Skip to main content Accessibility help
×
Home

Phenotypic diversity in tetraploid wheats collected from Bale and Wello regions of Ethiopia

  • Firdissa Eticha (a1), Endeshaw Bekele (a2), Getachew Belay (a3) and Andreas Börner (a4)

Abstract

The phenotypic diversity of 32 landrace populations of tetraploid wheats originating from the Bale and Wello regions of Ethiopia was studied. Eight heritable qualitative traits (glume hairiness, glume colour, awnedness, awn length, beak awn, awn colour, spike density, seed colour) were measured on 2453 individual plants (45–110 plants per landrace). The frequencies of each phenotypic class were used to estimate and analyse the diversity at different levels (population, altitude, region). Beak awn and seed colour showed the highest diversity index, and glume hairiness the lowest. Glume hairiness, glume colour, beak awn and awn colour were regionally variable, while gradients across altitude were observed for glume hairiness, glume colour and beak awn. Variation was, however, largely due to the differences in the level of the different characters within populations. On a regional basis, a higher mean diversity index was observed for materials from Wello than from Bale. No drastic change in the overall diversity between these collections and those analysed in the 1970s was evident.

Copyright

Corresponding author

*Corresponding author: E-mail:, boerner@ipk-gatersleben.de

References

Hide All
Alamerew, S, Chebotar, S, Huang, XQ, Röder, MS and Börner, A (2004) Genetic diversity in Ethiopian hexaploid and tetraploid wheat germplasm assessed by microsatellite markers. Genetic Resources and Crop Evolution 51: 559567.
Bechere, E, Belay, G, Mitiku, D and Merker, A (1996) Phenotypic diversity of tetraploid wheat landraces from northern and north-central regions of Ethiopia. Hereditas 124: 165172.
Bekele, E (1984) Analysis of regional patterns of phenotypic diversity in the Ethiopian tetraploid and hexaploid wheats. Hereditas 100: 131154.
Belay, G (1997) Genetic variation, breeding potential and cytogenetic profile of Ethiopian tetraploid wheat ( Triticum turgidum L.) landraces. PhD Thesis, Swedish University of Agricultural Sciences, Uppsala.
Ben Amer, IM, Börner, A and Röder, MS (2001) Detection of genetic diversity in Libyan wheat genotypes using wheat microsatellite markers. Genetic Resources and Crop Evolution 48: 579585.
Chebotar, SV and Sivolap, YM (2001) Differentiation, identification and characterization of Triticum aestivum L. varieties from Ukrainian breeding programs by using STMS analysis. Cytology and Genetics 35: 1827 (in Russian).
Donini, P, Stephenson, P, Bryan, GJ and Koebner, RMD (1998) The potential of microsatellites for high throughput genetic diversity assessment in wheat and barley. Genetic Resources and Crop Evolution 45: 415421.
Donini, P, Law, JR, Koebner, RMD, Reeves, JC and Cooke, RJ (2000) Temporal trends in the diversity of UK wheat. Theoretical and Applied Genetics 100: 912917.
Eticha, F, Belay, G and Bekele, E (2005) Species diversity in wheat landrace populations from two regions of Ethiopia. Genetic Resources and Crop Evolution (in press).
Fahima, T, Röder, MS, Grama, A and Nevo, E (1998) Microsatellite DNA polymorphism divergence in Triticum dicoccoides accessions highly resistant to yellow rust. Theoretical and Applied Genetics 96: 187195.
Harlan, JR (1971) Agricultural origins: centers and non-centers. Science 174: 468473.
Huang, XQ, Börner, A, Röder, MS and Ganal, MW (2002) Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theoretical and Applied Genetics 105: 699707.
IPGRI (1994) Descriptors of Wheat (Triticum spp.). Rome: International Plant Genetic Resources Institute.
Jain, KS, Qualset, CO, Bhatt, GM and Wu, KK (1975) Geographical patterns of phenotypic diversity in a world collection of durum wheats. Crop Science 15: 700704.
Khlestkina, EK, Huang, XQ, Quenum, FJB, Chebotar, S, Röder, MS and Börner, A (2004 a) Genetic diversity in cultivated plants—loss or stability?. Theoretical and Applied Genetics 108: 14661472.
Khlestkina, EK, Röder, MS, Efremova, TT, Börner, A and Shumny, VK (2004 b) The genetic diversity of old and modern Siberian varieties of common spring wheat determined by microsatellite markers. Plant Breeding 123: 122127.
Klug, WS and Cummings, MR (1994) Concepts of Genetics, 4th edn. USA: Macmillan College Publishing Company.
Manifesto, MM, Schlatter, AR, Hopp, HE, Suarez, EY and Dubcovsky, J (2000) Quantitative assessment of genetic erosion among bread wheat cultivars using SSRs. Annual Wheat Newsletter 46: 2324.
Negassa, M (1986) Estimates of phenotypic diversity and breeding potential of Ethiopian wheats. Hereditas 104: 4148.
Pecetti, L and Damania, AB (1996) Geographic variation in tetraploid wheat (Triticum turgidum ssp. turgidum conar. durum ) landraces from two provinces of Ethiopia. Genetic Research and Crop Evolution 43: 395407.
Plaschke, J, Ganal, MW and Röder, MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theoretical and Applied Genetics 91: 10011007.
Reynolds, MP, Skovmand, B, Trethowan, R and Pfeiffer, W (1999) Evaluating a conceptual model for drought tolerance. In: Ribaut, JM (ed.) Using Molecular Markers to Improve Drought Tolerance. Mexico D.F.: CIMMYT, pp. 4953.
Skovmand, B, Reynolds, M and Lage, J (2003) Collecting and managing wheat genetic resources and exploiting germplasm collections to find useful traits. Abstract, 1st Central Asian Wheat Conference,Almaty, pp. 389.
Tamiru, M (1999) Morphological and molecular diversity in durum wheat ( Triticum durum Desf.) landraces of North Shewa. MSc Thesis, Addis Ababa University.
Tesemma, T and Belay, G (1991) Aspects of tetraploid wheats with emphasis on durum wheat genetics and breeding. In: Gebremariam, H, Tanner, DG and Huluka, M (eds) Wheat Research in Ethiopia: A Historical Perspective. Addis Ababa: IAR/CIMMYT, pp. 4771.
Tesemma, T, Belay, G and Werede, M (1991) Morphological diversity in wheat landrace populations from central highlands of Ethiopia. Hereditas 114: 172176.
Tsegaye, S, Tesemma, T and Belay, G (1996) Relationships among tetraploid wheat (Triticum turgidum L.) landrace populations revealed by isozyme markers and agronomic characters. Theoretical and Applied Genetics 93: 600605.
Vavilov, NI (1951) The origin, variation, immunity and breeding of cultivated plants. Chronica Botanica 13: 1351.
Warham, EJ (1988) Screening for kernel bunt (Tilletia indica) resistance in wheat, Triticale, rye, and barley. Canadian Journal of Plant Pathology 10: 5770.
Zeven, AC (1991) Wheats with purple and blue grains: a review. Euphytica 56: 243258.

Keywords

Phenotypic diversity in tetraploid wheats collected from Bale and Wello regions of Ethiopia

  • Firdissa Eticha (a1), Endeshaw Bekele (a2), Getachew Belay (a3) and Andreas Börner (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed