-cell lymphoma: an unusual case with clinical, histologic, and cytogenetic features of gammadelta hepatosplenic T-cell lymphoma. Am J Surg Pathol., 2000; 24: 1027–32.CrossRefGoogle ScholarPubMed
Cooke, C. B., Krenacs, L., Steltler-Stevenson, M., et al.Hepatosplenic T-cell lymphoma: a distinct clinicopathologic entity of cytotoxic gamma delta T-cell origin. Blood, 1996; 88: 4265–74.Google ScholarPubMed
Macon, W. R., Levy, N. B., Kurtin, P. J., et al.Hepatosplenic αβ T-cell lymphomas. Am J Surg Pathol, 2001; 25: 285–96.CrossRefGoogle ScholarPubMed
Farcet, J., Gaulard, P., Marolleau, J., et al.Hepatosplenic T-cell lymphoma: sinusal/sinusoidal localization of malignant cells expressing the T-cell receptor αβ. Blood, 1990; 75: 2213–19.Google Scholar
Francosis, A., Lesesve, J.-F., Stamatoullas, A., et al.Hepatosplenic gamma/delta T-cell lymphoma: a report of two cases in immunocompromised patients associated with isochromosome 7q. Am J Surg Pathol, 1997; 21: 781–90.CrossRefGoogle Scholar
Garcia-Sanchez, F., Menarguez, J., Cristobal, E., et al.Hepatosplenic gamma-delta T-cell malignant lymphoma: report of the first case in childhood, including molecular minimal residual disease follow-up. Br J Haematol, 1995; 90: 943–46.CrossRefGoogle ScholarPubMed
Nosari, A., Oreste, P. L., Biondi, A., et al.Hepato-splenic gammadelta T-cell lymphoma: a rare entity mimicking the hemophagocytic syndrome. Am J Hematol, 1999; 60: 61–5.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Coventry, S., Punnett, H. H., Tomczak, E. Z., et al.Consistency of isochromosome 7q and trisomy 8 in hepatosplenic gamma/delta T-cell lymphoma: detection by fluorescence in situ hybridization of a splenic touch-preparation from a pediatric patient. Pediatr Dev Pathol, 1999; 2: 478–83.CrossRefGoogle Scholar
Rossbach, H. C., Chamizo, W., Dumont, D. P., et al.Hepatosplenic gamma/delta T-cell lymphoma with isochromosome 7q, translocation t(7;21), and tetrasomy 8 in a 9-year-old girl. J Pediatr Hematol Oncol., 2002; 24: 154–7.CrossRefGoogle Scholar
Wang, C. C., Tien, H. F., Kin, M. T., et al.Consistent presence of isochromosome 7q in hepatosplenic T gamma/delta lymphoma: a new cytogenetic-clinicopathologic entity. Genes Chromosomes Cancer, 1995; 12: 161–4.CrossRefGoogle Scholar
Vega, F., Medeiros, L. J., Bueso-Ramos, C., et al.Hepatosplenic gamma/delta T-cell lymphoma in bone marrow. A sinusoidal neoplasm with blastic cytologic features. Am J Clin Pathol, 2001; 116: 410–9.CrossRefGoogle ScholarPubMed
Salhany, K. E., Feldman, M., Kahn, M. J., et al.Hepatosplenic gamma/delta T-cell lymphoma: ultrastructural, immunophenotypic, and functional evidence for cytotoxic T lymphocyte differentiation. Hum Pathol, 1997; 28: 674–85.CrossRefGoogle Scholar
Felger, R. E., Macon, W. R., Kinney, M. C., et al.TIA-1 expression in lymphoid neoplasms. Identification of subsets with cytotoxic T lymphocyte or natural killer cell differentiation. Am J Pathol, 1997; 150: 1893–1900.Google Scholar
Boulland, M. L., Kanavaros, P., Wechsler, J., et al.Cytotoxic protein expression in natural killer cell lymphomas and in alpha beta and gamma delta peripheral T-cell lymphomas. J Pathol, 1997; 183: 432–9.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Przybylski, G. K., Wu, H., Macon, W. R., et al.Hepatosplenic and subcutaneous panniculitis-like gamma/delta T cell lymphomas are derived from different Vdelta subsets of gamma/delta T lymphocytes. J Mol Diagn, 2000; 2: 11–19.CrossRefGoogle ScholarPubMed
Weidmann, E., Hinz, T., Klein, S., et al.Cytotoxic hepatosplenic gammadelta T-cell lymphoma following acute myeloid leukemia bearing two distinct gamma chains of the T-cell receptor. Biologic and clinical features. Haematologica, 2000; 85: 1024–31.Google ScholarPubMed
Ohshima, K., Haraoka, S., Harada, N., et al.Hepatosplenic gammadelta T-cell lymphoma: relation to Epstein-Barr virus and activated cytotoxic molecules. Histopathology, 2000; 36: 127–35.CrossRefGoogle ScholarPubMed
