Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-10-05T01:41:34.514Z Has data issue: false hasContentIssue false

13 - Reporter Genes

Published online by Cambridge University Press:  22 November 2017

Amer M. Najjar
Affiliation:
University of Texas M.D. Anderson Cancer Center, Houston, TX
Laura J. Fromme
Affiliation:
CellSight Technologies, San Francisco, CA
Shahriar Yaghoubi
Affiliation:
CellSight Technologies, San Francisco, CA
Hossein Jadvar
Affiliation:
University of Southern California Keck School of Medicine, Los Angeles
Heather Jacene
Affiliation:
Dana-Farber Cancer Institute, Boston
Michael Graham
Affiliation:
University of Iowa
Get access

Summary

Introduction

Positron emission tomography (PET) is a noninvasive clinical imaging modality that can be combined with reporter gene expression to enable the specific and repetitive detection of a variety of cellular processes. These cellular processes include transcriptional regulation, signal transduction, protein-protein interactions, and cell trafficking and engraftment. The ability to detect these processes with PET reporter gene/probe systems also enables non-invasive monitoring of the pharmacokinetics and pharmacodynamics of therapeutics and their efficacy in vivo.

The concept of reporter gene imaging emerged from systems designed to image intrinsic enzymatic and metabolic processes and targets leading to the development of the reporter/radiotracer concept. The premise of reporter gene-based expression is based on the irreversible binding or entrapment and accumulation of reporter probes (radiotracers). These reporter probes are labeled with positron-emitting radionuclides. Accumulation of the probes in or at target cells is mediated by the catalytic activity of the reporter gene products (enzymes), their binding affinity to the reporter proteins or transport through reporter proteins. This reporter gene-mediated binding, accumulation, and retention of positron-emitting reporter probes in target cells enables repetitive spatial-temporal dynamic imaging of molecular and cellular events by PET.

Reporter-based imaging requires the transfer and expression of a reporter gene into target cells by transfection, electroporation, or transduction. These reporter genes are encoded within expression cassettes which initiate and control their expression. These control elements fall into two general categories: constitutive and conditional. Constitutively expressed reporters are used to “label” cells ex vivo for studies that require monitoring of trafficking and distribution patterns of the infused cells. The utility of this method has been most routinely illustrated in adoptive immunotherapy applications where T cells are labeled to determine their trafficking, biodistribution, and targeting patterns. It is also used in stem cell therapy applications to determine the long-term viability and therapeutic efficacy of infused stem cells.

Reporter gene expression driven by conditional tissue-specific promoters provides functional information about the target cells. Conditional promoters, for example, can provide information about the functional status of T cells related to their activation and proliferation and telomerase activity in tumor cells. PET reporters fall into three basic categories: enzyme-, receptor-, and transporter-based systems (Figure 13.1).

Type
Chapter
Information
Molecular Imaging
An Introduction
, pp. 55 - 64
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ponomarev, V., Doubrovin, M., Lyddane, C., Beresten, T., Balatoni, J., Bornman, W., Finn, R., Akhurst, T., Larson, S., Blasberg, R., Sadelain, M., and Tjuvajev, J. G. (2001) Imaging TCR-dependent NFAT-mediated T-cell activation with positron emission tomography in vivo. Neoplasia 3, 480–488.CrossRefGoogle ScholarPubMed
