Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T15:23:18.607Z Has data issue: false hasContentIssue false

14 - Stem Cell Tracking

Published online by Cambridge University Press:  22 November 2017

Daniel Golovko
Affiliation:
Department of Radiology, Stanford University, Stanford, CA
Ramsha Khan
Affiliation:
Department of Radiology, Stanford University, Stanford, CA
Heike Daldrup-Link
Affiliation:
Department of Radiology, Stanford University, Stanford, CA
Hossein Jadvar
Affiliation:
University of Southern California Keck School of Medicine, Los Angeles
Heather Jacene
Affiliation:
Dana-Farber Cancer Institute, Boston
Michael Graham
Affiliation:
University of Iowa
Get access

Summary

Stem cell therapies aim to replace abnormal, injured, or lost cells in organs with little or no capacity for self-renewal and provide hope for cures of devastating diseases with previously presumed irreversible functional loss, such as myocardial or brain infarction, blindness, paraplegia, diabetes mellitus, and degenerative or post-traumatic bone/ cartilage defects, among many others. In order to treat a cellular and/or functional deficit in a selected target organ, stem cells or stem-cell-derived cell populations are administered systemically (e.g. into the blood system), into a cavity (e.g. into a brain ventricle), or directly into target tissue (e.g. into myocardium). Many questions arise about the fate of the administered cells. Do the stem cells actually end up where they are desired (homing)? Do they survive? Do they integrate themselves with the host tissue (engraftment)? If undifferentiated stem cells are transplanted, do these cells differentiate into the desired specialized progenies and restore the impaired function of the target tissue? Does the host's immune system tolerate or reject the transplanted cells? Noninvasive imaging techniques can address these questions and help to develop and monitor successful approaches for stem-cell-mediated tissue regeneration.

Methods to Visualize Stem Cell Homing and Engraftment

There are various classical methods of showing distribution of stem cells in the body. Most rely on introducing a marker into the graft material that can be specifically stained after explantation. One common method is the transfection of stem cells with a plasmid containing lacZ. lacZ encodes β-galactosidase, an enzyme not normally found in human cells. After explantation, fixation, and staining of material to be examined, marked cells will stain while unmarked cells will not. This method is applicable only in animal models. Another common pre-clinical method is the transfection of stem cells with luciferase genes. Luciferase catalyzes a two-step chemical reaction of the substrate luciferin, which leads to bioluminescence detectable in vivo by an optical imaging system. Photon generation following intravenous administration of luciferin takes place exclusively at the site of luciferase expression; therefore, the target-to-background signal ratio is extremely high. Bioluminescence imaging has been used for cell tracking in small animal models. However, limitations for human application for cell tracking are poor spatial resolution, the need to inject high doses of luciferin to generate a contrast effect, and potential immunogenicity of the foreign gene protein, luciferase.

