Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T11:30:44.693Z Has data issue: false hasContentIssue false

Biological Underpinnings

from Part II - Underpinnings of Creativity

Published online by Cambridge University Press:  12 April 2019

James C. Kaufman
Affiliation:
University of Connecticut
Robert J. Sternberg
Affiliation:
Cornell University, New York
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Abzhanov, A., Protas, M. B., Grant, R., Grant, P. R., & Tabin, C. J. (2004). Bmp4 and morphological variation of beaks in Darwin’s finches. Science, 305, 14621465.CrossRefGoogle ScholarPubMed
Amati, D. & Shallice, T. (2007). On the emergence of modern humans. Cognition, 103, 358385.CrossRefGoogle ScholarPubMed
Berna, F., Goldberg, P., Horwitz, L. K., Brink, J., Holt, S., Bamford, M., & Chazan, M. (2012). Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa. Proceedings of the National Academy of Sciences of the United States of America, 109, E1215E1220.Google ScholarPubMed
Campbell, D.T. (1960). Blind generation and selective retention in creative thought as in other thought processes. Psychological Review, 67, 380400.CrossRefGoogle Scholar
Carroll, J. (2004). Literary Darwinism: Literature and the human animal. New York: Routledge.CrossRefGoogle Scholar
Charrier, C., Joshi, K., Coutinho-Budd, J., Kim, J. E., Lambert, N., de Marchena, J., Jin, W. L., Vanderhaeghen, P., Ghosh, A., Sassa, T., & Polleux, F. (2012). Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell, 149, 923935.CrossRefGoogle ScholarPubMed
Clottes, J. (2003). Return to Chauvet cave. London: Thames & Hudson.Google Scholar
Conard, N. J. (2009). A female figurine from the basal Aurignacian of Hohle Fels Cave in southwestern Germany. Nature, 459, 248252.CrossRefGoogle ScholarPubMed
Csikszentmihalyi, M. (1988). Society, culture, and person: A systems view of creativity. In Sternberg, R. J. (ed.), The nature of creativity: Contemporary psychological perspectives (pp. 325339). New York: Cambridge University Press.Google Scholar
Csikszentmihalyi, M. (1993). The evolving self: A psychology for the third millennium. New York: HarperCollins.Google Scholar
Csikszentmihalyi, M. (1996). Creativity: Flow and the psychology of discovery and invention. New York: HarperCollins.Google Scholar
Cupchik, G. C. (2016). The aesthetics of emotion: Up the down staircase of the mind-body. New York: Cambridge University Press.CrossRefGoogle Scholar
Darwin, C. (1859). On the origin of species. London: John Murray.Google Scholar
Darwin, C. (1871). The descent of man and selection in relation to sex. London: John Murray.Google Scholar
Dawkins, R. (1983). The extended phenotype. New York: Oxford University Press.Google Scholar
Dawkins, R. (1989). The evolution of evolvability. In Langton, C. G. (ed.), Artificial life: The proceedings of an interdisciplinary workshop on the synthesis and simulation of living systems (pp. 201220). Redwood City, CA: Addison-Wesley.Google Scholar
Dawkins, R. (2004). The ancestor’s tale: A pilgrimage to the dawn of evolution. New York: Houghton Mifflin.Google Scholar
Dawkins, R. (2006). Universal Darwinism. In Bedau, M. A. and Cleland, C. E. (eds.), The nature of life: Classical and contemporary perspectives from philosophy and science (pp. 360373). New York: Cambridge University Press.Google Scholar
Dennett, D. C. (1995). Darwin’s dangerous idea. New York: Penguin.CrossRefGoogle Scholar
Dennis, M.Y., Nuttle, X., Sudmant, P. H., Antonacci, F., Graves, T. A., Nefedov, M., Rosenfeld, J. A., Sajjadian, S., Malig, M., Kotkiewicz, H., Curry, C. J., Shafer, S., Shaffer, L. G., de Jong, P. J., Wilson, R. K., Eichler, E. E. (2012). Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication. Cell, 149, 912922.CrossRefGoogle ScholarPubMed
Dissanayake, E. (2007). What art is and what art does: An overview of contemporary evolutionary hypotheses. In Martindale, C., Locher, P., & Petrov, V. M. (eds.), Evolutionary and neurocognitive approaches to aesthetics, creativity, and the arts (pp. 114). Amityville, NY: Baywood.Google Scholar
Donald, M. (2006). Art and cognitive evolution. In Turner, M. (ed.), The artful mind: Cognitive science and the riddle of human creativity (pp. 320). New York: Oxford University Press.CrossRefGoogle Scholar
Dunbar, R. (1996). Grooming, gossip, and the evolution of language. London: Faber & Faber.Google Scholar
Dunbar, R. (1998). The social brain hypothesis. Evolutionary Anthropology: Issues, News, and Reviews, 6, 178190.3.0.CO;2-8>CrossRefGoogle Scholar
Ericsson, K. A. (1999). Creative expertise as superior reproducible performance: Innovative and flexible aspects of expert performance. Psychological Inquiry, 10, 329333.Google Scholar
Falk, D. (1983). Cerebral cortices of East African early hominids. Science, 221, 10722074.CrossRefGoogle ScholarPubMed
Feist, G. J. (2008). The psychology of science and the origins of the scientific mind. New Haven, CT: Yale University Press.Google Scholar
Findlay, C. S. & Lumsden, C. J. (1988). The creative mind. London: Academic Press.Google Scholar
Fogarty, L., Creanza, N., & Feldman, M. W. (2015). Cultural evolutionary perspectives on creativity and human innovation. Trends in Ecology and Evolution, 30, 736754.CrossRefGoogle ScholarPubMed
Freeman, W. (2000). A neurobiological role of music in social bonding. In Wallin, N. L., Merkur, S., & Brown, S. (eds.), The origins of music (pp. 411424). Cambridge, MA: MIT Press.Google Scholar
Gabora, L. (2003). Contextual focus: A tentative cognitive explanation for the cultural transition of the middle/upper paleolithic. In Alterman, R. & Hirsch, D. (eds.), Proceedings of the 25th annual meeting of the cognitive science society, Boston, MA. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Gabora, L. (2005). Creative thought as a non-Darwinian evolutionary process. Journal of Creative Behavior, 39, 6587.CrossRefGoogle Scholar
Gabora, L. (2010). Revenge of the “neurds”: Characterizing creative thought in terms of the structure and dynamics of human memory. Creativity Research Journal, 22, 113.CrossRefGoogle Scholar
Gabora, L. & Kaufman, S. B. (2010). Evolutionary approaches to creativity. In Kaufman, J. C. & Sternberg, R. J. (eds.), The Cambridge handbook of creativity (1st edn). New York: Cambridge University Press.Google Scholar
Gamble, C., Gowlett, J., & Dunbar, R. (2011). The social brain and the shape of the paleolithic. Cambridge Archaeological Journal, 21, 115136.CrossRefGoogle Scholar
Geher, G. & Kaufman, S. B. (2013). Mating intelligence unleashed: The role of the mind in sex, love, and dating. New York: Oxford University Press.Google Scholar
Geher, G. & Miller, G. (eds.). (2008). Mating intelligence: Sex, relationships, and the mind’s reproductive system. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Gould, S. J. (1977). Ontogeny and phylogeny. Cambridge, MA: Harvard University Press.Google Scholar
Gould, S. J. & Eldredge, N. (1977). Punctuated equilibria: The tempo and mode of evolution reconsidered. Paleobiology, 3, 115151.CrossRefGoogle Scholar
Gould, S. J. & Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society of London. Series B, Biological Sciences, 205, 581598.Google Scholar
Greengross, G. & Miller, G. (2011). Humor ability reveals intelligence, predicts mating success, and is higher in males. Intelligence, 39, 188192.CrossRefGoogle Scholar
Griskevicius, V., Cialdini, R. B., & Kenrick, D. T. (2006). Peacocks, Picasso, and parental investment: The effects of romantic motives on creativity. Journal of Personality and Social Psychology, 91, 6376.CrossRefGoogle ScholarPubMed