2. Holland, J. P., Cumming, P., and Vasdev, N. (2012) PET of signal transduction pathways in cancer. J Nucl Med 53, 1333–1336.CrossRefGoogle Scholar
3. Massoud, T. F., Paulmurugan, R., and Gambhir, S. S. (2010) A molecularly engineered split reporter for imaging protein-protein interactions with positron emission tomography. Nat Med 16, 921–926.CrossRefGoogle ScholarPubMed
4. Dotti, G., Tian, M., Savoldo, B., Najjar, A., Cooper, L. J., Jackson, J., Smith, A., Mawlawi, O., Uthamanthil, R., Borne, A., Brammer, D., Paolillo, V., Alauddin, M., Gonzalez, C., Steiner, D., Decker, W. K., Marini, F., Kornblau, S., Bollard, C. M., Shpall, E. J., and Gelovani, J. G. (2009) Repetitive noninvasive monitoring of HSV1-tk-expressing T cells intravenously infused into nonhuman primates using positron emission tomography and computed tomography with 18F-FEAU. Mol Imaging 8, 230–237.CrossRefGoogle ScholarPubMed
5. McCracken, M. N., Gschweng, E. H., Nair-Gill, E., McLaughlin, J., Cooper, A. R., Riedinger, M., Cheng, D., Nosala, C., Kohn, D. B., and Witte, O. N. (2013) Long-term in vivo monitoring of mouse and human hematopoietic stem cell engraftment with a human positron emission tomography reporter gene. Proc Natl Acad Sci USA 110, 1857–1862.CrossRefGoogle ScholarPubMed
6. Wang, F., Wang, Z., Hida, N., Kiesewetter, D. O., Ma, Y., Yang, K., Rong, P., Liang, J., Tian, J., Niu, G., and Chen, X. (2014) A cyclic HSV1-TK reporter for real-time PET imaging of apoptosis. Proc Natl Acad Sci USA 111, 5165–5170.Google Scholar
7. Gambhir, S. S. (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2, 683–693.CrossRefGoogle ScholarPubMed
8. Gelovani Tjuvajev, J., and Blasberg, R. G. (2003) In vivo imaging of molecular-genetic targets for cancer therapy. Cancer Cell 3, 327–332.CrossRefGoogle ScholarPubMed
9. Dobrenkov, K., Olszewska, M., Likar, Y., Shenker, L., Gunset, G., Cai, S., Pillarsetty, N., Hricak, H., Sadelain, M., and Ponomarev, V. (2008) Monitoring the efficacy of adoptively transferred prostate cancer-targeted human T lymphocytes with PET and bioluminescence imaging. J Nucl Med 49, 1162–1170 CrossRefGoogle Scholar
10. Yaghoubi, S. S., Jensen, M. C., Satyamurthy, N., Budhiraja, S., Paik, D., Czernin, J., and Gambhir, S. S. (2009) Noninvasive detection of therapeutic cytolytic T cells with 18F-FHBG PET in a patient with glioma. Nat Clin Pract Oncol 6, 53–58.CrossRefGoogle Scholar
11. Koehne, G., Doubrovin, M., Doubrovina, E., Zanzonico, P., Gallardo, H. F., Ivanova, A., Balatoni, J., Teruya-Feldstein, J., Heller, G., May, C., Ponomarev, V., Ruan, S., Finn, R., Blasberg, R. G., Bornmann, W., Riviere, I., Sadelain, M., O'Reilly, R. J., Larson, S. M., and Tjuvajev, J. G. (2003) Serial in vivo imaging of the targeted migration of human HSV-TK-transduced antigen-specific lymphocytes. Nat Biotechnol 21, 405–413.CrossRefGoogle ScholarPubMed
12. Perin, E. C., Tian, M., Marini, F. C., III, Silva, G. V., Zheng, Y., Baimbridge, F., Quan, X., Fernandes, M. R., Gahremanpour, A., Young, D., Paolillo, V., Mukhopadhyay, U., Borne, A. T., Uthamanthil, R., Brammer, D., Jackson, J., Decker, W. K., Najjar, A. M., Thomas, M. W., Volgin, A., Rabinovich, B., Soghomonyan, S., Jeong, H. J., Rios, J. M., Steiner, D., Robinson, S., Mawlawi, O., Pan, T., Stafford, J., Kundra, V., Li, C., Alauddin, M. M., Willerson, J. T., Shpall, E., and Gelovani, J. G. (2011) Imaging long-term fate of intramyocardially implanted mesenchymal stem cells in a porcine myocardial infarction model. PLoS One 6, e22949.CrossRefGoogle Scholar
13. Sun, N., Lee, A., and Wu, J. C. (2009) Long term non-invasive imaging of embryonic stem cells using reporter genes. Nat Protoc 4, 1192–1201.CrossRefGoogle ScholarPubMed
