Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T21:41:09.941Z Has data issue: false hasContentIssue false

7 - The Genetic Basis of Creativity

A Multivariate Approach

from Biological Underpinnings

Published online by Cambridge University Press:  12 April 2019

James C. Kaufman
Affiliation:
University of Connecticut
Robert J. Sternberg
Affiliation:
Cornell University, New York
Get access

Summary

Despites popular assumptions, there is not one single “creativity gene,” just as there is not one single “creativity” expression. Understanding the genetic underpinning of creativity first requires us to understand the multivariate and partly domain-specific nature of creativity, which cannot be reduced to a single cognitive function such as divergent thinking. Based upon a multivariate approach to creativity and its recent extension, this chapter explores the current state of knowledge on the genetic etiology of creativity, with a focus on scientific contributions of the last decade. A first line of genetic studies focusing on “real-world” creativity (creative achievements, talents, product-based assessment of creativity) is scrutinized, followed by a broader line of work focused on the genetic underpinning of important “resources” of creativity often studied in isolation (e.g., divergent thinking, openness to experience, and cognitive flexibility). Findings from both lines of research are then integrated, suggesting that the co-occurrence of important individual resources of creativity and their optimal interaction may be due to their common genetic bases. The chapter concludes by discussing future directions in the study of the gene–creativity relationship, which could greatly advance the understanding of the creativity phenomenon and, ultimately, support the realization of everyone’s creative potential.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amabile, T. M. (1983). The social psychology of creativity: A componential conceptualization. Journal of Personality and Social Psychology, 45(2), 357–356.CrossRefGoogle Scholar
Bachner-Melman, R., Dina, C., Zohar, A. H., Constantini, N., Lerer, E., Hoch, S., … Ebstein, R. (2005). AVPR1a and SLC6A4 gene polymorphisms are associated with creative dance performance. PLoS Genetics, 1(3), e42.CrossRefGoogle ScholarPubMed
Baer, J. & Kaufman, J. C. (2005). Bridging generality and specificity: The amusement park theoretical (APT) model of creativity. Roeper Review, 27(3), 158163.CrossRefGoogle Scholar
Barbot, B., Besançon, M., & Lubart, T. (2016). The generality-specificity of creativity: Exploring the structure of creative potential with EPoC. Learning and Individual Differences, 52, 178187.CrossRefGoogle Scholar
Barbot, B., Lubart, T. I., & Besançon, M. (2016). “Peaks, slumps, and bumps”: Individual differences in the development of creativity in children and adolescents. New Directions for Child and Adolescent Development, 151, 3345.CrossRefGoogle Scholar
Barbot, B., Tan, M., & Grigorenko, E. L. (2013). The genetics of creativity: The generative and receptive sides of the creativity equation. In Vartanian, O., Bristol, A., & Kaufman, J. (eds.), The neuroscience of creativity (pp. 7193). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Barbot, B. & Tinio, P. P. (2015). Where is the “g” in “creativity”? A specialization differentiation hypothesis. Frontiers in Human Neuroscience, 8, 1041.CrossRefGoogle Scholar