Gruber, H. E. (1981). Darwin on man: A psychological study of scientific creativity (rev. edn). Chicago: University of Chicago Press. (Original work published 1974).Google Scholar
Gruber, H. E. & Wallace, D. B. (1999). The case study method and evolving systems approach for understanding unique creative people at work. In Sternberg, R. J. (ed.), Handbook of creativity (pp. 93115). New York: Cambridge University Press.Google Scholar
Guerrier, S., Coutinho-Budd, J., Sassa, T., Gresset, A., Jordan, N. V., Chen, K., Jin, W. L., Frost, A., & Polleux, F. (2009). The F-BAR domain of srGAP2 induces membrane protrusions required for neuronal migration and morphogenesis, Cell, 138, 9901004.CrossRefGoogle ScholarPubMed
Hall, B. K. (1999). Evolutionary developmental biology. Boston, MA: Kluwer Academic Publishers.CrossRefGoogle Scholar
Haselton, M. G. & Miller, G. F. (2006). Women’s fertility across the cycle increases the short-term attractiveness of creative intelligence. Human Nature, 17, 5073.CrossRefGoogle ScholarPubMed
Herculano-Houzel, S. (2016). The human advantage: A new understanding of how our brain became remarkable. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Holloway, R. L., Yuan, M. S., & Broadfield, D.C. (2004). The human fossil record: Brain endocasts: The paleoneurological evidence. New York. John Wiley & Sons.CrossRefGoogle Scholar
Humphrey, N. K. (1976). The social function of intellect. In Bateson, P. P. G. & Hinde, R. A. (eds.), Growing points in ethology (pp. 303317). Cambridge: Cambridge University Press.Google Scholar
Huxley, J. (1942). Evolution: The modern synthesis. London: Allen & Unwin.Google Scholar
Indriati, E., Swisher, C. C., Lepre, C., Quinn, R. L., & Suriyanto, R. A., et al. (2011). The age of the 20 meter solo river terrace, java, Indonesia and the survival of homo erectus in Asia. PLoS One, 6, E21562.CrossRefGoogle ScholarPubMed
Irons, W. (2001). Religion as a hard-to-fake sign of commitment. In Nesse, R. (ed.), Evolution and the capacity for commitment (pp. 292309). New York: Russell Sage.Google Scholar
Johnson-Laird, P. N. (1993). Human and machine thinking. Hillsdale, NJ: Erlbaum.Google Scholar
Justus, T. & Hutsler, J. J. (2005). Fundamental issues in the evolutionary psychology of music: Assessing innateness and domain specificity. Music Perception, 23, 127.CrossRefGoogle Scholar
Kaufman, J. C. & Kaufman, A. B. (2004). Applying a creativity framework to animal cognition. New Ideas in Psychology, 22, 143155.CrossRefGoogle Scholar
Kaufman, S. B., Kozbelt, A., Silvia, P., Kaufman, J. C., Ramesh, S., & Feist, G. J. (2014). Who finds Bill Gates sexy? Creative mate preferences as a function of cognitive ability, personality, and creative achievement. Journal of Creative Behavior.Google Scholar
Keri, S. (2009). Genes for psychosis and creativity: A promoter polymorphism of the neuregulin 1 gene is related to creativity in people with high intellectual achievement. Psychological Science, 20, 10701073.CrossRefGoogle ScholarPubMed
Klein, R. G. (1992). The archaeology of modern human origins. Evolutionary Anthropology, 1, 515.CrossRefGoogle Scholar
Kohn, M. & Mithen, S. (1999). Handaxes: Products of sexual selection? Antiquity, 73, 518526.CrossRefGoogle Scholar
Kolodny, O., Creanza, N., & Feldman, M. W. (2015). Evolution in leaps: The punctuated accumulation and loss of cultural innovations. Proceedings of the National Academy of Sciences of the United States of America, 112, E6762E6769.Google ScholarPubMed
Kozbelt, A. (2006). Dynamic evaluation of Matisse’s 1935 “Large Reclining Nude.” Empirical Studies of the Arts, 24, 119137CrossRefGoogle Scholar
Kozbelt, A. (2008). Longitudinal hit ratios of classical composers: Reconciling “Darwinian” and expertise acquisition perspectives on lifespan creativity. Psychology of Aesthetics, Creativity, and the Arts, 2, 221235.CrossRefGoogle Scholar
Kozbelt, A. (2009a). Ontogenetic heterochrony and the creative process in visual art: A précis. Psychology of Aesthetics, Creativity, and the Arts, 3, 3537.CrossRefGoogle Scholar
Kozbelt, A. (2009b). The evolution of evolvability, applied to human creativity. International Journal of Creativity and Problem Solving, 19, 101121.Google Scholar
Kozbelt, A. (2015). Prospects for a literally universal science of aesthetics and creativity. International Journal of Creativity and Problem Solving, 25, 2134.Google Scholar
Kozbelt, A. (2017). Tensions in naturalistic, evolutionary explanations of aesthetic reception and production. New Ideas in Psychology, 47, 113120.CrossRefGoogle Scholar
Kozbelt, A. (in press). Evolutionary explanations for humor and creativity. In Luria, S. R., Kaufman, J. C., & Baer, J. (eds.), Creativity and humor. Philadelphia, PA: Elsevier.Google Scholar
Kozbelt, A. & Kaufman, J.C. (2014). Aesthetics assessment. In Smith, J. K. & Tinio, P. (eds.), The Cambridge handbook of aesthetics (pp. 86114). New York: Cambridge University Press.CrossRefGoogle Scholar
Lalande, K. N., Odling-Smee, J., & Miles, S. (2010). How culture shaped the human genome: Bringing genetics and the human sciences together. National Review, 11, 137148.CrossRefGoogle Scholar
Lamarck, J. B. (1809). Philosophie zoologique. Paris: Museum d’Histoire Naturelle.Google Scholar
Leakey, M. D. (1971). Olduvai gorge: Excavations in beds I and II, 1960–1963. Cambridge: Cambridge University Press.Google Scholar
Lewin, R. & Foley, R. (2004). Principles of human evolution. Oxford: Blackwell.Google Scholar
Lewis-Williams, D. (2002). The mind in the cave. London: Thames & Hudson.Google Scholar
Livio, M. (2017). Why?: What makes us curious. New York: Simon & Schuster.Google Scholar
Lumsden, C. J. & Wilson, E. O. (1981). Genes, mind, and culture. Cambridge, MA: Harvard University Press.Google Scholar
Martindale, C. (1990). The clockwork muse: The predictability of artistic change. New York: Basic Books.Google Scholar
Martindale, C. (2009). The evolution and end of art as Hegelian tragedy. Empirical Studies of the Arts, 27, 133140.CrossRefGoogle Scholar
McBrearty, S. & Brooks, A. S. (2000). The revolution that wasn’t: A new interpretation of the origin of modern human behavior. Journal of Human Evolution, 30, 453563.CrossRefGoogle Scholar
McPherron, S. P., Alemseged, Z., Marean, C. W., Wynn, J. G., Reed, D., Geraads, D., Bobe, R., & Bearat, H. A. (2010). Evidence for stone-tool-assisted consumption of animal tissues before 3.39 million years ago at Dikika, Ethiopia. Nature, 466, 857860.CrossRefGoogle ScholarPubMed
Miller, G. F. (2000a). Evolution of human music through sexual selection. In Wallin, N. L., Merker, B., & Brown, S. (eds.), The origins of music (pp. 329360). Cambridge, MA: MIT Press.Google Scholar
Miller, G. F. (2000b). The mating mind. New York: Basic Books.Google Scholar
Miller, G. F. (2001). Aesthetic fitness: How sexual selection shaped artistic virtuosity as a fitness indicator and aesthetic preferences as mate choice criteria. Bulletin of Psychology and the Arts, 2, 2025.Google Scholar
Mithen, S. (1996). The prehistory of the mind: The cognitive origins of art and science. London: Thames & Hudson.Google Scholar
Morriss-Kay, G. M. (2010). The evolution of human artistic creativity. Journal of Anatomy, 216, 158176.CrossRefGoogle ScholarPubMed
Nettle, D. & Clegg, H. (2006). Schizotypy, creativity and mating success in humans. Proceedings of the Royal Society of London, 273, 611615.Google ScholarPubMed
Orians, G. H. 2014. Snakes, sunrises, and Shakespeare. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Pfeiffer, J. E. (1982). The creative explosion. New York: Harper & Row.Google Scholar