14. Gyongyosi, M., Blanco, J., Marian, T., Tron, L., Petnehazy, O., Petrasi, Z., Hemetsberger, R., Rodriguez, J., Font, G., Pavo, I. J., Kertesz, I., Balkay, L., Pavo, N., Posa, A., Emri, M., Galuska, L., Kraitchman, D. L., Wojta, J., Huber, K., and Glogar, D. (2008) Serial noninvasive in vivo positron emission tomographic tracking of percutaneously intramyocardially injected autologous porcine mesenchymal stem cells modified for transgene reporter gene expression. Circ Cardiovasc Imaging 1, 94–103.CrossRefGoogle ScholarPubMed
15. Templin, C., Zweigerdt, R., Schwanke, K., Olmer, R., Ghadri, J. R., Emmert, M. Y., Muller, E., Kuest, S. M., Cohrs, S., Schibli, R., Kronen, P., Hilbe, M., Reinisch, A., Strunk, D., Haverich, A., Hoerstrup, S., Luscher, T. F., Kaufmann, P. A., Landmesser, U., and Martin, U. (2012) Transplantation and tracking of human-induced pluripotent stem cells in a pig model of myocardial infarction: assessment of cell survival, engraftment, and distribution by hybrid single photon emission computed tomography/computed tomography of sodium iodide symporter transgene expression. Circulation 126, 430–439.CrossRefGoogle Scholar
16. Groot-Wassink, T., Aboagye, E. O., Wang, Y., Lemoine, N. R., Keith, W. N., and Vassaux, G. (2004) Noninvasive imaging of the transcriptional activities of human telomerase promoter fragments in mice. Cancer Res 64, 4906–4911.CrossRefGoogle ScholarPubMed
17. Riesco-Eizaguirre, G., De la Vieja, A., Rodriguez, I., Miranda, S., Martin-Duque, P., Vassaux, G., and Santisteban, P. (2011) Telomerase-driven expression of the sodium iodide symporter (NIS) for in vivo radioiodide treatment of cancer: a new broad-spectrum NIS-mediated antitumor approach. J Clin Endocrinol Metab 96, E1435–1443.CrossRefGoogle ScholarPubMed
18. Tjuvajev, J. G., Avril, N., Oku, T., Sasajima, T., Miyagawa, T., Joshi, R., Safer, M., Beattie, B., DiResta, G., Daghighian, F., Augensen, F., Koutcher, J., Zweit, J., Humm, J., Larson, S. M., Finn, R., and Blasberg, R. (1998) Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography. Cancer Res 58, 4333–4341.Google ScholarPubMed
19. Penuelas, I., Haberkorn, U., Yaghoubi, S., and Gambhir, S. S. (2005) Gene therapy imaging in patients for oncological applications. Eur J Nucl Med Mol Imaging 32 Suppl 2, S384–403.CrossRefGoogle ScholarPubMed
20. Jacobs, A., Voges, J., Reszka, R., Lercher, M., Gossmann, A., Kracht, L., Kaestle, C., Wagner, R., Wienhard, K., and Heiss, W. D. (2001) Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 358, 727–729.CrossRefGoogle ScholarPubMed
21. Tjuvajev, J. G., Finn, R., Watanabe, K., Joshi, R., Oku, T., Kennedy, J., Beattie, B., Koutcher, J., Larson, S., and Blasberg, R. G. (1996) Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. Cancer Res 56, 4087–4095.Google ScholarPubMed
22. Sun, X., Annala, A. J., Yaghoubi, S. S., Barrio, J. R., Nguyen, K. N., Toyokuni, T., Satyamurthy, N., Namavari, M., Phelps, M. E., Herschman, H. R., and Gambhir, S. S. (2001) Quantitative imaging of gene induction in living animals. Gene Ther 8, 1572–1579.CrossRefGoogle ScholarPubMed
23. Serganova, I., Doubrovin, M., Vider, J., Ponomarev, V., Soghomonyan, S., Beresten, T., Ageyeva, L., Serganov, A., Cai, S., Balatoni, J., Blasberg, R., and Gelovani, J. (2004) Molecular imaging of temporal dynamics and spatial heterogeneity of hypoxia-inducible factor-1 signal transduction activity in tumors in living mice. Cancer Res 64, 6101–6108.CrossRefGoogle ScholarPubMed
24. Soghomonyan, S., Hajitou, A., Rangel, R., Trepel, M., Pasqualini, R., Arap, W., Gelovani, J. G., and Alauddin, M. M. (2007) Molecular PET imaging of HSV1-tk reporter gene expression using [18F]FEAU. Nat Protoc 2, 416–423.CrossRefGoogle Scholar
25. Alauddin, M. M., and Conti, P. S. (1998) Synthesis and preliminary evaluation of 9-(4-[18F]-fluoro-3-hydroxymethylbutyl)guanine ([18F]FHBG): a new potential imaging agent for viral infection and gene therapy using PET. Nucl Med Biol 25, 175–180.CrossRefGoogle ScholarPubMed
26. Yaghoubi, S., Barrio, J. R., Dahlbom, M., Iyer, M., Namavari, M., Satyamurthy, N., Goldman, R., Herschman, H. R., Phelps, M. E., and Gambhir, S. S. (2001) Human pharmacokinetic and dosimetry studies of [(18)F]FHBG: a reporter probe for imaging herpes simplex virus type-1 thymidine kinase reporter gene expression. J Nucl Med 42, 1225–1234.Google ScholarPubMed
27. Gambhir, S. S., Barrio, J. R., Wu, L., Iyer, M., Namavari, M., Satyamurthy, N., Bauer, E., Parrish, C., MacLaren, D. C., Borghei, A. R., Green, L. A., Sharfstein, S., Berk, A. J., Cherry, S. R., Phelps, M. E., and Herschman, H. R. (1998) Imaging of adenoviral-directed herpes simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir. J Nucl Med 39, 2003–2011.Google ScholarPubMed
28. Kang, K. W., Min, J. J., Chen, X., and Gambhir, S. S. (2005) Comparison of [14C]FMAU, [3H]FEAU, [14C]FIAU, and [3H]PCV for monitoring reporter gene expression of wild type and mutant herpes simplex virus type 1 thymidine kinase in cell culture. Mol Imaging Biol 7, 296–303.CrossRefGoogle Scholar
29. Alauddin, M. M., Conti, P. S., Mazza, S. M., Hamzeh, F. M., and Lever, J. R. (1996) 9-[(3-[18F]-fluoro-1-hydroxy-2-propoxy)methyl]guanine ([18F]-FHPG): a potential imaging agent of viral infection and gene therapy using PET. Nucl Med Biol 23, 787–792.CrossRefGoogle ScholarPubMed
30. Alauddin, M. M., Shahinian, A., Kundu, R. K., Gordon, E. M., and Conti, P. S. (1999) Evaluation of 9-[(3-18F-fluoro-1-hydroxy-2-propoxy)methyl]guanine ([18F]-FHPG) in vitro and in vivo as a probe for PET imaging of gene incorporation and expression in tumors. Nucl Med Biol 26, 371–376.CrossRefGoogle Scholar
31. Najjar, A. M., Nishii, R., Maxwell, D. S., Volgin, A., Mukhopadhyay, U., Bornmann, W. G., Tong, W., Alauddin, M., and Gelovani, J. G. (2009) Molecular-genetic PET imaging using an HSV1-tk mutant reporter gene with enhanced specificity to acycloguanosine nucleoside analogs. J Nucl Med 50, 409–416.CrossRefGoogle ScholarPubMed
32. Traversari, C., Marktel, S., Magnani, Z., Mangia, P., Russo, V., Ciceri, F., Bonini, C., and Bordignon, C. (2007) The potential immunogenicity of the TK suicide gene does not prevent full clinical benefit associated with the use of TK-transduced donor lymphocytes in HSCT for hematologic malignancies. Blood 109, 4708–4715.CrossRefGoogle Scholar
33. Berger, C., Flowers, M. E., Warren, E. H., and Riddell, S. R. (2006) Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK-modified donor T cells after allogeneic hematopoietic cell transplantation. Blood 107, 2294–2302.CrossRefGoogle ScholarPubMed
34. Ponomarev, V., Doubrovin, M., Shavrin, A., Serganova, I., Beresten, T., Ageyeva, L., Cai, C., Balatoni, J., Alauddin, M., and Gelovani, J. (2007) A human-derived reporter gene for noninvasive imaging in humans: mitochondrial thymidine kinase type 2. J Nucl Med 48, 819–826.CrossRefGoogle ScholarPubMed
35. Campbell, D. O., Yaghoubi, S. S., Su, Y., Lee, J. T., Auerbach, M. S., Herschman, H., Satyamurthy, N., Czernin, J., Lavie, A., and Radu, C. G. (2012) Structure-guided engineering of human thymidine kinase 2 as a positron emission tomography reporter gene for enhanced phosphorylation of non-natural thymidine analog reporter probe. J Biol Chem 287, 446–454.CrossRefGoogle ScholarPubMed
36. Schwarzenberg, J., Radu, C. G., Benz, M., Fueger, B., Tran, A. Q., Phelps, M. E., Witte, O. N., Satyamurthy, N., Czernin, J., and Schiepers, C. (2011) Human biodistribution and radiation dosimetry of novel PET probes targeting the deoxyribonucleoside salvage pathway. Eur J Nucl Med Mol Imaging 38, 711–721.CrossRefGoogle ScholarPubMed
37. Leung, K. (2004) 1-(2’-Deoxy-2’-[18F]fluoroarabinofuranosyl)cytosine. Molecular Imaging and Contrast Agent Database (MICAD). National Center for Biotechnology Information, Bethesda, MD.