Type
Chapter
Information
Molecular Imaging
An Introduction
, pp. 65 - 75
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bursac, N. Stem cell therapies for heart disease: why do we need bioengineers? IEEE Eng Med Biol Mag 26, 76–79 (2007).CrossRefGoogle ScholarPubMed
2. Christoforou, N. & Gearhart, J.D. Stem cells and their potential in cell-based cardiac therapies. Prog Cardiovasc Dis 49, 396–413 (2007).CrossRefGoogle ScholarPubMed
3. Mimeault, M., Hauke, R. & Batra, S.K. Stem cells: a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther 82, 252–264 (2007).CrossRefGoogle ScholarPubMed
4. Vawda, R., Woodbury, J., Covey, M., Levison, S.W. & Mehmet, H. Stem cell therapies for perinatal brain injuries. Semin Fetal Neonatal Med 12, 259–272 (2007).CrossRefGoogle ScholarPubMed
5. Adler, R. Curing blindness with stem cells: hope, reality, and challenges. Adv Exp Med Biol 613, 3–20 (2008).Google ScholarPubMed
6. Madan, B. & Schey, S.A. Reversible cortical blindness and convulsions with cyclosporin A toxicity in a patient undergoing allogeneic peripheral stem cell transplantation. Bone Marrow Transplant 20, 793–795 (1997).CrossRefGoogle Scholar
7. Mays, R.W., van't Hof, W., Ting, A.E., Perry, R. & Deans, R. Development of adult pluripotent stem cell therapies for ischemic injury and disease. Expert Opin Biol Ther 7, 173–184 (2007).CrossRefGoogle ScholarPubMed
8. Cizkova, D. Kakinohana, O., Kurcharova, K., Marsala, S., Johe, K., Hazel, T., Functional recovery in rats with ischemic paraplegia after spinal grafting of human spinal stem cells. Neuroscience 147, 546–560 (2007).CrossRefGoogle ScholarPubMed
9. Mummery, C.L. & van Laake, L.W. Progress and clashes in stem cell therapy research. Ned Tijdschr Geneeskd 150, 943–947 (2006).Google ScholarPubMed
10. Mabed, M. & Shahin, M. Mesenchymal stem cell-based therapy for the treatment of type 1 diabetes mellitus. Curr Stem Cell Res Ther 7, 179–190 (2012).CrossRefGoogle ScholarPubMed
11. Dupont, K.M., Sharma, K., Stevens, H.Y., Boerckel, J.D., García, A.J., Guldberg, R.E., et al. Human stem cell delivery for treatment of large segmental bone defects. Proc Natl Acad Sci U S A 107, 3305–3310 (2010).CrossRefGoogle ScholarPubMed
12. Qi, Y., Feng, G. & Yan, W. Mesenchymal stem cell-based treatment for cartilage defects in osteoarthritis. Mol Biol Rep 39, 5683–5689 (2012).CrossRefGoogle ScholarPubMed
13. Sutton, E.J., Henning, T.D., Pichler, B.J., Bremer, C. & Daldrup-Link, H.E. Cell tracking with optical imaging. Eur Radiol 18, 2021–2032 (2008).CrossRefGoogle ScholarPubMed
14. Galle, J., Bader, A., Hepp, P., Grill, W., Fuchs, B., et al. Mesenchymal stem cells in cartilage repair: state of the art and methods to monitor cell growth, differentiation and cartilage regeneration. Curr Med Chem 17, 2274–2291 (2010).CrossRefGoogle ScholarPubMed
15. Omlor, G.W., Bertram, H., Kleinschmidt, K., Fischer, J., Brohm, K., Guehring, T., et al. Methods to monitor distribution and metabolic activity of mesenchymal stem cells following in vivo injection into nucleotomized porcine intervertebral discs. Eur Spine J 19, 601–612 (2010).CrossRefGoogle ScholarPubMed