Piffer, D. & Hur, Y.-M. (2014). Heritability of creative achievement. Creativity Research Journal, 26, 151157.CrossRefGoogle Scholar
Pinker, S. (1997). How the mind works. New York: Norton.Google Scholar
Pinker, S. (2002). The blank slate: The modern denial of human nature. New York: Penguin.Google Scholar
Purves, D. (2017). Music as biology: The tones we like and why. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Ramachandran, V. S. & Hirstein., W. (1999). The science of art: A neurological theory of aesthetic experience. Journal of Consciousness Studies, 6, 1551.Google Scholar
Rampley, M. (2017). The seductions of Darwin: Art, evolution, neuroscience. University Park, PA: Penn State University Press.Google Scholar
Reber, A. S. (1993). Implicit learning and tacit knowledge: An essay on the cognitive unconscious. New York: Oxford Psychology Series.Google Scholar
Rothenberg, D. (2011). Survival of the beautiful: Art, science, and evolution. New York: Bloomsbury Press.Google Scholar
Ruff, C., Trinkaus, E., & Holliday, T. (1997). Body mass and encephalization in Pleistocene Homo. Nature, 387, 173176.CrossRefGoogle ScholarPubMed
Sawyer, R. K. (2006). Explaining creativity: The science of human innovation. New York: Oxford University Press.CrossRefGoogle Scholar
Simonton, D. K. (1999). Origins of genius: Darwinian perspectives on creativity. New York: Oxford University Press.CrossRefGoogle Scholar
Simonton, D. K. (2011). Creativity and discovery as blind variation: Campbell’s (1960) BVSR model after the half-century mark. Review of General Psychology, 15, 158174.CrossRefGoogle Scholar
Sternberg, R. J. (1998). Cognitive mechanisms in creativity: Is variation blind or sighted? Journal of Creative Behavior, 32, 159176.CrossRefGoogle Scholar
Tomasello, M. (1999). The cultural origins of human cognition. Cambridge, MA: Harvard University Press.Google Scholar
Tooby, J. & Cosmides, L. (1992). The psychological foundations of culture. In Barkow, J., Cosmides, L., & Tooby, J. (eds.), The adapted mind: Evolutionary psychology and the generation of culture (pp. 19136). New York: Oxford University Press.CrossRefGoogle Scholar
Vartanian, O. (2015). Neuroimaging studies of making aesthetic products. In Huston, J. P, Nadal, M., Mora, F., Agnati, L.F., & Cela-Conde, C. J. (eds.), Art, aesthetics, and the brain (pp. 174185). New York: Oxford University Press.CrossRefGoogle Scholar
Villmoare, B., Kimbel, H., Seyoum, C., Campisano, C., DiMaggio, E., Rowan, J., Braun, D., Arrowsmith, J., & Reed, K. (2015). Early homo at 2.8 Ma from Ledi-Geraru, Afar, Ethiopia. Science, 347, 13521355.CrossRefGoogle ScholarPubMed
Ward, T. B., Smith, S. M., & Finke, R. A. (1999). Creative cognition. In Sternberg, R. J. (ed.), Handbook of creativity (pp. 189212). New York: Cambridge University Press.Google Scholar
Weisberg, R. W. (2004). On structure in the creative process: A quantitative case-study of the creation of Picasso’s Guernica. Empirical Studies in the Arts, 22, 2354.CrossRefGoogle Scholar
Weisberg, R. W. (2006). Creativity: Understanding innovation in problem solving, science, invention, and the arts. Hoboken, NJ: Wiley.Google Scholar
Williams, G. C. (1966). Adaptation and natural selection. Princeton, NJ: Princeton University Press.Google Scholar
Wilson, E. O. (1998). Consilience: The unity of knowledge. New York: Vintage.Google Scholar
Wrangham, R. W. (2009). Catching fire: How cooking made us human. New York: Basic Books.Google Scholar

References

Amabile, T. M. (1983). The social psychology of creativity: A componential conceptualization. Journal of Personality and Social Psychology, 45(2), 357–356.CrossRefGoogle Scholar
Bachner-Melman, R., Dina, C., Zohar, A. H., Constantini, N., Lerer, E., Hoch, S., … Ebstein, R. (2005). AVPR1a and SLC6A4 gene polymorphisms are associated with creative dance performance. PLoS Genetics, 1(3), e42.CrossRefGoogle ScholarPubMed
Baer, J. & Kaufman, J. C. (2005). Bridging generality and specificity: The amusement park theoretical (APT) model of creativity. Roeper Review, 27(3), 158163.CrossRefGoogle Scholar
Barbot, B., Besançon, M., & Lubart, T. (2016). The generality-specificity of creativity: Exploring the structure of creative potential with EPoC. Learning and Individual Differences, 52, 178187.CrossRefGoogle Scholar
Barbot, B., Lubart, T. I., & Besançon, M. (2016). “Peaks, slumps, and bumps”: Individual differences in the development of creativity in children and adolescents. New Directions for Child and Adolescent Development, 151, 3345.CrossRefGoogle Scholar
Barbot, B., Tan, M., & Grigorenko, E. L. (2013). The genetics of creativity: The generative and receptive sides of the creativity equation. In Vartanian, O., Bristol, A., & Kaufman, J. (eds.), The neuroscience of creativity (pp. 7193). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Barbot, B. & Tinio, P. P. (2015). Where is the “g” in “creativity”? A specialization differentiation hypothesis. Frontiers in Human Neuroscience, 8, 1041.CrossRefGoogle Scholar
Barbot, B. & Webster, P. R. (2018). Creative thinking in music: Processes of children and adolescents. In Lubart, T. (ed.), The creative process: Perspectives from multiple domains (pp. 255273). London: Palgrave Macmillan. https://doi.org/10.1057/978-1-137-50563-7_10CrossRefGoogle Scholar
Barnett, J. H., Jones, P. B., Robbins, T. W., & Müller, U. (2007). Effects of the catechol-O-methyltransferase Val158Met polymorphism on executive function: A meta-analysis of the Wisconsin card sort test in schizophrenia and healthy controls. Molecular Psychiatry, 12(5), 502509.CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20(2), 8795.CrossRefGoogle ScholarPubMed
Benedek, M., Jauk, E., Sommer, M., Arendasy, M., & Neubauer, A. C. (2014). Intelligence, creativity, and cognitive control: The common and differential involvement of executive functions in intelligence and creativity. Intelligence, 46, 7383.CrossRefGoogle ScholarPubMed
Boyd, B. (2005). Evolutionary theories of art. In Gottschall, J. & Wilson, D. S. (eds.), Literature and the human animal (pp. 147176). Evanston, IL; Northwestern University Press.Google Scholar
Chen, H., Gu, X., Zhou, Y., Ge, Z., Wang, B., Siok, W. T., … Sun, Y. (2017). A genome-wide association study identifies genetic variants associated with mathematics ability. Scientific Reports, 7, 40365.CrossRefGoogle ScholarPubMed
Chermahini, S. A. & Hommel, B. (2010). The (b) link between creativity and dopamine: Spontaneous eye blink rates predict and dissociate divergent and convergent thinking. Cognition, 115(3), 458465.CrossRefGoogle Scholar
Davies, G., Tenesa, A., Payton, A., Yang, J., Harris, S. E., Liewald, D., … Deary, I. (2011). Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Molecular Psychiatry, 16(10), 9961005.CrossRefGoogle ScholarPubMed
Deary, I. J., Johnson, W., & Houlihan, L. M. (2009). Genetic foundations of human intelligence. Human Genetics, 126(1), 215232.CrossRefGoogle ScholarPubMed
Deary, I. J., Spinath, F. M., & Bates, T. C. (2006). Genetics of intelligence. European Journal of Human Genetics, 14(6), 690700.CrossRefGoogle ScholarPubMed
De Manzano, Ö., Cervenka, S., Karabanov, A., Farde, L., & Ullen, F. (2010). Thinking outside a less intact box: Thalamic dopamine D2 receptor densities are negatively related to psychometric creativity in healthy individuals. PLoS One, 5(5), e10670.CrossRefGoogle ScholarPubMed