Barbot, B. & Webster, P. R. (2018). Creative thinking in music: Processes of children and adolescents. In Lubart, T. (ed.), The creative process: Perspectives from multiple domains (pp. 255273). London: Palgrave Macmillan. https://doi.org/10.1057/978-1-137-50563-7_10CrossRefGoogle Scholar
Barnett, J. H., Jones, P. B., Robbins, T. W., & Müller, U. (2007). Effects of the catechol-O-methyltransferase Val158Met polymorphism on executive function: A meta-analysis of the Wisconsin card sort test in schizophrenia and healthy controls. Molecular Psychiatry, 12(5), 502509.CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20(2), 8795.CrossRefGoogle ScholarPubMed
Benedek, M., Jauk, E., Sommer, M., Arendasy, M., & Neubauer, A. C. (2014). Intelligence, creativity, and cognitive control: The common and differential involvement of executive functions in intelligence and creativity. Intelligence, 46, 7383.CrossRefGoogle ScholarPubMed
Boyd, B. (2005). Evolutionary theories of art. In Gottschall, J. & Wilson, D. S. (eds.), Literature and the human animal (pp. 147176). Evanston, IL; Northwestern University Press.Google Scholar
Chen, H., Gu, X., Zhou, Y., Ge, Z., Wang, B., Siok, W. T., … Sun, Y. (2017). A genome-wide association study identifies genetic variants associated with mathematics ability. Scientific Reports, 7, 40365.CrossRefGoogle ScholarPubMed
Chermahini, S. A. & Hommel, B. (2010). The (b) link between creativity and dopamine: Spontaneous eye blink rates predict and dissociate divergent and convergent thinking. Cognition, 115(3), 458465.CrossRefGoogle Scholar
Davies, G., Tenesa, A., Payton, A., Yang, J., Harris, S. E., Liewald, D., … Deary, I. (2011). Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Molecular Psychiatry, 16(10), 9961005.CrossRefGoogle ScholarPubMed
Deary, I. J., Johnson, W., & Houlihan, L. M. (2009). Genetic foundations of human intelligence. Human Genetics, 126(1), 215232.CrossRefGoogle ScholarPubMed
Deary, I. J., Spinath, F. M., & Bates, T. C. (2006). Genetics of intelligence. European Journal of Human Genetics, 14(6), 690700.CrossRefGoogle ScholarPubMed
De Manzano, Ö., Cervenka, S., Karabanov, A., Farde, L., & Ullen, F. (2010). Thinking outside a less intact box: Thalamic dopamine D2 receptor densities are negatively related to psychometric creativity in healthy individuals. PLoS One, 5(5), e10670.CrossRefGoogle ScholarPubMed
Derringer, J., Krueger, R. F., Dick, D. M., Saccone, S., Grucza, R. A., Agrawal, A., … Bierut, L. J. (2010). Predicting sensation seeking from dopamine genes. A candidate-system approach. Psychological Science, 21(9), 12821290.CrossRefGoogle Scholar
DeYoung, C. G., Cicchetti, D., Rogosch, F. A., Gray, J. R., Eastman, M., & Grigorenko, E. L. (2011). Sources of cognitive exploration: Genetic variation in the prefrontal dopamine system predicts Openness/Intellect. Journal of Research in Personality, 45(4), 364371.CrossRefGoogle ScholarPubMed
Dissanayake, E. (2007). What art is and what art does: An overview of contemporary evolutionary hypotheses. In Martindale, C. (ed.), Evolutionary and neurocognitive approaches to aesthetics, creativity, and the arts (pp. 114). Amityville, NY: Baywood Publishing.Google Scholar
Durstewitz, D. (2009). Implications of synaptic biophysics for recurrent network dynamics and active memory. Neural Networks, 22(8), 11891200.CrossRefGoogle ScholarPubMed
Ebstein, R. P., Novick, O., Umansky, R., Priel, B., Osher, Y., Blaine, D.Belmaker, R. H. (1996). Dopamine D4 receptor (D4DR) exon III polymorphism associated with the human personality trait of novelty seeking. Nature Genetics, 12(1), 7880.CrossRefGoogle ScholarPubMed