16. Jing, M., Liu, X.Q., Liang, P., Li, C.Y., Zhang, X.T., Wang, D., et al. Labeling neural stem cells with superparamagnetic iron oxide in vitro and tracking after implantation with MRI in vivo. Zhonghua Yi Xue Za Zhi 84, 1386–1389 (2004).Google ScholarPubMed
17. Narayanan, R., Tare, N.S., Benjamin, W.R. & Gubler, U. A sensitive technique to monitor gene transfer and expression in bone marrow stem cells. Exp Hematol 17, 832–835 (1989).Google ScholarPubMed
18. Togel, F., Yang, Y., Zhang, P., Hu, Z. & Westenfelder, C. Bioluminescence imaging to monitor the in vivo distribution of administered mesenchymal stem cells in acute kidney injury. Am J Physiol Renal Physiol 295, F315–321 (2008).CrossRefGoogle ScholarPubMed
19. Kouris, K. & Jackson, D.F. Effects of radioactive decay and their implications on in vivo metabolic imaging. Am J Physiol Imaging 2, 44–47 (1987).Google ScholarPubMed
20. Su, J.L., Wang, B., Wilson, K.E., Bayer, C.L., Chen, Y.S., Kim, S., et al. Advances in Clinical and Biomedical Applications of Photoacoustic Imaging. Expert Opin Med Diagn 4, 497–510 (2010).CrossRefGoogle ScholarPubMed
21. Kitai, T., Torii, M., Sugie, T., Kanao, S., Mikami, Y., Shiina, T., et al. Photoacoustic mammography: initial clinical results. Breast Cancer 21, 146–153 (2012).Google ScholarPubMed
22. Su, J., Karpiouk, A., Wang, B. & Emelianov, S. Photoacoustic imaging of clinical metal needles in tissue. J Biomed Opt 15, 021309 (2010).CrossRefGoogle ScholarPubMed
23. Jokerst, J.V., Thangaraj, M., Kempen, P.J., Sinclair, R. & Gambhir, S.S. Photoacoustic imaging of mesenchymal stem cells in living mice via silica-coated gold Nanorods. ACS Nano 6, 5920–5930 (2012).CrossRefGoogle ScholarPubMed
24. Wang, C., Cheng, L., Xu, H. & Liu, Z. Towards whole-body imaging at the single cell level using ultra-sensitive stem cell labeling with oligo-arginine modified upconversion nanoparticles. Biomaterials 33, 4872–4881 (2012).CrossRefGoogle ScholarPubMed
25. Lee, J.H., Jung, M.J., Hwang, Y.H., Lee, Y.J., Lee, S., et al. Heparin-coated superparamagnetic iron oxide for in vivo MR imaging of human MSCs. Biomaterials 33, 4861–4871 (2012).CrossRefGoogle ScholarPubMed
26. Sykova, E., Jendelova, P. & Herynek, V. Magnetic resonance imaging of stem cell migration. Methods Mol Biol 750, 79–90 (2011).Google ScholarPubMed
27. Henning, T.D., Saborowski, O., Golovko, D., Boddington, S., Bauer, J.S., Gu, Y., et al. Cell labeling with the positive MR contrast agent Gadofluorine M. Eur Radiol 17, 1226–1234 (2007).CrossRefGoogle ScholarPubMed
28. Nejadnik, H.T., Do, T., Sutton, E.J., Baehner, F., Horvai, A., Sennino, B., et al. MR imaging features of gadofluorine labeled matrix associated stem cell implants in cartilage defects. PLoS One 7, e49971 (2012).CrossRefGoogle ScholarPubMed
29. Daldrup-Link, H.E., Rudelius, M., Pointek, G., Metz, S., Brauer, R., et al. Migration of iron oxide-labeled human hematopoietic progenitor cells in a mouse model: in vivo monitoring with 1.5-T MR imaging equipment. Radiology 234, 197–205 (2005).CrossRefGoogle Scholar
