Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-21T16:13:27.317Z Has data issue: false hasContentIssue false

Molecular characterization of 5S ribosomal RNA genes and transcripts in the protozoan parasite Leishmania major

Published online by Cambridge University Press:  06 October 2016

RODRIGO MORENO-CAMPOS
Affiliation:
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
LUIS E. FLORENCIO-MARTÍNEZ
Affiliation:
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
TOMÁS NEPOMUCENO-MEJÍA
Affiliation:
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
SAÚL ROJAS-SÁNCHEZ
Affiliation:
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
DANIEL E. VÉLEZ-RAMÍREZ
Affiliation:
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
NORMA E. PADILLA-MEJÍA
Affiliation:
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
ELISA FIGUEROA-ANGULO
Affiliation:
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
REBECA MANNING-CELA
Affiliation:
Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, México, D.F., CP 07360, México
SANTIAGO MARTÍNEZ-CALVILLO*
Affiliation:
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
*
*Corresponding author: Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México. E-mail: scalv@campus.iztacala.unam.mx

Summary

Eukaryotic 5S rRNA, synthesized by RNA polymerase III (Pol III), is an essential component of the large ribosomal subunit. Most organisms contain hundreds of 5S rRNA genes organized into tandem arrays. However, the genome of the protozoan parasite Leishmania major contains only 11 copies of the 5S rRNA gene, which are interspersed and associated with other Pol III-transcribed genes. Here we report that, in general, the number and order of the 5S rRNA genes is conserved between different species of Leishmania. While in most organisms 5S rRNA genes are normally associated with the nucleolus, combined fluorescent in situ hybridization and indirect immunofluorescence experiments showed that 5S rRNA genes are mainly located at the nuclear periphery in L. major. Similarly, the tandemly repeated 5S rRNA genes in Trypanosoma cruzi are dispersed throughout the nucleus. In contrast, 5S rRNA transcripts in L. major were localized within the nucleolus, and scattered throughout the cytoplasm, where mature ribosomes are located. Unlike other rRNA species, stable antisense RNA complementary to 5S rRNA is not detected in L. major.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acker, J., Conesa, C. and Lefebvre, O. (2013). Yeast RNA polymerase III transcription factors and effectors. Biochimica et Biophysica Acta 1829, 283295.CrossRefGoogle ScholarPubMed
Alsford, S. and Horn, D. (2011). Elongator protein 3b negatively regulates ribosomal DNA transcription in African trypanosomes. Molecular and Cellular Biology 31, 18221832.CrossRefGoogle ScholarPubMed
Beauparlant, M. A. and Drouin, G. (2014). Multiple independent insertions of 5S rRNA genes in the spliced-leader gene family of trypanosome species. Current Genetics 60, 1724.Google Scholar
Beverley, S. M. and Clayton, C. E. (1993). Transfection of Leishmania and Trypanosoma brucei by electroporation. Methods in Molecular Biology 21, 333348.Google Scholar
Braglia, P., Percudani, R. and Dieci, G. (2005). Sequence context effects on oligo(dT) termination signal recognition by Saccharomyces cerevisiae RNA polymerase III. The Journal of Biological Chemistry 280, 1955119562.Google Scholar
Chaves, I., Zomerdijk, J., Dirks-Mulder, A., Dirks, R. W., Raap, A. K. and Borst, P. (1998). Subnuclear localization of the active variant surface glycoprotein gene expression site in Trypanosoma brucei . Proceedings of the National Academy of Sciences of the United States of America 95, 1232812333.Google Scholar
Dieci, G., Bosio, M. C., Fermi, B. and Ferrari, R. (2013). Transcription reinitiation by RNA polymerase III. Biochimica et Biophysica Acta 1829, 331341.Google Scholar
Dinman, J. D. (2005). 5S rRNA: structure and function from head to toe. International Journal of Biomedical Science 1, 27.Google Scholar
Downing, T., Imamura, H., Decuypere, S., Clark, T. G., Coombs, G. H., Cotton, J. A., Hilley, J. D., de, D. S., Maes, I., Mottram, J. C., Quail, M. A., Rijal, S., Sanders, M., Schonian, G., Stark, O., Sundar, S., Vanaerschot, M., Hertz-Fowler, C., Dujardin, J. C. and Berriman, M. (2011). Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Research 21, 21432156.CrossRefGoogle ScholarPubMed
Ersfeld, K. and Gull, K. (1997). Partitioning of large and minichromosomes in Trypanosoma brucei . Science 276, 611614.Google Scholar