38. Shu, C. J., Campbell, D. O., Lee, J. T., Tran, A. Q., Wengrod, J. C., Witte, O. N., Phelps, M. E., Satyamurthy, N., Czernin, J., and Radu, C. G. (2010) Novel PET probes specific for deoxycytidine kinase. J Nucl Med 51, 1092–1098.CrossRefGoogle ScholarPubMed
39. Likar, Y., Zurita, J., Dobrenkov, K., Shenker, L., Cai, S., Neschadim, A., Medin, J. A., Sadelain, M., Hricak, H., and Ponomarev, V. (2010) A new pyrimidine-specific reporter gene: a mutated human deoxycytidine kinase suitable for PET during treatment with acycloguanosine-based cytotoxic drugs. J Nucl Med 51, 1395–1403.CrossRefGoogle ScholarPubMed
40. Iyidogan, P., and Lutz, S. (2008) Systematic exploration of active site mutations on human deoxycytidine kinase substrate specificity. Biochemistry 47, 4711–4720.CrossRefGoogle ScholarPubMed
41. Yamada, Y., Post, S. R., Wang, K., Tager, H. S., Bell, G. I., and Seino, S. (1992) Cloning and functional characterization of a family of human and mouse somatostatin receptors expressed in brain, gastrointestinal tract, and kidney. Proc Natl Acad Sci USA 89, 251–255.CrossRefGoogle ScholarPubMed
42. Stolz, B., Smith-Jones, P. M., Albert, R., Reist, H., Macke, H., and Bruns, C. (1994) Biological characterisation of [67Ga] or [68Ga] labelled DFO-octreotide (SDZ 216–927) for PET studies of somatostatin receptor positive tumors. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme 26, 453–459.Google ScholarPubMed
43. Rogers, B. E., Parry, J. J., Andrews, R., Cordopatis, P., Nock, B. A., and Maina, T. (2005) MicroPET imaging of gene transfer with a somatostatin receptor-based reporter gene and (94m)Tc-Demotate 1. J Nucl Med 46, 1889–1897.Google ScholarPubMed
44. Wienhard, K., Coenen, H. H., Pawlik, G., Rudolf, J., Laufer, P., Jovkar, S., Stocklin, G., and Heiss, W. D. (1990) PET studies of dopamine receptor distribution using [18F]fluoroethylspiperone: findings in disorders related to the dopaminergic system. Journal of Neural Transmission. General Section 81, 195–213.CrossRefGoogle Scholar
45. Halldin, C., Farde, L., Hogberg, T., Mohell, N., Hall, H., Suhara, T., Karlsson, P., Nakashima, Y., and Swahn, C. G. (1995) Carbon-11-FLB 457: a radioligand for extrastriatal D2 dopamine receptors. J Nucl Med 36, 1275–1281.Google ScholarPubMed
46. MacLaren, D. C., Gambhir, S. S., Satyamurthy, N., Barrio, J. R., Sharfstein, S., Toyokuni, T., Wu, L., Berk, A. J., Cherry, S. R., Phelps, M. E., and Herschman, H. R. (1999) Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther 6, 785–91.CrossRefGoogle ScholarPubMed
47. Liang, Q., Gotts, J., Satyamurthy, N., Barrio, J., Phelps, M. E., Gambhir, S. S., and Herschman, H. R. (2002) Noninvasive, repetitive, quantitative measurement of gene expression from a bicistronic message by positron emission tomography, following gene transfer with adenovirus. Mol Ther 6, 73–82.CrossRefGoogle ScholarPubMed
48. Liang, Q., Satyamurthy, N., Barrio, J. R., Toyokuni, T., Phelps, M. P., Gambhir, S. S., and Herschman, H. R. (2001) Noninvasive, quantitative imaging in living animals of a mutant dopamine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction. Gene Ther 8, 1490–1498.CrossRefGoogle ScholarPubMed
49. Kummer, C., Winkeler, A., Dittmar, C., Bauer, B., Rueger, M. A., Rueckriem, B., Heneka, M. T., Vollmar, S., Wienhard, K., Fraefel, C., Heiss, W. D., and Jacobs, A. H. (2007) Multitracer positron emission tomographic imaging of exogenous gene expression mediated by a universal herpes simplex virus 1 amplicon vector. Mol Imaging 6, 181–192.CrossRefGoogle ScholarPubMed
50. Barat, B., Kenanova, V. E., Olafsen, T., and Wu, A. M. (2011) Evaluation of two internalizing carcinoembryonic antigen reporter genes for molecular imaging. Mol Imaging Biol 13, 526–535.CrossRefGoogle ScholarPubMed