30. Henning, T.D., Boddington, S., Taubert, S., Jha, P., Tavri, S., Golovko, D., Ackermann, L. & Daldrup-Link, H.E. Somatic differentiation and MR imaging of magnetically labeled human embryonic stem cells. Cell Transplantation (2012).Google Scholar
31. Henning, T.D., Gawande, R., Khurana, A., Tavri, S., Mandrussow, L., Golovko, D., et al. Magnetic resonance imaging of ferumoxide-labeled mesenchymal stem cells in cartilage defects: in vitro and in vivo investigations. Mol Imaging 11, 197–209 (2012).CrossRefGoogle ScholarPubMed
32. Chung, J. & Yang, P.C. Molecular Imaging of Stem Cell Transplantation in Myocardial Disease. Curr Cardiovasc Imaging Rep 3, 106–112 (2010).CrossRefGoogle ScholarPubMed
33. Khurana, N.H., Gawande, R., Lin, G., Lee, S., Messing, S., Castaneda, R., Derugin, N., Pisani, L., Lue, T.F., & Daldrup-Link, H.E. Intravenous ferumoxytol allows non-invasive MR imaging monitoring of macrophage migration into stem cell transplants. Radiology (2012).CrossRefGoogle Scholar
34. Rinck, P.A. Magnetic Resonance in Medicine: The Basic Textbook of the European Magnetic Resonance Forum (Blackwell Scientific Publications: Oxford; Boston, 1993).Google Scholar
35. Castaneda, R.T., Khurana, A., Khan, R. & Daldrup-Link, H.E. Labeling stem cells with ferumoxytol, an FDA-approved iron oxide nanoparticle. J Vis Exp, e3482 (2011).Google ScholarPubMed
36. Castaneda, R.T., Boddington, S., Henning, T.D., Wendland, M., Mandrussow, Liu, S., et al. Labeling human embryonic stem-cell-derived cardiomyocytes for tracking with MR imaging. Pediatr Radiol 41, 1384–1392 (2011).CrossRefGoogle ScholarPubMed
37. van Buul, G.M., Kotek, G., Wielopolski, P.A., Farrell, E., Bos, P.K., Weinans, H., et al. Clinically translatable cell tracking and quantification by MRI in cartilage repair using superparamagnetic iron oxides. PLoS One 6, e17001 (2011).CrossRefGoogle ScholarPubMed
38. Sykova, E. & Jendelova, P. In vivo tracking of stem cells in brain and spinal cord injury. Prog Brain Res 161, 367–383 (2007).Google ScholarPubMed
39. Bernsen, M.R., Moelker, A.D., Wielopolski, P.A., van Tiel, S.T. & Krestin, G.P. Labelling of mammalian cells for visualisation by MRI. Eur Radiol 20, 255–274 (2010).CrossRefGoogle ScholarPubMed
40. Tseng, C.L., Shih, I.L., Stobinski, L. & Lin, F.H. Gadolinium hexanedione nanoparticles for stem cell labeling and tracking via magnetic resonance imaging. Biomaterials 31, 5427–5435 (2010).CrossRefGoogle ScholarPubMed
41. Hsiao, J.K., Tsai, C.P., Chung, T.H., Hung, Y., Yao, M., Liu, H.M., et al. Mesoporous silica nanoparticles as a delivery system of gadolinium for effective human stem cell tracking. Small 4, 1445–1452 (2008).CrossRefGoogle ScholarPubMed
42. Vuu, K., Xie, J., McDnald, M.A., Bernardo, M., Hunter, F., Zhang, Y., et al. Gadolinium-rhodamine nanoparticles for cell labeling and tracking via magnetic resonance and optical imaging. Bioconjug Chem 16, 995–999 (2005).CrossRefGoogle ScholarPubMed