Feist, G. J. (2007). An evolutionary model of artistic and musical creativity. In Martindale, C., Locher, P., & Petrov, V. M. (eds.), Evolutionary and neurocognitive approaches to aesthetics, creativity, and the arts (pp. 1530). Amityville, NY: Baywood Publishing.Google Scholar
Galton, F. (1869). Hereditary genius. An inquiry into its laws and consequences. London: Macmillan.CrossRefGoogle Scholar
Garcia-Garcia, M., Barcelo, F., Clemente, I. C., & Escera, C. (2010). The role of the dopamine transporter DAT1 genotype on the neural correlates of cognitive flexibility. European Journal of Neuroscience, 31(4), 754760.CrossRefGoogle ScholarPubMed
Goldman, N., Glei, D.A., Lin, Y.H., & Weinstein, M. (2010). The serotonin transporter polymorphism (5-HTTLPR): Allelic variation and links with depressive symptoms. Depression and Anxiety, 27(3), 260269.CrossRefGoogle ScholarPubMed
Guilford, J.P. (1950). Creativity. American Psychologist, 5(9), 444454.CrossRefGoogle ScholarPubMed
Guilford, J.P., Christensen, P., Merrifield, P., & Wilson, R. (1978). Alternate uses: Manual of instructions and interpretation. Orange, CA: Sheridan Psychological Services.Google Scholar
Gutknecht, L., Jacob, C., Strobel, A., Kriegebaum, C., Müller, J., Zeng, Y.Lesch, KP. (2007). Tryptophan hydroxylase-2 gene variation influences personality traits and disorders related to emotional dysregulation. The International Journal of Neuropsychopharmacology, 10(3), 309320.Google ScholarPubMed
Heck, A., Lieb, R., Ellgas, A., Pfister, H., Lucae, S., Roeske, D.Ising, M. (2009). Investigation of 17 candidate genes for personality traits confirms effects of the HTR2A gene on novelty seeking. Genes, Brain and Behavior, 8, 464472.CrossRefGoogle ScholarPubMed
Hill, W. D., Arslan, R. C., Xia, C., Luciano, M., Amador, C., Navarro, P. … & Penke, L. (2018). Genomic analysis of family data reveals additional genetic effects on intelligence and personality. Molecular Psychiatry. https://doi.org/10.1038/s41380-017-0005-1CrossRefGoogle Scholar
Irons, W. (2001). Religion as a hard-to-fake sign of commitment. In Nesse, R. M. (ed.), Evolution and the capacity for commitment (pp. 290309). New York: Russell Sage Foundation.Google Scholar
Jagannath, V., Gerstenberg, M., Correll, C. U., Walitza, S., & Grünblatt, E. (2018). A systematic meta-analysis of the association of neuregulin 1 (NRG1), D-amino acid oxidase (DAO), and DAO activator (DAOA)/G72 polymorphisms with schizophrenia. Journal of Neural Transmission, 125(1), 89102.CrossRefGoogle ScholarPubMed
Jiang, W., Shang, S., & Su, Y. (2015). Genetic influences on insight problem solving: The role of catechol-O-methyltransferase (COMT) gene polymorphisms. Frontiers in Psychology, 6, 1569.CrossRefGoogle ScholarPubMed
Kéri, S. (2009). Genes for psychosis and creativity: A promoter polymorphism of the neuregulin 1 gene is related to creativity in people with high intellectual achievement. Psychological Science, 20(9), 10701073.CrossRefGoogle ScholarPubMed
Laucht, M., Becker, K., & Schmidt, M. H. (2006). Visual exploratory behaviour in infancy and novelty seeking in adolescence: Two developmentally specific phenotypes of DRD4? Journal of Child Psychology and Psychiatry, 47(11), 11431151.CrossRefGoogle ScholarPubMed
Logue, S. F. & Gould, T. J. (2014). The neural and genetic basis of executive function: Attention, cognitive flexibility, and response inhibition. Pharmacology Biochemistry and Behavior, 123, 4554.CrossRefGoogle ScholarPubMed
Lumsden, C. J. & Wilson, E. O. (1981). Genes, mind, and ideology. The Sciences, 21(9), 68.CrossRefGoogle Scholar