Derringer, J., Krueger, R. F., Dick, D. M., Saccone, S., Grucza, R. A., Agrawal, A., … Bierut, L. J. (2010). Predicting sensation seeking from dopamine genes. A candidate-system approach. Psychological Science, 21(9), 12821290.CrossRefGoogle Scholar
DeYoung, C. G., Cicchetti, D., Rogosch, F. A., Gray, J. R., Eastman, M., & Grigorenko, E. L. (2011). Sources of cognitive exploration: Genetic variation in the prefrontal dopamine system predicts Openness/Intellect. Journal of Research in Personality, 45(4), 364371.CrossRefGoogle ScholarPubMed
Dissanayake, E. (2007). What art is and what art does: An overview of contemporary evolutionary hypotheses. In Martindale, C. (ed.), Evolutionary and neurocognitive approaches to aesthetics, creativity, and the arts (pp. 114). Amityville, NY: Baywood Publishing.Google Scholar
Durstewitz, D. (2009). Implications of synaptic biophysics for recurrent network dynamics and active memory. Neural Networks, 22(8), 11891200.CrossRefGoogle ScholarPubMed
Ebstein, R. P., Novick, O., Umansky, R., Priel, B., Osher, Y., Blaine, D.Belmaker, R. H. (1996). Dopamine D4 receptor (D4DR) exon III polymorphism associated with the human personality trait of novelty seeking. Nature Genetics, 12(1), 7880.CrossRefGoogle ScholarPubMed
Feist, G. J. (2007). An evolutionary model of artistic and musical creativity. In Martindale, C., Locher, P., & Petrov, V. M. (eds.), Evolutionary and neurocognitive approaches to aesthetics, creativity, and the arts (pp. 1530). Amityville, NY: Baywood Publishing.Google Scholar
Galton, F. (1869). Hereditary genius. An inquiry into its laws and consequences. London: Macmillan.CrossRefGoogle Scholar
Garcia-Garcia, M., Barcelo, F., Clemente, I. C., & Escera, C. (2010). The role of the dopamine transporter DAT1 genotype on the neural correlates of cognitive flexibility. European Journal of Neuroscience, 31(4), 754760.CrossRefGoogle ScholarPubMed
Goldman, N., Glei, D.A., Lin, Y.H., & Weinstein, M. (2010). The serotonin transporter polymorphism (5-HTTLPR): Allelic variation and links with depressive symptoms. Depression and Anxiety, 27(3), 260269.CrossRefGoogle ScholarPubMed
Guilford, J.P. (1950). Creativity. American Psychologist, 5(9), 444454.CrossRefGoogle ScholarPubMed
Guilford, J.P., Christensen, P., Merrifield, P., & Wilson, R. (1978). Alternate uses: Manual of instructions and interpretation. Orange, CA: Sheridan Psychological Services.Google Scholar
Gutknecht, L., Jacob, C., Strobel, A., Kriegebaum, C., Müller, J., Zeng, Y.Lesch, KP. (2007). Tryptophan hydroxylase-2 gene variation influences personality traits and disorders related to emotional dysregulation. The International Journal of Neuropsychopharmacology, 10(3), 309320.Google ScholarPubMed
Heck, A., Lieb, R., Ellgas, A., Pfister, H., Lucae, S., Roeske, D.Ising, M. (2009). Investigation of 17 candidate genes for personality traits confirms effects of the HTR2A gene on novelty seeking. Genes, Brain and Behavior, 8, 464472.CrossRefGoogle ScholarPubMed
Hill, W. D., Arslan, R. C., Xia, C., Luciano, M., Amador, C., Navarro, P. … & Penke, L. (2018). Genomic analysis of family data reveals additional genetic effects on intelligence and personality. Molecular Psychiatry. https://doi.org/10.1038/s41380-017-0005-1CrossRefGoogle Scholar
Irons, W. (2001). Religion as a hard-to-fake sign of commitment. In Nesse, R. M. (ed.), Evolution and the capacity for commitment (pp. 290309). New York: Russell Sage Foundation.Google Scholar
Jagannath, V., Gerstenberg, M., Correll, C. U., Walitza, S., & Grünblatt, E. (2018). A systematic meta-analysis of the association of neuregulin 1 (NRG1), D-amino acid oxidase (DAO), and DAO activator (DAOA)/G72 polymorphisms with schizophrenia. Journal of Neural Transmission, 125(1), 89102.CrossRefGoogle ScholarPubMed
Jiang, W., Shang, S., & Su, Y. (2015). Genetic influences on insight problem solving: The role of catechol-O-methyltransferase (COMT) gene polymorphisms. Frontiers in Psychology, 6, 1569.CrossRefGoogle ScholarPubMed
Kéri, S. (2009). Genes for psychosis and creativity: A promoter polymorphism of the neuregulin 1 gene is related to creativity in people with high intellectual achievement. Psychological Science, 20(9), 10701073.CrossRefGoogle ScholarPubMed
Laucht, M., Becker, K., & Schmidt, M. H. (2006). Visual exploratory behaviour in infancy and novelty seeking in adolescence: Two developmentally specific phenotypes of DRD4? Journal of Child Psychology and Psychiatry, 47(11), 11431151.CrossRefGoogle ScholarPubMed
Logue, S. F. & Gould, T. J. (2014). The neural and genetic basis of executive function: Attention, cognitive flexibility, and response inhibition. Pharmacology Biochemistry and Behavior, 123, 4554.CrossRefGoogle ScholarPubMed
Lumsden, C. J. & Wilson, E. O. (1981). Genes, mind, and ideology. The Sciences, 21(9), 68.CrossRefGoogle Scholar
Markon, K. E., Krueger, R. F., & Watson, D. (2005). Delineating the structure of normal and abnormal personality: An integrative hierarchical approach. Journal of Personality and Social Psychology, 88(1), 139157.CrossRefGoogle ScholarPubMed
Mayseless, N., Uzefovsky, F., Shalev, I., Ebstein, R. P., & Shamay-Tsoory, S. G. (2013). The association between creativity and 7 R polymorphism in the dopamine receptor D4 gene (DRD4). Frontiers in Human Neuroscience, 7, 502.CrossRefGoogle Scholar
Miller, G. F. (2001). Aesthetic fitness: How sexual selection shaped artistic virtuosity as a fitness indicator and aesthetic preferences as mate choice criteria. Bulletin of Psychology and the Arts, 2(1), 2025.Google Scholar
Murphy, M., Runco, M. A., Acar, S., & Reiter-Palmon, R. (2013). Reanalysis of genetic data and rethinking dopamine’s relationship with creativity. Creativity Research Journal, 25(1), 147148.CrossRefGoogle Scholar
Oikkonen, J., Kuusi, T., Peltonen, P., Raijas, P., Ukkola-Vuoti, L., Karma, K., … Järvelä, I. (2016). Creative activities in music–a genome-wide Linkage Analysis. PloS One, 11(2), e0148679.CrossRefGoogle ScholarPubMed
Oikkonen, J., Onkamo, P., Järvelä, I., & Kanduri, C. (2016). Convergent evidence for the molecular basis of musical traits. Scientific Reports, 6, 39707.CrossRefGoogle ScholarPubMed
Park, H., Lee, S., Kim, H.-J., Ju, Y. S., Shin, J.-Y., Hong, D.Seo, J. (2012). Comprehensive genomic analyses associate UGT8 variants with musical ability in a Mongolian population. Journal of Medical Genetics, 49(12), 747752.CrossRefGoogle Scholar
Plomin, R. & Spinath, F. M. (2004). Intelligence: Genetics, genes, and genomics. Journal of Personality and Social Psychology, 86(1), 112129.CrossRefGoogle ScholarPubMed
Power, R. A. & Pluess, M. (2015). Heritability estimates of the Big Five personality traits based on common genetic variants. Translational Psychiatry, 5(7), e604.CrossRefGoogle ScholarPubMed
Pulli, K., Karma, K., Norio, R., Sistonen, P., Göring, H. H. H., & Järvelä, I. (2008). Genome-wide linkage scan for loci of musical aptitude in Finnish families: Evidence for a major locus at 4q22. Journal of Medical Genetics, 45(7), 451456.CrossRefGoogle Scholar
Reuter, M., Roth, S., Holve, K., & Hennig, J. (2006). Identification of first candidate genes for creativity: A pilot study. Brain Research, 1069(1), 190197.CrossRefGoogle ScholarPubMed
Runco, M. A., Dow, G., & Smith, W. R. (2006). Information, experience, and divergent thinking: An empirical test. Creativity Research Journal, 18(3), 269277.CrossRefGoogle Scholar
Runco, M. A., Noble, E. P., Reiter-Palmon, R., Acar, S., Ritchie, T., & Yurkovich, J. M. (2011). The genetic basis of creativity and ideational fluency. Creativity Research Journal, 23(4), 376380.CrossRefGoogle Scholar