43. Schroder, U., Segrern, S., Gemmefors, C., Hedlund, G., Jansson, B., Sjögren, H.O., et al. Magnetic carbohydrate nanoparticles for affinity cell separation. J Immunol Methods 93, 45–53 (1986).CrossRefGoogle ScholarPubMed
44. Kircher, M.F., Gambhir, S.S. & Grimm, J. Noninvasive cell-tracking methods. Nat Rev Clin Oncol 8, 677–688 (2011).CrossRefGoogle ScholarPubMed
45. Guenoun, J., Koning, G.A., Doeswijk, G., Bosman, L., Wieloposki, P.A., Krestin, G.P., et al. Cationic Gd-DTPA liposomes for highly efficient labeling of mesenchymal stem cells and cell tracking with MRI. Cell Transplant 21, 191–205 (2012).CrossRefGoogle ScholarPubMed
46. Shen, J., Duan, X.H., Cheng, L.N., Zhong, X.M., Guo, R.M., Zhang, F., et al. In vivo MR imaging tracking of transplanted mesenchymal stem cells in a rabbit model of acute peripheral nerve traction injury. J Magn Reson Imaging 32, 1076–1085 (2010).CrossRefGoogle Scholar
47. Anderson, S.A., Lee, K.K. & Frank, J.A. Gadolinium-fullerenol as a paramagnetic contrast agent for cellular imaging. Invest Radiol 41, 332–338 (2006).CrossRefGoogle ScholarPubMed
48. Caravan, P. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 35, 512–523 (2006).CrossRefGoogle ScholarPubMed
49. Uysal, E., Erturk, S.M., Yildirim, H., Seleker, F. & Basak, M. Sensitivity of immediate and delayed gadolinium-enhanced MRI after injection of 0.5 M and 1.0 M gadolinium chelates for detecting multiple sclerosis lesions. AJR Am J Roentgenol 188, 697–702 (2007).CrossRefGoogle ScholarPubMed
50. Raymond, K.N. & Pierre, V.C. Next generation, high relaxivity gadolinium MRI agents. Bioconjug Chem 16, 3–8 (2005).CrossRefGoogle ScholarPubMed
51. Haar, P.J., Broaddus, W.C., Chen, Z.J., Fatouros, P.P., Gillies, G.T., Corwin, F.D., et al. Gd-DTPA T1 relaxivity in brain tissue obtained by convection-enhanced delivery, magnetic resonance imaging and emission spectroscopy. Phys Med Biol 55, 3451–3465 (2010).CrossRefGoogle ScholarPubMed
52. Goswami, L.N., White, W.H. 3rd, Spemyak, J.A., Ethirajan, M., Chen, Y., Missert, J.R., et al. Synthesis of Tumor-avid Photosensitizer-Gd(III)DTPA conjugates: impact of the number of gadolinium units in T1/T2 relaxivity, intracellular localization, and photosensitizing efficacy. Bioconjug Chem 21, 816–827 (2010).CrossRefGoogle ScholarPubMed
53. Park, J.Y., Baek, M.J., Choi, E.S., Woo, S., Kim, J.H., Kim, T.J., et al. Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: account for large longitudinal relaxivity, optimal particle diameter, and in vivo T1 MR images. ACS Nano 3, 3663–3669 (2009).CrossRefGoogle ScholarPubMed
54. Caravan, P., Farrar, C.T., Frullano, L. & Uppal, R. Influence of molecular parameters and increasing magnetic field strength on relaxivity of gadolinium- and manganese-based T1 contrast agents. Contrast Media Mol Imaging 4, 89–100 (2009).CrossRefGoogle ScholarPubMed
55. Ding, W.M., Tian, J.H., Bai, J.Z. & Shen, L. Transferrin receptor imaging for tracing mesenchymal stem cells implanted in the spinal cord. Nan Fang Yi Ke Da Xue Xue Bao 27, 1318–1322 (2007).Google ScholarPubMed