Haeusler, R. A. and Engelke, D. R. (2006). Spatial organization of transcription by RNA polymerase III. Nucleic Acids Research 34, 48264836.Google Scholar
Hasan, G., Turner, M. J. and Cordingley, J. S. (1984). Ribosomal RNA genes of Trypanosoma brucei: mapping the regions specifying the six small ribosomal RNAs. Gene 27, 7586.Google Scholar
Haussecker, D., Huang, Y., Lau, A., Parameswaran, P., Fire, A. Z. and Kay, M. A. (2010). Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 16, 673695.Google Scholar
Hernandez-Rivas, R., Martinez-Calvillo, S., Romero, M. and Hernandez, R. (1992). Trypanosoma cruzi 5S rRNA genes: molecular cloning, structure and chromosomal organization. FEMS Microbiology Letters 71, 6367.Google Scholar
Highett, M. I., Beven, A. F. and Shaw, P. J. (1993). Localization of 5 S genes and transcripts in Pisum sativum nuclei. Journal of Cell Science 105, 11511158.Google Scholar
Hitchcock, R. A., Zeiner, G. M., Sturm, N. R. and Campbell, D. A. (2004). The 3′ termini of small RNAs in Trypanosoma brucei . FEMS Microbiology Letters 236, 7378.Google Scholar
Hochstrasser, M. and Sedat, J. W. (1987). Three-dimensional organization of Drosophila melanogaster interphase nuclei. II. Chromosome spatial organization and gene regulation. Journal of Cell Biology 104, 14711483.Google Scholar
Hofmann, J., Winckler, T., Hanenkamp, A., Bukenberger, M., Schumann, G., Marschalek, R. and Dingermann, T. (1993). The Dictyostelium discoideum 5S rDNA is organized in the same transcriptional orientation as the other rDNAs. Biochemical and Biophysical Research Communications 191, 558564.Google Scholar
Ivens, A. C., Peacock, C. S., Worthey, E. A., Murphy, L., Aggarwal, G., Berriman, M., Sisk, E., Rajandream, M. A., Adlem, E., Aert, R., Anupama, A., Apostolou, Z., Attipoe, P., Bason, N., Bauser, C., Beck, A., Beverley, S. M., Bianchettin, G., Borzym, K., Bothe, G., Bruschi, C. V., Collins, M., Cadag, E., Ciarloni, L., Clayton, C., Coulson, R. M., Cronin, A., Cruz, A. K., Davies, R. M., De, G. J. et al. (2005). The genome of the kinetoplastid parasite, Leishmania major . Science 309, 436442.Google Scholar
Leidig, C., Thoms, M., Holdermann, I., Bradatsch, B., Berninghausen, O., Bange, G., Sinning, I., Hurt, E. and Beckmann, R. (2014). 60S ribosome biogenesis requires rotation of the 5S ribonucleoprotein particle. Nature Communications 5, 3491.Google Scholar
Lenardo, M. J., Dorfman, D. M., Reddy, L. V. and Donelson, J. E. (1985). Characterization of the Trypanosoma brucei 5S ribosomal RNA gene and transcript: the 5S rRNA is a spliced-leader-independent species. Gene 35, 131141.Google Scholar
Liao, J. Y., Ma, L. M., Guo, Y. H., Zhang, Y. C., Zhou, H., Shao, P., Chen, Y. Q. and Qu, L. H. (2010). Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3’ trailers. PLoS ONE 5, e10563.CrossRefGoogle ScholarPubMed
López-Velázquez, G., Hernández, R., López-Villaseñor, I., Reyes-Vivas, H., Segura-Valdez, M. de L. and Jiménez-García, L. F. (2005). Electron microscopy analysis of the nucleolus of Trypanosoma cruzi . Microscopy and Microanalysis: The Official Journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada 11, 293299.CrossRefGoogle ScholarPubMed
Martinez-Calvillo, S., Saxena, A., Green, A., Leland, A. and Myler, P. J. (2007). Characterization of the RNA polymerase II and III complexes in Leishmania major . International Journal for Parasitology 37, 491502.Google Scholar
Matera, A. G., Frey, M. R., Margelot, K. and Wolin, S. L. (1995). A perinucleolar compartment contains several RNA polymerase III transcripts as well as the polypyrimidine tract-binding protein, hnRNP I. Journal of Cell Biology 129, 11811193.Google Scholar
Moir, R. D. and Willis, I. M. (2013). Regulation of pol III transcription by nutrient and stress signaling pathways. Biochimica et Biophysica Acta 1829, 361375.Google Scholar
Nakaar, V., Dare, A. O., Hong, D., Ullu, E. and Tschudi, C. (1994). Upstream tRNA genes are essential for expression of small nuclear and cytoplasmic RNA genes in trypanosomes. Molecular and Cellular Biology 14, 67366742.Google Scholar
Ogbadoyi, E., Ersfeld, K., Robinson, D., Sherwin, T. and Gull, K. (2000). Architecture of the Trypanosoma brucei nucleus during interphase and mitosis. Chromosoma 108, 501513.Google Scholar
Padilla-Mejia, N. E., Florencio-Martinez, L. E., Figueroa-Angulo, E. E., Manning-Cela, R. G., Hernandez-Rivas, R., Myler, P. J. and Martinez-Calvillo, S. (2009). Gene organization and sequence analyses of transfer RNA genes in Trypanosomatid parasites. BMC Genomics 10, 232.Google Scholar