Schweizer, T. S. (2006). The psychology of novelty-seeking, creativity and innovation: Neurocognitive aspects within a work-psychological perspective. Creativity and Innovation Management, 15(2), 164172.CrossRefGoogle Scholar
Silvia, P. J., Christensen, A. P., & Cotter, K. N. (2016). Commentary: The development of creativity – ability, motivation, and potential [Monograph]. New Directions for Child and Adolescent Development, 115, 8397.Google Scholar
Simonton, D. K. (2003). Scientific creativity as constrained stochastic behavior: The integration of product, person, and process perspectives. Psychological Bulletin, 129(4), 475494.CrossRefGoogle ScholarPubMed
Spain, S. L., Pedroso, I., Kadeva, N., Miller, M. B., Iacono, W. G., McGue, M.Simpson, M. (2016). A genome-wide analysis of putative functional and exonic variation associated with extremely high intelligence. Molecular Psychiatry, 21(8), 11451151.CrossRefGoogle ScholarPubMed
Sternberg, R. J. & Lubart, T. I. (1995). Defying the crowd: Cultivating creativity in a culture of conformity. New York: Free Press.Google Scholar
Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T., Nouchi, R., & Kawashima, R. (2012). The association between resting functional connectivity and creativity. Cerebral Cortex, 22(12), 29212929.CrossRefGoogle ScholarPubMed
Tan, Y. T., McPherson, G. E., Peretz, I., Berkovic, S. F., & Wilson, S. J. (2014). The genetic basis of music ability. Frontiers in Psychology, 5, 658.CrossRefGoogle ScholarPubMed
Theusch, E., Basu, A., & Gitschier, J. (2009). Genome-wide study of families with absolute pitch reveals linkage to 8q24. 21 and locus heterogeneity. The American Journal of Human Genetics, 85(1), 112119.CrossRefGoogle ScholarPubMed
Velázquez, J. A., Segal, N. L., & Horwitz, B. N. (2015). Genetic and environmental influences on applied creativity: A reared-apart twin study. Personality and Individual Differences, 75, 141146.CrossRefGoogle ScholarPubMed
Vinkhuyzen, A. A., Van der Sluis, S., Posthuma, D., & Boomsma, D. I. (2009). The heritability of aptitude and exceptional talent across different domains in adolescents and young adults. Behavior Genetics, 39(4), 380392.CrossRefGoogle ScholarPubMed
Volf, N. V., Kulikov, A. V., Bortsov, C. U., & Popova, N. K. (2009). Association of verbal and figural creative achievement with polymorphism in the human serotonin transporter gene. Neuroscience Letters, 463(2), 154157.CrossRefGoogle ScholarPubMed
Walberg, H. J. (1988). Creativity and talent as learning. In Sternberg, R. J. (ed.), The nature of creativity: Contemporary psychological perspectives (pp. 340361). New York: Cambridge University Press.Google Scholar
Wang, E., Ding, Y.-C., Flodman, P., Kidd, J. R., Kidd, K. K., Grady, D. L., … & Moyzis, R. K. (2004). The genetic architecture of selection at the human dopamine receptor D4 (DRD4) gene locus. The American Journal of Human Genetics, 74(5), 931944. https://doi.org/10.1086/420854CrossRefGoogle ScholarPubMed
Webster, P. (1994). Measure of creative thinking in music-II (MCTM-II): Administrative guidelines. Evanston, IL: Northwestern University.Google Scholar
Zabelina, D. L., Colzato, L., Beeman, M., & Hommel, B. (2016). Dopamine and the creative mind: Individual differences in creativity are predicted by interactions between dopamine genes DAT and COMT. PloS One, 11(1), e0146768.CrossRefGoogle ScholarPubMed
Zabelina, D. L., O’Leary, D., Pornpattananangkul, N., Nusslock, R., & Beeman, M. (2015). Creativity and sensory gating indexed by the P50: Selective versus leaky sensory gating in divergent thinkers and creative achievers. Neuropsychologia, 69, 7784.CrossRefGoogle ScholarPubMed
Zald, D. H., Cowan, R. L., Riccardi, P., Baldwin, R. M., Ansari, M. S., Li, R.Kessler, R. M. (2008). Midbrain dopamine receptor availability is inversely associated with novelty-seeking traits in humans. The Journal of Neuroscience, 28(53), 1437214378.CrossRefGoogle ScholarPubMed
Zhang, S. & Zhang, J. (2017). The association of TPH genes with creative potential. Psychology of Aesthetics, Creativity, and the Arts, 11(1), 29.CrossRefGoogle Scholar
Zhang, S., Zhang, M., & Zhang, J. (2014). An exploratory study on DRD2 and creative potential. Creativity Research Journal, 26(1), 115123.CrossRefGoogle Scholar

References

Abraham, A. (2014). Creative thinking as orchestrated by semantic processing vs. cognitive control brain networks. Frontiers in Human Neuroscience, 8(95). https://doi.org/10.3389/fnhum.2014.00095CrossRefGoogle ScholarPubMed
Abraham, A. (2019). The neuropsychology of creativity. Current Opinion in Behavioral Sciences, 27, 7176.CrossRefGoogle Scholar
Abraham, A., Beudt, S., Ott, D. V., & Yves von Cramon, D. (2012). Creative cognition and the brain: Dissociations between frontal, parietal-temporal and basal ganglia groups. Brain Research, 1482, 5570.CrossRefGoogle ScholarPubMed
Addis, D. R., Pan, L., Vu, M. A., Laiser, N., & Schacter, D. L. (2009). Constructive episodic simulation of the future and the past: Distinct subsystems of a core brain network mediate imagining and remembering. Neuropsychologia, 47, 22222238.CrossRefGoogle ScholarPubMed
Addis, D. R., Wong, A. T., & Schacter, D. L. (2007). Remembering the past and imagining the future: Common and distinct neural substrates during event construction and elaboration. Neuropsychologia, 45, 13631377.CrossRefGoogle ScholarPubMed
Amabile, T. M. (1983). Social psychology of creativity: A componential conceptualization. Journal of Personality and Social Psychology, 45, 9971013.CrossRefGoogle Scholar
Amabile, T. M. (1996). Creativity in context. Boulder, CO: Westview Press.Google Scholar
Amabile, T. M. (2013). Componential theory of creativity. In Kessler, E. H. (ed.), Encyclopedia of management theory (pp. 135139). Thousand Oaks, CA: Sage.Google Scholar
Arden, R., Chavez, R. S., Grazioplene, R., & Jung, R. E. (2010). Neuroimaging creativity: A psychometric view. Behavioural Brain Research, 214, 143156.CrossRefGoogle ScholarPubMed
Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6, 115116.CrossRefGoogle ScholarPubMed
Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends Cognitive Sciences, 8, 170177.CrossRefGoogle ScholarPubMed
Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4, 829839.CrossRefGoogle ScholarPubMed
Baer, J. (1998). The case for domain specificity in creativity. Creativity Research Journal, 11, 173177.CrossRefGoogle Scholar
Beaty, R. E., Benedek, M., Kaufman, S. B., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5(10964). https://doi.org/10.1038/srep10964CrossRefGoogle Scholar
Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20, 8795.CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E., Fink, A., Silvia, P. J., Hodges, D. A., Koschutnig, K., & Neubauer, A. C. (2014). Creativity and the default network: A functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64, 9298.CrossRefGoogle ScholarPubMed
Beaty, R. E., Kaufman, S. B., Benedek, M., Jung, R. E., Kenett, Y. N., Jauk, E., Neubauer, A. C., & Silvia, P. J. (2016). Personality and complex brain networks: The role of openness to experience in default network efficiency. Human Brain Mapping, 37, 773779.CrossRefGoogle ScholarPubMed
Beaty, R. E., Kenett, Y. N., Christensen, A. P., Rosenberg, M. D., Benedek, M., Chen, Q., Fink, A., Qiu, J., Kwapil, T. R., Kane, M. J., & Silvia, P. J. (2018). Robust prediction of individual creative ability from brain functional connectivity. Proceedings of the National Academy of Sciences USA, 115, 10871092.CrossRefGoogle ScholarPubMed