Markon, K. E., Krueger, R. F., & Watson, D. (2005). Delineating the structure of normal and abnormal personality: An integrative hierarchical approach. Journal of Personality and Social Psychology, 88(1), 139157.CrossRefGoogle ScholarPubMed
Mayseless, N., Uzefovsky, F., Shalev, I., Ebstein, R. P., & Shamay-Tsoory, S. G. (2013). The association between creativity and 7 R polymorphism in the dopamine receptor D4 gene (DRD4). Frontiers in Human Neuroscience, 7, 502.CrossRefGoogle Scholar
Miller, G. F. (2001). Aesthetic fitness: How sexual selection shaped artistic virtuosity as a fitness indicator and aesthetic preferences as mate choice criteria. Bulletin of Psychology and the Arts, 2(1), 2025.Google Scholar
Murphy, M., Runco, M. A., Acar, S., & Reiter-Palmon, R. (2013). Reanalysis of genetic data and rethinking dopamine’s relationship with creativity. Creativity Research Journal, 25(1), 147148.CrossRefGoogle Scholar
Oikkonen, J., Kuusi, T., Peltonen, P., Raijas, P., Ukkola-Vuoti, L., Karma, K., … Järvelä, I. (2016). Creative activities in music–a genome-wide Linkage Analysis. PloS One, 11(2), e0148679.CrossRefGoogle ScholarPubMed
Oikkonen, J., Onkamo, P., Järvelä, I., & Kanduri, C. (2016). Convergent evidence for the molecular basis of musical traits. Scientific Reports, 6, 39707.CrossRefGoogle ScholarPubMed
Park, H., Lee, S., Kim, H.-J., Ju, Y. S., Shin, J.-Y., Hong, D.Seo, J. (2012). Comprehensive genomic analyses associate UGT8 variants with musical ability in a Mongolian population. Journal of Medical Genetics, 49(12), 747752.CrossRefGoogle Scholar
Plomin, R. & Spinath, F. M. (2004). Intelligence: Genetics, genes, and genomics. Journal of Personality and Social Psychology, 86(1), 112129.CrossRefGoogle ScholarPubMed
Power, R. A. & Pluess, M. (2015). Heritability estimates of the Big Five personality traits based on common genetic variants. Translational Psychiatry, 5(7), e604.CrossRefGoogle ScholarPubMed
Pulli, K., Karma, K., Norio, R., Sistonen, P., Göring, H. H. H., & Järvelä, I. (2008). Genome-wide linkage scan for loci of musical aptitude in Finnish families: Evidence for a major locus at 4q22. Journal of Medical Genetics, 45(7), 451456.CrossRefGoogle Scholar
Reuter, M., Roth, S., Holve, K., & Hennig, J. (2006). Identification of first candidate genes for creativity: A pilot study. Brain Research, 1069(1), 190197.CrossRefGoogle ScholarPubMed
Runco, M. A., Dow, G., & Smith, W. R. (2006). Information, experience, and divergent thinking: An empirical test. Creativity Research Journal, 18(3), 269277.CrossRefGoogle Scholar
Runco, M. A., Noble, E. P., Reiter-Palmon, R., Acar, S., Ritchie, T., & Yurkovich, J. M. (2011). The genetic basis of creativity and ideational fluency. Creativity Research Journal, 23(4), 376380.CrossRefGoogle Scholar
Schweizer, T. S. (2006). The psychology of novelty-seeking, creativity and innovation: Neurocognitive aspects within a work-psychological perspective. Creativity and Innovation Management, 15(2), 164172.CrossRefGoogle Scholar
Silvia, P. J., Christensen, A. P., & Cotter, K. N. (2016). Commentary: The development of creativity – ability, motivation, and potential [Monograph]. New Directions for Child and Adolescent Development, 115, 8397.Google Scholar
Simonton, D. K. (2003). Scientific creativity as constrained stochastic behavior: The integration of product, person, and process perspectives. Psychological Bulletin, 129(4), 475494.CrossRefGoogle ScholarPubMed
