Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T16:37:33.029Z Has data issue: false hasContentIssue false

Two-port network theory basedthermal characterization of power module packages

Published online by Cambridge University Press:  15 April 2002

F. E. Ratolojanahary*
Affiliation:
Département de physique de la Faculté des sciences, Université de Fianarantsoa, 301 Fianarantsoa, Madagascar
J. M. Dorkel
Affiliation:
Laboratoire d'Architecture et d'Analyse des Systèmes du CNRS, 7 avenue de Colonel Roche, 31077 Toulouse Cedex 04, France Institut National des Sciences Appliquées de Toulouse, 135 avenue de Rangueil, 31077 Toulouse Cedex 04, France
P. Tounsi
Affiliation:
Laboratoire d'Architecture et d'Analyse des Systèmes du CNRS, 7 avenue de Colonel Roche, 31077 Toulouse Cedex 04, France Institut National des Sciences Appliquées de Toulouse, 135 avenue de Rangueil, 31077 Toulouse Cedex 04, France
Get access

Abstract

For thermal analysis, power module packages can often be considered as plane multilayered systems for which it has been demonstrated that appropriate Fourier transforms associated with the two-port network theory permit to develop very efficient solutions of the static or the time dependent 3D heat flow equation. However, in practice, the thermal resistances of soldered or pasted interfaces are most often not well known. Most of these parameters are theoretically unpredictable, therefore it is of highest interest to develop an experimental procedure intended for an adequate characterization of the 3D thermal behaviour of the cooling substrates. A two-port network theoretical basis for experimental characterization of the thermal behaviour of multilayered substrates (96% Alumina, AU4G, IMS), which are classically used for power module packaging, is presented. In spite of some difficulties in setting perfectly the boundary conditions for temperature and heat fluxes, the experimental results demonstrate the validity of the characterization method, and the soughted parameters can be measured for wide ranges of spatial pulsation. Suggested improvements of the existing experimental set can give rise to an industrial measurement set intended for thermal characterization of power module packages.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

V. Szekely, SUNRED: a new thermal simulator and typical applications, proceedings of the 3rd THERMINIC Workshop, 21-23 September 1997, Cannes, France, pp. 84-90.
O.C. Zienkiewicz, The finite element method in engineering science, 3rd edn. (Mc Graw-Hill, New York, 1977).
G.N. Ellison, Thermal analysis of circuit boards and microelectronic components using an analytical solution to the heat conduction equation, proceedings of the 12th SEMI-THERM Symposium, 5-7 March 1996, Austin, Texas, USA, pp. 144-150.
Ph. Leturcq, J.M. Dorkel, F.E. Ratolojanahary, S. Tounsi, Int. J. Heat Mass Transfer 36, 2317 (1993). CrossRef
H.S. Carslaw, J.C. Jaeger, Conduction of heat in solids, 2nd edn. (Oxford University Press, 1959), p. 458.
P. Tounsi, Méthodologie de la conception thermique des circuits éélectroniques hybrides et problèmes connexes, Thèse de Doctorat de l'INSA de Toulouse, December 1992.
F.E. Ratolojanahary, Méthodologie de caractérisation thermique de supports et substrats pour l'éélectronique de puissance, Thèse de Doctorat de l'INSA de Toulouse n $^\circ$ 252, Septembre 1993.
J.-M. Dorkel, P. Tounsi, Ph. Leturcq, IEEE trans. Components, Packaging, and Manufacturing Technol. Part A 19, 501 (1996).
D.L. Balageas, Mesure de la diffusivitéé thermique par la méthode de flash, Techniques de l'ingénieur, Mesures et Contrôle, Grandeurs Thermiques, Vol. R2, n $^\circ$ R2955.
G.B. Bonis, Dissipation thermique. ÉÉvacuation de la chaleur, Techniques de l'ingénieur. ÉÉlectronique, Circuits, Vol. E3 III, n $^\circ$ E3952.
I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals Series and Products, 4th edn. (Academic Press, 1965), p. 672 expression 6.521 (2).
W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes, 1st edn. (Cambridge University Press, 1988), p. 289.