51. Kenanova, V., Barat, B., Olafsen, T., Chatziioannou, A., Herschman, H. R., Braun, J., and Wu, A. M. (2009) Recombinant carcinoembryonic antigen as a reporter gene for molecular imaging. Eur J Nucl Med Mol Imaging 36, 104–114.CrossRefGoogle ScholarPubMed
52. Furukawa, T., Lohith, T. G., Takamatsu, S., Mori, T., Tanaka, T., and Fujibayashi, Y. (2006) Potential of the FES-hERL PET reporter gene system – basic evaluation for gene therapy monitoring. Nucl Med Biol 33, 145–151.CrossRefGoogle ScholarPubMed
53. Lohith, T. G., Furukawa, T., Mori, T., Kobayashi, M., and Fujibayashi, Y. (2008) Basic evaluation of FES-hERL PET tracer-reporter gene system for in vivo monitoring of adenoviral-mediated gene therapy. Mol Imaging Biol 10, 245–252.CrossRefGoogle ScholarPubMed
54. Wei, L. H., Olafsen, T., Radu, C., Hildebrandt, I. J., McCoy, M. R., Phelps, M. E., Meares, C., Wu, A. M., Czernin, J., and Weber, W. A. (2008) Engineered antibody fragments with infinite affinity as reporter genes for PET imaging. J Nucl Med 49, 1828–1835.CrossRefGoogle ScholarPubMed
55. Groot-Wassink, T., Aboagye, E. O., Wang, Y., Lemoine, N. R., Reader, A. J., and Vassaux, G. (2004) Quantitative imaging of Na/I symporter transgene expression using positron emission tomography in the living animal. Mol Ther 9, 436–442.CrossRefGoogle ScholarPubMed
56. Rao, V. P., Miyagi, N., Ricci, D., Carlson, S. K., Morris, J. C., 3rd, Federspiel, M. J., Bailey, K. R., Russell, S. J., and McGregor, C. G. (2007) Sodium iodide symporter (hNIS) permits molecular imaging of gene transduction in cardiac transplantation. Transplantation 84, 1662–1666.CrossRefGoogle ScholarPubMed
57. Lee, H. W., Jeon, Y. H., Hwang, M. H., Kim, J. E., Park, T. I., Ha, J. H., Lee, S. W., Ahn, B. C., and Lee, J. (2013) Dual reporter gene imaging for tracking macrophage migration using the human sodium iodide symporter and an enhanced firefly luciferase in a murine inflammation model. Mol Imaging Biol 15, 703–712.CrossRefGoogle Scholar
58. Doubrovin, M. M., Doubrovina, E. S., Zanzonico, P., Sadelain, M., Larson, S. M., and O'Reilly, R. J. (2007) In vivo imaging and quantitation of adoptively transferred human antigen-specific T cells transduced to express a human norepinephrine transporter gene. Cancer Res 67, 11959–11969.CrossRefGoogle ScholarPubMed
59. Brader, P., Kelly, K. J., Chen, N., Yu, Y. A., Zhang, Q., Zanzonico, P., Burnazi, E. M., Ghani, R. E., Serganova, I., Hricak, H., Szalay, A. A., Fong, Y., and Blasberg, R. G. (2009) Imaging a genetically engineered oncolytic vaccinia virus (GLV-1h99) using a human norepinephrine transporter reporter gene. Clin Cancer Res 15, 3791–3801.CrossRefGoogle ScholarPubMed
60. Buursma, A. R., Beerens, A. M., de Vries, E. F., van Waarde, A., Rots, M. G., Hospers, G. A., Vaalburg, W., and Haisma, H. J. (2005) The human norepinephrine transporter in combination with 11C-m-hydroxyephedrine as a reporter gene/reporter probe for PET of gene therapy. J Nucl Med 46, 2068–2075.Google ScholarPubMed
61. Yaghoubi, S. S., and Gambhir, S. S. (2006) PET imaging of herpes simplex virus type 1 thymidine kinase (HSV1-tk) or mutant HSV1-sr39tk reporter gene expression in mice and humans using [18F]FHBG. Nat Protoc 1, 3069–3075.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats No formats are currently available for this content.
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats No formats are currently available for this content.
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats No formats are currently available for this content.
×