Spain, S. L., Pedroso, I., Kadeva, N., Miller, M. B., Iacono, W. G., McGue, M.Simpson, M. (2016). A genome-wide analysis of putative functional and exonic variation associated with extremely high intelligence. Molecular Psychiatry, 21(8), 11451151.CrossRefGoogle ScholarPubMed
Sternberg, R. J. & Lubart, T. I. (1995). Defying the crowd: Cultivating creativity in a culture of conformity. New York: Free Press.Google Scholar
Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T., Nouchi, R., & Kawashima, R. (2012). The association between resting functional connectivity and creativity. Cerebral Cortex, 22(12), 29212929.CrossRefGoogle ScholarPubMed
Tan, Y. T., McPherson, G. E., Peretz, I., Berkovic, S. F., & Wilson, S. J. (2014). The genetic basis of music ability. Frontiers in Psychology, 5, 658.CrossRefGoogle ScholarPubMed
Theusch, E., Basu, A., & Gitschier, J. (2009). Genome-wide study of families with absolute pitch reveals linkage to 8q24. 21 and locus heterogeneity. The American Journal of Human Genetics, 85(1), 112119.CrossRefGoogle ScholarPubMed
Velázquez, J. A., Segal, N. L., & Horwitz, B. N. (2015). Genetic and environmental influences on applied creativity: A reared-apart twin study. Personality and Individual Differences, 75, 141146.CrossRefGoogle ScholarPubMed
Vinkhuyzen, A. A., Van der Sluis, S., Posthuma, D., & Boomsma, D. I. (2009). The heritability of aptitude and exceptional talent across different domains in adolescents and young adults. Behavior Genetics, 39(4), 380392.CrossRefGoogle ScholarPubMed
Volf, N. V., Kulikov, A. V., Bortsov, C. U., & Popova, N. K. (2009). Association of verbal and figural creative achievement with polymorphism in the human serotonin transporter gene. Neuroscience Letters, 463(2), 154157.CrossRefGoogle ScholarPubMed
Walberg, H. J. (1988). Creativity and talent as learning. In Sternberg, R. J. (ed.), The nature of creativity: Contemporary psychological perspectives (pp. 340361). New York: Cambridge University Press.Google Scholar
Wang, E., Ding, Y.-C., Flodman, P., Kidd, J. R., Kidd, K. K., Grady, D. L., … & Moyzis, R. K. (2004). The genetic architecture of selection at the human dopamine receptor D4 (DRD4) gene locus. The American Journal of Human Genetics, 74(5), 931944. https://doi.org/10.1086/420854CrossRefGoogle ScholarPubMed
Webster, P. (1994). Measure of creative thinking in music-II (MCTM-II): Administrative guidelines. Evanston, IL: Northwestern University.Google Scholar
Zabelina, D. L., Colzato, L., Beeman, M., & Hommel, B. (2016). Dopamine and the creative mind: Individual differences in creativity are predicted by interactions between dopamine genes DAT and COMT. PloS One, 11(1), e0146768.CrossRefGoogle ScholarPubMed
Zabelina, D. L., O’Leary, D., Pornpattananangkul, N., Nusslock, R., & Beeman, M. (2015). Creativity and sensory gating indexed by the P50: Selective versus leaky sensory gating in divergent thinkers and creative achievers. Neuropsychologia, 69, 7784.CrossRefGoogle ScholarPubMed
Zald, D. H., Cowan, R. L., Riccardi, P., Baldwin, R. M., Ansari, M. S., Li, R.Kessler, R. M. (2008). Midbrain dopamine receptor availability is inversely associated with novelty-seeking traits in humans. The Journal of Neuroscience, 28(53), 1437214378.CrossRefGoogle ScholarPubMed
Zhang, S. & Zhang, J. (2017). The association of TPH genes with creative potential. Psychology of Aesthetics, Creativity, and the Arts, 11(1), 29.CrossRefGoogle Scholar
Zhang, S., Zhang, M., & Zhang, J. (2014). An exploratory study on DRD2 and creative potential. Creativity Research Journal, 26(1), 115123.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×