56. Bai, J.Z., Ding, W.M., Liu, Z.J., Yu, M.J., Tian, J.H., Wang, F., et al. Transferrin receptor expression of human mesenchymal stem cells and in vitro tracking by autoradiography after transplantation in spinal cord. Beijing Da Xue Xue Bao 36, 276–280 (2004).Google ScholarPubMed
57. Bai, J., Ding, W., Yu, M., Du, J., Liu, Z., Jia, B., et al. Radionuclide imaging of mesenchymal stem cells transplanted into spinal cord. Neuroreport 15, 1117–1120 (2004).CrossRefGoogle ScholarPubMed
58. Ding, W., Bai, J., Zhang, J., Chen, Y., Cao, L., He, Y., et al. In vivo tracking of implanted stem cells using radio-labeled transferrin scintigraphy. Nucl Med Biol 31, 719–725 (2004).CrossRefGoogle ScholarPubMed
59. Johnson, M., Karanikolas, B.D., Priceman, S.J., Powell, R., Black, M.E., Wu, H.M., et al. Titration of variant HSV1-tk gene expression to determine the sensitivity of 18F-FHBG PET imaging in a prostate tumor. J Nucl Med 50, 757–764 (2009).CrossRefGoogle Scholar
60. Najjar, A.M., Nishii, R., Maxwell, D.S., Volgin, A., Mukhopadhyay, U., Bommann, W.G., et al. Molecular-genetic PET imaging using an HSV1-tk mutant reporter gene with enhanced specificity to acycloguanosine nucleoside analogs. J Nucl Med 50, 409–416 (2009).CrossRefGoogle ScholarPubMed
61. Roelants, V., Labar, D., de Meester, C., Havaux, X., Tabilio, A., Gambhir, S.S., et al. Comparison between adenoviral and retroviral vectors for the transduction of the thymidine kinase PET reporter gene in rat mesenchymal stem cells. J Nucl Med 49, 1836–1844 (2008).CrossRefGoogle ScholarPubMed
62. Chang, G.Y., Cao, F., Krishnan, M., Huang, M., Li, Z., Xie, X., et al. Positron emission tomography imaging of conditional gene activation in the heart. J Mol Cell Cardiol 43, 18–26 (2007).CrossRefGoogle ScholarPubMed
63. Yaghoubi, S.S. & Gambhir, S.S. PET imaging of herpes simplex virus type 1 thymidine kinase (HSV1-tk) or mutant HSV1-sr39tk reporter gene expression in mice and humans using [18F]FHBG. Nat Protoc 1, 3069–3075 (2006).Google ScholarPubMed
64. Yaghoubi, S.S., Couto, M.A., Chen, C.C., Polavaram, L., Cui, G., Sen, L., et al. Preclinical safety evaluation of 18F-FHBG: a PET reporter probe for imaging herpes simplex virus type 1 thymidine kinase (HSV1-tk) or mutant HSV1-sr39tk's expression. J Nucl Med 47, 706–715 (2006).Google ScholarPubMed
65. Yaghoubi, S.S., Barrio, J.R., Namavari, M., Satyamurthy, N., Phelps, M.E., Herschman, H.R., et al. Imaging progress of herpes simplex virus type 1 thymidine kinase suicide gene therapy in living subjects with positron emission tomography. Cancer Gene Ther 12, 329–339 (2005).CrossRefGoogle ScholarPubMed
66. 9-(4-[18F]Fluoro-3-hydroxymethylbutyl)guanine. in Molecular Imaging and Contrast Agent Database (MICAD) (Bethesda (MD), 2004).
67. 2 -Deoxy-2 -[18F]fluoro-5-fluoro-1-beta-D-arabinofuranosyluracil. in Molecular Imaging and Contrast Agent Database (MICAD) (Bethesda (MD), 2004).
68. 2’-Fluoro-2’-deoxy-5’-[124I]iodo-1beta-d-arabinofuranosyluracil. in Molecular Imaging and Contrast Agent Database (MICAD) (Bethesda (MD), 2004).