Joneaux, P., Daniel, M. T., Martel, V., et al.Isochromosome 7q and trisomy 8 are consistent primary, non-random chromosomal abnormalities associated with hepatosplenic T gamma/delta lymphoma. Leukemia, 1996; 10: 1453–55.Google Scholar
Wlodarska, I., Martin-Garcia, N., Achten, R., et al.Fluorescence in situ hybridization study of chromosome 7 aberrations in hepatosplenic T-cell lymphoma: isochromosome 7q as a common abnormality accumulating in forms with features of cytologic progression. Genes Chromosomes Cancer, 2002; 33: 243–51.CrossRefGoogle ScholarPubMed
Sandlund, J. T. & Behm, F. G. Pediatric non-Hodgkin lymphoma. In , J. P. Greer, , J. Foerster, , J. N. Lukens, et al., eds., Wintrobe's Clinical Hematology, 11th edn. (Philadelphia, PA: Lippincott Williams & Wilkins, 2003).Google Scholar
Stein, H., Foss, H.-D., Durkop, H., et al.CD30+ anaplastic large cell lymphoma: a review of its histopathologic, genetic and clinical features. Blood, 2000; 96: 3681–95.Google ScholarPubMed
Morris, S. W., Kirstein, M. N., Valentine, M. B., et al.Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science, 1994; 263: 1281–4.CrossRefGoogle ScholarPubMed
Kinney, M. C., Collins, R. D., Greer, J. P., et al.A small-cell-predominant variant of primary Ki-1 (CD30)+ T-cell lymphoma. Am J Surg Pathol, 1993; 17: 859–68.CrossRefGoogle ScholarPubMed
Anderson, M. M., Ross, C. W., Singleton, T. P., et al.Ki-1 anaplastic large cell lymphoma with a prominent leukemic phase. Hum Pathol, 1996; 27: 1093–5.CrossRefGoogle ScholarPubMed
Villamor, N., Rozman, M., Esteve, J., et al.Anaplastic large-cell lymphoma with rapid evolution to leukemic phase. Ann Hematol, 1999; 78: 478–82.CrossRefGoogle ScholarPubMed
Bayle, C., Charpentier, A., Duchayne, E., et al.Leukaemic presentation of small cell variant anaplastic large cell lymphoma: report of four cases. Br J Haematol, 1999; 104: 680–8.CrossRefGoogle ScholarPubMed
Meech, S. J., McGavran, K., Odom, L. F., et al.Unusual childhood extramedullary hematologic malignancy with natural killer cell properties that contains tropomysin 4-anaplastic lymphoma kinase gene fusion. Blood, 2001; 98: 1209–16.CrossRefGoogle Scholar
Awaya, N., Mori, S., Takeuchi, H., et al.CD30 and NPM-ALK fusion protein (p80) are differentially expressed between peripheral blood and bone marrow in primary small cell variant of anaplastic large cell lymphoma. Am J Hematol, 2002; 69: 200–4.CrossRefGoogle ScholarPubMed
Onciu, M., Behm, F. G., Raimondi, S. C., et al.ALK-positive anaplastic large cell lymphoma with leukemic peripheral blood involvement. Report of three cases and review of the literature. Am J Clin Pathol, 2003; 120: 617–25.CrossRefGoogle ScholarPubMed
Greer, J. P., Kinney, M. C., Collins, R. D., et al.Clinical features of 31 patients with Ki-1 anaplastic large-cell lymphoma. J Clin Oncol, 1991; 9: 539–47.CrossRefGoogle ScholarPubMed
Gordon, B. G., Weisenburger, D. D., Warkentin, P. I., et al.Peripheral T-cell lymphoma in childhood and adolescence. Cancer, 1993; 71: 257–63.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Chhanabhai, M., Britten, C., Klasa, R., & Gascoyne, R. D.t(2;5) positive lymphoma with peripheral blood involvement. Leuk Lymphoma, 1997; 28: 415–22.CrossRefGoogle Scholar
Wong, K. F., Chan, J. K. C., Ng, C. S., et al.Anaplastic large cell Ki-1 lymphoma involving bone marrow: marrow findings and association with reactive hemophagocytosis. Am J Hematol, 1991; 37: 112–19.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Immunophenotyping
    • By Fred G. Behm, Associate Member and Vice Chair, Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Immunophenotyping
    • By Fred G. Behm, Associate Member and Vice Chair, Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Immunophenotyping
    • By Fred G. Behm, Associate Member and Vice Chair, Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.008
Available formats
×