Bekhtereva, N. P., Starchenko, M. G., Klyucharev, V. A., Vorob’ev, V. A., Pakhomov, S. V., & Medvedev, S. V. (2000). Study of the brain organization of creativity: II. Positron-emission tomography data. Human Physiology, 26, 516522.CrossRefGoogle Scholar
Benedek, M., Franz, F., Heene, M., & Neubauer, A. C. (2012). Differential effects of cognitive inhibition and intelligence on creativity. Personality and Individual Differences, 53, 480485.CrossRefGoogle ScholarPubMed
Benedek, M., Jauk, E., Sommer, M., Arendasy, M., & Neubauer, A. C. (2014). Intelligence, creativity, and cognitive control: The common and differential involvement of executive functions in intelligence and creativity. Intelligence, 46, 7383.CrossRefGoogle ScholarPubMed
Benedek, M. & Neubauer, A. C. (2013). Revisiting Mednick’s model on creativity- related differences in associative hierarchies. Evidence for a common path to uncommon thought. Journal of Creative Behavior, 47, 273289.CrossRefGoogle Scholar
Boccia, M., Piccardi, L., Palermo, L., Nori, R., & Palmiero, M. (2015). Where do bright ideas occur in our brain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity. Frontiers in Psychology, 6(1195). https://doi.org/10.3389/fpsyg.2015.01195CrossRefGoogle ScholarPubMed
Boden, M. A. (2013). Creativity as a neuroscientific mystery. In Vartanian, O., Bristol, A. S., & Kaufman, J. C. (eds.), Neuroscience of creativity (pp. 318). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Bressler, S. & Menon, V. (2010). Large-scale brain networks in cognition: Emerging methods and principles. Trends in Cognitive Sciences, 14, 277290.CrossRefGoogle ScholarPubMed
Bunge, S. A., Helskog, E. H., & Wendelken, C. (2009). Left, but not right, rostrolateral prefrontal cortex meets a stringent test of the relational integration hypothesis. NeuroImage, 46, 338342.CrossRefGoogle Scholar
Campbell, D. T. (1960). Blind variation and selective retention in creative thought as in other knowledge processes. Psychological Review, 67, 380400.CrossRefGoogle ScholarPubMed
Carlsson, I., Wendt, P. E., & Risberg, J. (2000). On the neurobiology of creativity. Differences in frontal activity between high and low creative subjects. Neuropsychologia, 38, 873885.CrossRefGoogle ScholarPubMed
Carson, S. H. (2018). Creativity and psychopathology: A relationship of shared neurocognitive vulnerabilities. In Jung, R. E. & Vartanian, O. (eds.), Cambridge handbook of the neuroscience of creativity (pp. 136157). New York: Cambridge University Press.CrossRefGoogle Scholar
Carson, S. H., Peterson, J. B., & Higgins, D. M. (2005). Reliability, validity, and factor structure of the creative achievement questionnaire. Creativity Research Journal, 17, 3750.CrossRefGoogle Scholar
Carter, C. S., Mintun, M., Nichols, T., & Cohen, J. D. (1997). Anterior cingulate gyrus dysfunction and selective attention deficits in schizophrenia: [15O]H2O PET study during single-trial Stroop task performance. American Journal of Psychiatry, 154, 16701675.CrossRefGoogle ScholarPubMed
Chan Barrett, K. & Limb, C. J. (2019). Unveiling artistic minds: Case studies of creativity. Current Opinion in Behavioral Sciences, 27, 8489.CrossRefGoogle Scholar
Christoff, K., Prabhakaran, V., Dorfman, J., Zhao, Z., Kroger, J. K., Holyoak, K. J., & Gabrieli, J. D. E. (2001) Rostrolateral prefrontal cortex involvement in relational integration during reasoning. NeuroImage, 14, 11361149.CrossRefGoogle ScholarPubMed
Chrysikou, E. G., Weber, M., & Thompson-Schill, S. L. (2014). A matched filter hypothesis for cognitive control. Neuropsychologia, 62, 341355.CrossRefGoogle ScholarPubMed
Chuderski, A. (2013). When are fluid intelligence and working memory isomorphic and when are they not? Intelligence, 41, 244262.CrossRefGoogle Scholar
Cocchi, L., Zalesky, A., Fornito, A., & Mattingley, J. B. (2013). Dynamic cooperation and competition between brain systems during cognitive control. Trends in Cognitive Sciences, 17, 494501.CrossRefGoogle ScholarPubMed
Crone, E. A., Wendelken, C., van Leijenhorst, L., Honomichl, R. D., Christoff, K., & Bunge, S. A. (2009). Neurocognitive development of relational reasoning. Developmental Science, 12, 5566.CrossRefGoogle ScholarPubMed
De Pisapia, N., Bacci, F., Parrott, D., & Melcher, D. (2016). Brain networks for visual creativity: a functional connectivity study of planning a visual artwork. Scientific Reports, 6(39185). https://doi.org/10.1038/srep39185CrossRefGoogle ScholarPubMed
DeYoung, C. G. (2010). Personality neuroscience and the biology of traits. Social and Personality Psychology Compass, 4(12), 11651180.CrossRefGoogle Scholar
DeYoung, C. G., Quilty, L. C., & Peterson, J. B. (2007). Between facets and domains: Ten aspects of the big five. Journal of Personality and Social Psychology, 93, 880896.CrossRefGoogle Scholar
Dietrich, A. & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological Bulletin, 136, 822848.CrossRefGoogle ScholarPubMed
Dorfman, L., Martindale, C., Gassimova, V., & Vartanian, O. (2008). Creativity and speed of information processing: A double dissociation involving elementary versus inhibitory cognitive tasks. Personality and Individual Differences, 44, 13821390.CrossRefGoogle Scholar
Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., & May, A. (2004). Changes in grey matter induced by training. Nature, 427, 311312.CrossRefGoogle ScholarPubMed
Dunbar, K. (1997). How scientists think: Online creativity and conceptual change in science. In Ward, T. B., Smith, S. M., & Vaid, S. (eds.), Conceptual structures and processes: Emergence, discovery and change (pp. 461493). Washington, DC: American Psychological Association Press.Google Scholar
Ellamil, M., Dobson, C., Beeman, M., & Christoff, K. (2012). Evaluative and generative modes of thought during the creative process. Neuroimage, 59, 17831794.CrossRefGoogle ScholarPubMed
Eysenck, H. J. (1993). Creativity and personality: Suggestions for a theory. Psychological Inquiry, 4, 147178.CrossRefGoogle Scholar
Eysenck, H. J. (1995). Genius: The natural history of creativity. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Feist, G. J. (1998). A meta-analysis of the impact of personality on scientific and artistic creativity. Personality and Social Psychology Review, 2, 290309.CrossRefGoogle Scholar
Feist, G. J. (1999). The influence of personality on artistic and scientific creativity. In Sternberg, R. J. (ed.), Handbook of creativity (pp. 273296). Cambridge: Cambridge University Press.Google Scholar
Feist, G. J. (2010). The function of personality in creativity. In Kaufman, J. C. & Sternberg, R. J. (eds.), The Cambridge handbook of creativity (pp. 113130). New York: Cambridge University Press.CrossRefGoogle Scholar
Ferstl, E. C., Neumann, J., Bogler, C., & von Cramon, D. Y. (2008). The extended language network: A meta-analysis of neuroimaging studies on text comprehension. Human Brain Mapping, 29, 581593.CrossRefGoogle ScholarPubMed
Fink, A., Koschutnig, K., Benedek, M., Reishofer, G., Ischebeck, A., Weiss, E. M., & Ebner, F. (2012). Stimulating creativity via the exposure to other people’s ideas. Human Brain Mapping, 33, 26032610.CrossRefGoogle ScholarPubMed
Galton, F. (1874). English men of science: Their nature and nurture. London: Macmillan & Co.CrossRefGoogle Scholar
Gentner, D. (1998). Analogy. In Bechtel, W. & Graham, G. (eds.), A companion to cognitive science (pp. 107113). Oxford: Blackwell.Google Scholar
Gentner, D., Bowdle, B. Wolff, P., & Boronat, C. (2001). Metaphor is like analogy. In Gentner, D., Holyoak, K. J., & Kokinov, B. (eds.), The analogical mind: Perspectives from cognitive science (pp. 199253). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Gilhooly, K. J., Fioratou, E., Anthony, S. H., & Wynn, V. (2007). Divergent thinking: Strategies and executive involvement in generating novel uses for familiar objects. British Journal of Psychology, 98, 611625.CrossRefGoogle ScholarPubMed
Glucksberg, S. (2003). The psycholinguistics of metaphor. Trends in Cognitive Sciences, 7, 9297.CrossRefGoogle ScholarPubMed
Goel, V. (2007). Anatomy of deductive reasoning. Trends in Cognitive Sciences, 11, 435441.CrossRefGoogle ScholarPubMed
Goff, K. & Torrance, E. P. (2002). Abbreviated Torrance Test for adults manual. Bensenville, IL: Scholastic Testing Service.Google Scholar
Gonen-Yaacovi, G., de Souza, L. C., Levy, R., Urbanski, M., Josse, G., & Volle, E. (2013). Rostral and caudal prefrontal contribution to creativity: A meta-analysis of functional imaging data. Frontiers in Human Neuroscience, 7(465). https://doi.org/10.3389/fnhum.2013.00465CrossRefGoogle ScholarPubMed
Green, A. E., Kraemer, D. J., Fugelsang, J. A., Gray, J. R., & Dunbar, K. N. (2012). Neural correlates of creativity in analogical reasoning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 264272.Google ScholarPubMed
Grice, H. P. (1975). Logic and conversation. In Cole, P. & Morgan, J. (eds.), Syntax and semantics: Speech acts (Vol. 3, pp. 4158). New York: Academic Press.CrossRefGoogle Scholar
Guilford, J. P. (1967). The nature of human intelligence. New York: McGraw-Hill.Google Scholar
Haier, R. J., Jung, R. E., Yeo, R. A., Head, K., Alkire, M. T. (2005). The neuroanatomy of general intelligence: Sex matters. Neuroimage, 25, 320327.CrossRefGoogle ScholarPubMed
Horn, J. L., & Cattell, R. B. (1966). Refinement and test of the theory of fluid and crystallized general intelligences. Journal of Educational Psychology, 57, 253–270.CrossRefGoogle ScholarPubMed
Horn, J. L., & Cattell, R. B. (1967). Age differences in fluid and crystallized intelligence. Acta Psychologica, 26, 107–129.CrossRefGoogle ScholarPubMed
Japardi, K., Bookheimer, S., Knudsen, K., Ghahremani, D. G., & Bilder, R. M. (2018). Functional magnetic resonance imaging of divergent and convergent thinking in Big-C creativity. Neuropsychologia, 118, 5967.CrossRefGoogle ScholarPubMed
Jauk, E., Benedek, M., Dunst, B., & Neubauer, A. C. (2013). The relationship between intelligence and creativity: New support for the threshold hypothesis by means of empirical breakpoint detection. Intelligence, 41, 212221.CrossRefGoogle ScholarPubMed
John, O. P., Naumann, L. P., & Soto, C. J. (2008). Paradigm shift to the integrative Big Five trait taxonomy. In John, O. P., Robbins, R. W., & Pervin, L. A. (eds.), Personality handbook: Theory and research (pp. 114158). New York: Guilford.Google Scholar
Jung, R. E., Gasparovic, C., Chavez, R. S., Flores, R. A., Smith, S. M., Caprihan, A., & Yeo, R. A. (2009). Biochemical support for the “threshold” theory of creativity: A magnetic resonance spectroscopy study. Journal of Neuroscience, 29, 53195325.CrossRefGoogle ScholarPubMed
Jung, R. E., Grazioplene, R., Caprihan, A., Chavez, R. S., Haier, R. J. (2010). White matter integrity, creativity, and psychopathology: disentangling constructs with diffusion tensor imaging. PLoS One, 5, e9818.CrossRefGoogle ScholarPubMed
Jung, R. E., Mead, B. S., Carrasco, J. & Flores, R. A. (2013). The structure of creative cognition in the human brain. Frontiers in Human Neurosciences, 7(330).Google ScholarPubMed
Jung, R. E., Segall, J. M., Jeremy Bockholt, H., Flores, R. A., Smith, S., Chavez, R. S., & Haier, R. J. (2010). Neuroanatomy of creativity. Human Brain Mapping, 31, 398409.CrossRefGoogle ScholarPubMed
Jung, R. E., & Vartanian, O. (eds.). (2018). The Cambridge handbook of the neuroscience of creativity. New York: Cambridge University Press.CrossRefGoogle Scholar
Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The generality of working memory capacity: A latent-variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology: General, 133, 189217.CrossRefGoogle ScholarPubMed
Kaufman, J. C. & Baer, J. (eds.). (2005). Creativity across domains: Faces of the muse. Mahwah, NJ: Lawrence Erlbaum Associates.CrossRefGoogle Scholar
Kaufman, J. C. & Beghetto, R. A. (2009). Beyond big and little: The four C model of creativity. Review of General Psychology, 13, 112.CrossRefGoogle Scholar
Kaufman, A. B., Kornilov, S. A., Bristol, A. S., Tan, M., & Grigorenko, E. L. (2010). The neurobiological foundation of creative cognition. In Kaufman, J. C. & Sternberg, R. J. (eds.), The Cambridge handbook of creativity (pp. 216232). New York: Cambridge University Press.CrossRefGoogle Scholar
Kenett, Y. N., Anaki, D., & Faust, M. (2014). Investigating the structure of semantic networks in low and high creative persons. Frontiers in Human Neuroscience, 8(407). https://doi.org/10.3389/fnhum.2014.00407CrossRefGoogle ScholarPubMed
Kenett, Y. N., Levy, O., Kenett, D. Y., Stanley, H. E., Faust, M., & Havlin, S. (2018). Flexibility of thought in high creative individuals represented by percolation analysis. Proceedings of the National Academy of Sciences USA, 115, 867872.CrossRefGoogle ScholarPubMed
Killeen, P. R. (2001). The four causes of behavior. Current Directions in Psychological Science, 10, 136140.CrossRefGoogle ScholarPubMed
Kim, K. H. (2005). Can only intelligent people be creative? Journal of Secondary Gifted Education, 16, 5766.CrossRefGoogle Scholar
Kris, E. (1952). Psychoanalytic explorations in art. New York: International Universities Press.Google Scholar
Kyaga, S. (2018). A heated debate: Time to address the underpinnings of the association between creativity and psychopathology? In Jung, R. E. & Vartanian, O. (eds.), Cambridge handbook of the neuroscience of creativity (pp. 114135). New York: Cambridge University Press.CrossRefGoogle Scholar
Limb, C. J. & Braun, A. R. (2008). Neural substrates of spontaneous musical performance: an FMRI study of jazz improvisation. PLoS One, 3, e1679.CrossRefGoogle ScholarPubMed
Liu, S., Erkkinen, M. G., Healey, M. L., Xu, Y., Swett, K. E., Chow, H. M., & Braun, A. R. (2015). Brain activity and connectivity during poetry composition: toward a multidimensional model of the creative process. Human Brain Mapping, 36, 33513372.CrossRefGoogle Scholar
Lotze, M., Erhard, K., Neumann, N., Eickhoff, S. B., & Langner, R. (2014). Neural correlates of verbal creativity: differences in resting-state functional connectivity associated with expertise in creative writing. Frontiers in Human Neuroscience, 8(516). https://doi.org/10.3389/fnhum.2014.00516CrossRefGoogle ScholarPubMed
Madore, K. P., Addis, D. R., & Schacter, D. L. (2015). Creativity and memory effects of an episodic-specificity induction on divergent thinking. Psychological Science, 26, 14611468.CrossRefGoogle ScholarPubMed
Madore, K. P., Jing, H. G., & Schacter, D. L. (2016). Divergent creative thinking in young and older adults: Extending the effects of an episodic specificity induction. Memory and Cognition, 44, 974988.CrossRefGoogle Scholar
Martindale, C. (1999). Biological bases of creativity. In Sternberg, R. J. (ed.), Handbook of creativity (pp. 137152). New York: Cambridge University Press.Google Scholar
Martindale, C. (2007). Creativity, primordial cognition, and personality. Personality and Individual Differences, 43, 17771785.CrossRefGoogle Scholar
Mashal, N., Faust, M., Hendler, T., & Jung-Beeman, M. (2007). An fMRI investigation of the neural correlates underlying the processing of novel metaphorical expressions. Brain and Language, 100, 115126.CrossRefGoogle Scholar
Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review, 69, 220232.CrossRefGoogle ScholarPubMed
Mendelsohn, G. A. (1976). Associative and attentional processes in creative performance. Journal of Personality, 44, 341369.CrossRefGoogle Scholar
Menon, V. & Uddin, L. Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure and Function, 214, 655667.CrossRefGoogle ScholarPubMed
Nusbaum, E. C. & Silvia, P. J. (2011). Are intelligence and creativity really so different? Fluid intelligence, executive processes, and strategy use in divergent thinking. Intelligence, 39, 3645.CrossRefGoogle Scholar
Ovando-Tellez, M. P., Bieth, T., Bernard, M., & Volle, M. (2019). The contribution of the lesion approach to the neuroscience of creative cognition. Current Opinion in Behavioral Sciences, 27, 100108.CrossRefGoogle Scholar
Pinho, A. L., Ullén, F., Castelo-Branco, M., Fransson, P., & de Manzano, Ö. (2016). Addressing a paradox: dual strategies for creative performance in introspective and extrospective networks. Cerebral Cortex, 26, 30523063.CrossRefGoogle ScholarPubMed
Shah, C., Erhard, K., Ortheil, H. J., Kaza, E., Kessler, C., & Lotze, M. (2013). Neural correlates of creative writing: an fMRI Study. Human Brain Mapping, 34, 10881101.CrossRefGoogle ScholarPubMed
Silvia, P. J. (2008). Creativity and intelligence revisited: A reanalysis of Wallach and Kogan (1965). Creativity Research Journal, 20, 3439.CrossRefGoogle Scholar
Simonton, D. K. (1999). Significant samples: The psychological study of eminent individuals. Psychological Methods, 4, 425451.CrossRefGoogle Scholar
Simonton, D. K. (2001). The psychology of creativity: A historical perspective. Presentation given at the Green College Lecture Series on The nature of creativity: History, biology, and socio-cultural dimensions, University of British Columbia, Vancouver, B.C.Google Scholar
Simonton, D. K. (2010). Creative thought as blind-variation and selective-retention: Combinatorial models of exceptional creativity. Physics of Life Reviews, 7, 156179.CrossRefGoogle ScholarPubMed
Simonton, D. K. (2014). Significant samples – Not significance tests! The often overlooked solution to the replication problem. Psychology of Aesthetics, Creativity, and the Arts, 8, 1112.CrossRefGoogle Scholar
Simonton, D. K. (2018). Creative ideas and the creative process: Good news and bad news for the neuroscience of creativity. In Jung, R. E. & Vartanian, O. (eds.), Cambridge handbook of the neuroscience of creativity (pp. 918). New York: Cambridge University Press.CrossRefGoogle Scholar
Stephan, K. E., Penny, W. D., Moran, R. J., den Ouden, H. E., Daunizeau, J., & Friston, K. J. (2010). Ten simple rules for dynamic causal modeling. NeuroImage, 49, 30993109.CrossRefGoogle ScholarPubMed
Sternberg, R. J. (1977). Component processes in analogical reasoning. Psychological Review, 84, 353378.CrossRefGoogle Scholar
Sternberg, R. J. (1980). Sketch of a componential subtheory of human intelligence. Behavioral and Brain Sciences, 3, 573584.CrossRefGoogle Scholar
Sternberg, R. J. (ed.). (1999). Handbook of creativity. New York: Cambridge University Press.Google Scholar
Storm, B. C., Angello, G., & Bjork, E. L. (2011). Thinking can cause forgetting: Memory dynamics in creative problem solving. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 12871293.Google ScholarPubMed
Szpunar, K. K., Watson, J. M., & McDermott, K. B. (2007). Neural substrates of envisioning the future. Proceedings of the National Academy of Sciences of the United States of America, 104, 642647.CrossRefGoogle ScholarPubMed
Takeuchi, H., & Kawashima, R. (2018). Structural studies of creativity measured by divergent thinking. In Jung, R. E. & Vartanian, O. (eds.), Cambridge handbook of the neuroscience of creativity (pp. 451463). New York: Cambridge University Press.CrossRefGoogle Scholar
Uddin, L. Q. (2015). Salience processing and insular cortical function and dysfunction. Nature Reviews Neuroscience, 16, 5561.CrossRefGoogle ScholarPubMed
Vartanian, O. (2009). Variable attention facilitates creative problem solving. Psychology of Aesthetics, Creativity, and the Arts, 3, 5759.CrossRefGoogle Scholar
Vartanian, O. (2011). Brain and neuropsychology. In Runco, M. & Pritzker, S. (eds.), Encyclopedia of creativity (2nd edn, pp. 164169). San Diego, CA: Academic Press.Google Scholar
Vartanian, O. (2012). Dissociable neural systems for analogy and metaphor: Implications for the neuroscience of creativity. British Journal of Psychology, 103, 302316.CrossRefGoogle ScholarPubMed
Vartanian, O. (2015). Neuroimaging studies of making aesthetic products. In Nadal, M. R., Huston, J. P., Agnati, L., Mora, F., & Cela-Conde, J. (eds.), Art, aesthetics and the brain (pp. 174185). Oxford: Oxford University Press.CrossRefGoogle Scholar
Vartanian, O. (2018). Openness to experience: Insights from personality neuroscience. In Jung, R. E. & Vartanian, O. (eds.), Cambridge handbook of the neuroscience of creativity (pp. 464475). New York: Cambridge University Press.CrossRefGoogle Scholar
Vartanian, O., Beatty, E. L., Smith, I., Blackler, K., Lam, Q., & Forbes, S. (2018). One-way traffic: The inferior frontal gyrus controls brain activation in the middle temporal gyrus and inferior parietal lobule during divergent thinking. Neuropsychologia, 118, 6878.CrossRefGoogle ScholarPubMed
Vartanian, O., Bristol, A. S., & Kaufman, J. C. (eds.). (2013). Neuroscience of creativity. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Vartanian, O. & Goel, V. (2005). Task constraints modulate activation in right ventral lateral prefrontal cortex. Neuroimage, 27, 927933.CrossRefGoogle ScholarPubMed
Vartanian, O. & Mandel, D. R. (2012). Neural bases of judgment and decision making. Dhami, M. K., Schlottmann, A., & Waldmann, M. (eds.), Judgment and decision making as a skill: Learning, development, and evolution (pp. 2952). Cambridge: Cambridge University Press.Google Scholar
Vartanian, O., Martindale, C., & Kwiatkowski, J. (2007). Creative potential, attention, and speed of information processing. Personality and Individual Differences, 43, 14701480.CrossRefGoogle Scholar
Waltz, J. A., Knowlton, B. J., Holyoak, K. J., Boone, K. B., Mishkin, F. S., de Menenzes Santos, M., Thomas, C. R., & Miller, B. L. (1999). A system for relational reasoning in human prefrontal cortex. Psychological Science, 10, 119125.CrossRefGoogle Scholar
Wu, X., Yang, W., Tong, D., Sun, J., Chen, Q., Wei, D., Zhang, Q., Zhang, M., & Qiu, J. (2015). A meta-analysis of neuroimaging studies on divergent thinking using activation likelihood estimation. Human Brain Mapping, 36, 27032718.CrossRefGoogle ScholarPubMed
Zabelina, D. L. & Andrews-Hanna, J. (2016). Dynamic network interactions supporting internally-oriented cognition. Current Opinion in Neurobiology, 40, 86–93.CrossRefGoogle ScholarPubMed
Zabelina, D. L., O’Leary, D., Pornpattananangkul, N., Nusslock, R., & Beeman, M. (2015). Creativity and sensory gating indexed by the P50: Selective versus leaky sensory gating in divergent thinkers and creative achievers. Neuropsychologia, 69, 77–84.Google ScholarPubMed
Zabelina, D. L. & Robinson, M. D. (2010). Creativity as flexible cognitive control. Psychology of Aesthetics, Creativity, and the Arts, 4, 136143.CrossRefGoogle Scholar
Zabelina, D. L., Saporta, A., & Beeman, M. (2016). Flexible or leaky attention in creative people? Distinct patterns of attention for different types of creative thinking. Memory and Cognition, 44, 488498.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×