69. Tang, G., Tang, X., Li, H., Wang, M., Li, B., Liang, M., et al. A simplified one-pot automated synthesis of [18F]FHBG for imaging reporter gene expression. Nucl Med Commun 31, 211–216 (2010).CrossRefGoogle Scholar
70. Green, L.A., Nguyen, K., Berenji, B., Iyer, M., Bauer, E., Barrio, J.R., et al. A tracer kinetic model for 18F-FHBG for quantitating herpes simplex virus type 1 thymidine kinase reporter gene expression in living animals using PET. J Nucl Med 45, 1560–1570 (2004).Google ScholarPubMed
71. Uchida, K., Momiyama, T., Okano, H., Yuzaki, M., Koizumi, A., Mine, Y., et al. Potential functional neural repair with grafted neural stem cells of early embryonic neuroepithelial origin. Neurosci Res 52, 276–286 (2005).CrossRefGoogle ScholarPubMed
72. Rudelius, M., Daldrup-Link, H.E., Heinzmann, U., Piontek, G., Settles, M., Link, T.M., et al. Highly efficient paramagnetic labelling of embryonic and neuronal stem cells. Eur J Nucl Med Mol Imaging 30, 1038–1044 (2003).CrossRefGoogle ScholarPubMed
73. Weissleder, R., Moore, A., Mahmood, U., Bhorade, R., Benveniste, H., Chiocca, E.A., et al. In vivo magnetic resonance imaging of transgene expression. Nat Med 6, 351–355 (2000).CrossRefGoogle ScholarPubMed
74. Jiang, W., Papa, E., Fischer, H., Mardyani, S. & Chan, W.C. Semiconductor quantum dots as contrast agents for whole animal imaging. Trends Biotechnol 22, 607–609 (2004).CrossRefGoogle ScholarPubMed
75. Wu, X., Liu, H., Liu, J., Haley, K.N., Treasway, J.A., Larson, J.P., et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21, 41–46 (2003).Google ScholarPubMed
76. Gao, Y., Stanford, W.L. & Chan, W.C. Quantum-dot-encoded microbeads for multiplexed genetic detection of non-amplified DNA samples. Small 7, 137–146 (2011).CrossRefGoogle ScholarPubMed
77. Artemov, D. Molecular magnetic resonance imaging with targeted contrast agents. J Cell Biochem 90, 518–524 (2003).CrossRefGoogle ScholarPubMed
78. Couillard-Despres, S., Quehl, E., Altendorfer, K., Karl, C., Ploetz, S., Bogdahn, U., et al. Human in vitro reporter model of neuronal development and early differentiation processes. BMC Neurosci 9, 31 (2008).CrossRefGoogle ScholarPubMed
79. Karl, C., Couillard-Despres, S., Prang, P., Munding, M., Kilb, W., Brigadski, T., et al. Neuronal precursor-specific activity of a human doublecortin regulatory sequence. J Neurochem 92, 264–282 (2005).CrossRefGoogle ScholarPubMed
80. Heng, B.C., Liu, H. & Cao, T. Transplanted human embryonic stem cells as biological ‘catalysts’ for tissue repair and regeneration. Med Hypotheses 64, 1085–1088 (2005).CrossRefGoogle ScholarPubMed
81. Wang, Z., Yang, Z., He, X. & Tu, J. Aggrecanases gene inhibition in chondrocytes: a new possible strategy to relieve immune rejection of transplants. Med Hypotheses 72, 196–198 (2009).CrossRefGoogle ScholarPubMed
82. Bazyar, N., Azarpira, N., Khatami, S.R., Galehdari, H. & Salahi, H. Complement C3 gene polymorphism in renal transplantation (an Iranian experience). Gene 498, 254–258 (2012).CrossRefGoogle Scholar
83. Cao, T.M., Lo, B., Ranheim, E.A., Grumet, F.C. & Shizuru, J.A. Variable hematopoietic graft rejection and graft-versus-host disease in MHC-matched strains of mice. Proc Natl Acad Sci U S A 100, 11571–11576 (2003).CrossRefGoogle Scholar
84. Daldrup-Link, H.E., Rudelius, M., Oostendorp, R.A., Jacobs, V.R., Simon, G.H., Gooding, C., et al. Comparison of iron oxide labeling properties of hematopoietic progenitor cells from umbilical cord blood and from peripheral blood for subsequent in vivo tracking in a xenotransplant mouse model XXX. Acad Radiol 12, 502–510 (2005).CrossRefGoogle Scholar
85. Yaghoubi, S.S., Jensen, M.C., Satyamurthy, N., Budhiraja, S., Paik, D., Czernin, J., et al. Noninvasive detection of therapeutic cytolytic T cells with 18F-FHBG PET in a patient with glioma. Nat Clin Pract Oncol 6, 53–58 (2009).CrossRefGoogle Scholar
86. Kutschka, I., Chen, I.Y., Kofidis, T., von Dedenfeld, G., Sheikh, A.Y., Hendry, S.L., et al. In vivo optical bioluminescence imaging of collagen-supported cardiac cell grafts. J Heart Lung Transplant 26, 273–280 (2007).CrossRefGoogle ScholarPubMed
87. Lee, S.W., Padmanabhan, P., Ray, P., Gambhir, S.S., Doyle, T., Contag, C., et al. Stem cell-mediated accelerated bone healing observed with in vivo molecular and small animal imaging technologies in a model of skeletal injury. J Orthop Res 27, 295–302 (2009).CrossRefGoogle Scholar
88. Tavare, R., Sagoo, P., Varama, G., Tanriver, Y., Warely, A., Diebold, S.S., et al. Monitoring of in vivo function of superparamagnetic iron oxide labelled murine dendritic cells during anti-tumour vaccination. PLoS One 6, e19662 (2011).CrossRefGoogle ScholarPubMed
89. Namavari, M., Chag, Y.F., Kusler, B., Yaghoubi, S., Mitchell, B.S., Gambhir, S.S., et al. Synthesis of 2’-deoxy-2’-[18F]fluoro-9-beta-D-arabinofuranosylguanine: a novel agent for imaging T-cell activation with PET. Mol Imaging Biol 13, 812–818 (2011).CrossRefGoogle ScholarPubMed
90. Curbo, S. & Karlsson, A. Nelarabine: a new purine analog in the treatment of hematologic malignancies. Rev Recent Clin Trials 1, 185–192 (2006).CrossRefGoogle ScholarPubMed
91. Leanza, L., Miazzi, C., Ferraro, P., Reichard, P. & Bianchi, V. Activation of guanine-beta-D-arabinofuranoside and deoxyguanosine to triphosphates by a common pathway blocks T lymphoblasts at different checkpoints. Exp Cell Res 316, 3443–3453 (2010).CrossRefGoogle Scholar
92. Spasokoukotskaja, T., Amer, E.S., Brosjo, O., Gunven, P., Juliusson, G., Liliemark, J., et al. Expression of deoxycytidine kinase and phosphorylation of 2-chlorodeoxyadenosine in human normal and tumour cells and tissues. Eur J Cancer 31A, 202–208 (1995).Google ScholarPubMed
93. Zhu, C., Johansson, M. & Karlsson, A. Differential incorporation of 1-beta-D-arabinofuranosylcytosine and 9-beta-D-arabinofuranosylguanine into nuclear and mitochondrial DNA. FEBS Lett 474, 129–132 (2000).CrossRefGoogle ScholarPubMed
94. Zhu, C., Johansson, M. & Karlsson, A. Incorporation of nucleoside analogs into nuclear or mitochondrial DNA is determined by the intracellular phosphorylation site. J Biol Chem 275, 26727–26731 (2000).Google ScholarPubMed
95. Hamilton, B.E., Nesbit, G.M., Dosa, E., Gahramanov, S., Rooney, B., Nesbit, E.G., et al. Comparative analysis of ferumoxytol and gadoteridol enhancement using T1- and T2-weighted MRI in neuroimaging. AJR Am J Roentgenol 197, 981–988 (2011).CrossRefGoogle ScholarPubMed
96. Thu, M.S., Bryant, L.H., Coppola, T., Jordan, E.K., Budde, M.D., Lewis, B.K., et al. Self-assembling nanocomplexes by combining ferumoxytol, heparin and protamine for cell tracking by magnetic resonance imaging. Nat Med 18, 463–467 (2012).CrossRefGoogle ScholarPubMed
97. Daldrup-Link, H.E., Golovko, D., Ruffell, B., Denardo, D.G., Castaneda, R., Ansari, C., et al. MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles. Clin Cancer Res 17, 5695–5704 (2011).CrossRefGoogle ScholarPubMed
98. Lu, M., Cohen, M.H., Rieves, D. & Pazdur, R. FDA report: Ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am J Hematol 85, 315–319 (2010).Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats No formats are currently available for this content.
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats No formats are currently available for this content.
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats No formats are currently available for this content.
×