Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-18T08:18:21.119Z Has data issue: false hasContentIssue false

Some examples of critical points for the total mean curvature functional

Published online by Cambridge University Press:  20 January 2009

Josu Arroyo
Affiliation:
Departamento de Matemáticas, Universidad del País Vasco/Euskal, Herriko Unibertsitatea, Aptdo 644, 48080 Bilbao, Spain (mtparolj@lg.ehu.es; mtpgabeo@lg.ehu.es)
Manuel Barros
Affiliation:
Departamento de Geometría y Topología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain (mbarros@goliat.ugr.es)
Oscar J. Garay
Affiliation:
Departamento de Matemáticas, Universidad del País Vasco/Euskal, Herriko Unibertsitatea, Aptdo 644, 48080 Bilbao, Spain (mtparolj@lg.ehu.es; mtpgabeo@lg.ehu.es)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the following problem: establish existence and classification of closed curves which are critical points for the total curvature functional, defined on spaces of curves in a Riemannian manifold. This problem is completely solved in a real space form. Next, we give examples of critical points for this functional in a class of metrics with constant scalar curvature on the three sphere. Also, we obtain a rational one-parameter family of closed helices which are critical points for that functional in ℂℙ2 (4) when it is endowed with its usual Kaehlerian structure. Finally, we use the principle of symmetric criticality to get equivariant submanifolds, constructed on the above curves, which are critical points for the total mean curvature functional.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2000

References

1.Barros, M., Willmore tori in non-standard 3-spheres. Math. Proc. Camb. Phil. Soc. 121 (1997), 321324.CrossRefGoogle Scholar
2.Barros, M., Free elasticae and Willmore tori in warped product spaces, Glasgow Math J. 40 (1988), 263270.Google Scholar
3.Barros, M. and Chen, B. Y., Stationary 2-type surfaces in a hypersphere, J. Math. Soc. Japan 39 (1987), 263270.CrossRefGoogle Scholar
4.Barros, M. and Garay, O. J., Hopf submanifolds in S7 which are Willmore-Chen sub-manifolds, Math. Z. 228 (1998), 121129.CrossRefGoogle Scholar
5.Barros, M., Ferrández, A. and Lucas, P., Lawson's type problems in non-standard 3-spheres, Q. J. Math. Oxford 50 (1999), 385388.CrossRefGoogle Scholar
6.Barros, M., Garay, O. J. and Singer, D., Elasticae with constant slant in ℂℙ2(4) and new examples of Willmore tori in S5, Tôhoku Math. J. 51 (1999), 177192.CrossRefGoogle Scholar
7.Besse, A. L., Einstein manifolds (Springer, 1987).CrossRefGoogle Scholar
8.Chen, B.-Y., Total mean curvature and submanifolds of finite type (World Scientific, Singapore, 1984).Google Scholar
9.Eells, J. and Lemaire, L., A report on harmonic maps, Bull. Lond. Math. Soc. 10 (1978), 168.CrossRefGoogle Scholar
10.Erbacher, J., Reduction of codimension of an isometric immersion, J. Diff. Geom. 5 (1971), 333340.Google Scholar
11.Greub, W., Halperin, S. and Vanstone, R., Connections, curvature and cohomology (3 vols) (Academic Press, 1972, 1973, 1976).Google Scholar
12.Langer, J. and Singer, D. A., The total squared curvature of closed curves, J. Diff. Geom. 20 (1984), 122.Google Scholar
13.Palais, R. S., Critical point theory and the minimax principle, Global Analysis, Proc. Symp. Pure Math. 15 (1970), 185212.CrossRefGoogle Scholar
14.Pinkall, U., Hopf tori in S3, Invent. Math. 81 (1985), 379386.CrossRefGoogle Scholar
15.Simons, J., Minimal varieties in Riemannian manifolds, Ann. Math. 88 (1968), 62105.CrossRefGoogle Scholar
16.Weiner, J. L., On a problem of Chen, Willmore, et al., Indiana Univ. Math. J. 27 (1978), 1935.CrossRefGoogle Scholar