Padmanabhan, P. K., Samant, M., Cloutier, S., Simard, M. J. and Papadopoulou, B. (2012). Apoptosis-like programmed cell death induces antisense ribosomal RNA (rRNA) fragmentation and rRNA degradation in Leishmania . Cell Death and Differentiation 19, 19721982.Google Scholar
Peacock, C. S., Seeger, K., Harris, D., Murphy, L., Ruiz, J. C., Quail, M. A., Peters, N., Adlem, E., Tivey, A., Aslett, M., Kerhornou, A., Ivens, A., Fraser, A., Rajandream, M. A., Carver, T., Norbertczak, H., Chillingworth, T., Hance, Z., Jagels, K., Moule, S., Ormond, D., Rutter, S., Squares, R., Whitehead, S., Rabbinowitsch, E., Arrowsmith, C., White, B., Thurston, S., Bringaud, F., Baldauf, S. L. et al. (2007). Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nature Genetics 39, 839847.Google Scholar
Raymond, F., Boisvert, S., Roy, G., Ritt, J. F., Legare, D., Isnard, A., Stanke, M., Olivier, M., Tremblay, M. J., Papadopoulou, B., Ouellette, M. and Corbeil, J. (2012). Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species. Nucleic Acids Research 40, 11311147.Google Scholar
Roberson, A. E., Wolffe, A. P., Hauser, L. J. and Olins, D. E. (1989). The 5S RNA gene minichromosome of Euplotes . Nucleic Acids Research 17, 46994712.Google Scholar
Rogers, M. B., Hilley, J. D., Dickens, N. J., Wilkes, J., Bates, P. A., Depledge, D. P., Harris, D., Her, Y., Herzyk, P., Imamura, H., Otto, T. D., Sanders, M., Seeger, K., Dujardin, J. C., Berriman, M., Smith, D. F., Hertz-Fowler, C. and Mottram, J. C. (2011). Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania . Genome Research 21, 21292142.Google Scholar
Rojas-Sánchez, S., Figueroa-Angulo, E., Moreno-Campos, R., Florencio-Martínez, L. E., Manning-Cela, R. G. and Martínez-Calvillo, S. (2016). Transcription of Leishmania major U2 small nuclear RNA gene is directed by extragenic sequences located within a tRNA-like and a tRNA-Ala gene. Parasites & Vectors 9, 401. doi: 10.1186/s13071-016-1682-3.Google Scholar
Schimanski, B., Nguyen, T. N. and Gunzl, A. (2005 a). Characterization of a multisubunit transcription factor complex essential for spliced-leader RNA gene transcription in Trypanosoma brucei . Molecular and Cellular Biology 25, 73037313.Google Scholar
Schimanski, B., Nguyen, T. N. and Gunzl, A. (2005 b). Highly efficient tandem affinity purification of trypanosome protein complexes based on a novel epitope combination. Eukaryotic Cell 4, 19421950.Google Scholar
Schramm, L. and Hernandez, N. (2002). Recruitment of RNA polymerase III to its target promoters. Genes & Development 16, 25932620.Google Scholar
Sharwood, R. E., Hotto, A. M., Bollenbach, T. J. and Stern, D. B. (2011). Overaccumulation of the chloroplast antisense RNA AS5 is correlated with decreased abundance of 5S rRNA in vivo and inefficient 5S rRNA maturation in vitro . RNA 17, 230243.Google Scholar
Sloan, K. E., Bohnsack, M. T. and Watkins, N. J. (2013). The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress. Cell Reports 5, 237247.CrossRefGoogle ScholarPubMed
Szymanski, M., Zielezinski, A., Barciszewski, J., Erdmann, V. A. and Karlowski, W. M. (2016). 5SRNAdb: an information resource for 5S ribosomal RNAs. Nucleic Acids Research 44, D180D183.Google Scholar
Thompson, M., Haeusler, R. A., Good, P. D. and Engelke, D. R. (2003). Nucleolar clustering of dispersed tRNA genes. Science 302, 13991401.Google Scholar
Torres-Machorro, A. L., Hernandez, R., Cevallos, A. M. and Lopez-Villasenor, I. (2010). Ribosomal RNA genes in eukaryotic microorganisms: witnesses of phylogeny? FEMS Microbiology Reviews 34, 5986.Google Scholar
van, H. A., Lennertz, P. and Parker, R. (2000). Three conserved members of the RNase D family have unique and overlapping functions in the processing of 5S, 5·8S, U4, U5, RNase MRP and RNase P RNAs in yeast. EMBO Journal 19, 13571365.Google Scholar
van Spaendonk, R. M., Ramesar, J., van, W. A., Eling, W., Beetsma, A. L., van Gemert, G. J., Hooghof, J., Janse, C. J. and Waters, A. P. (2001). Functional equivalence of structurally distinct ribosomes in the malaria parasite, Plasmodium berghei . The Journal of Biological Chemistry 276, 2263822647.Google Scholar
Velez-Ramirez, D. E., Florencio-Martinez, L. E., Romero-Meza, G., Rojas-Sanchez, S., Moreno-Campos, R., Arroyo, R., Ortega-Lopez, J., Manning-Cela, R. and Martinez-Calvillo, S. (2015). BRF1, a subunit of RNA polymerase III transcription factor TFIIIB, is essential for cell growth of Trypanosoma brucei . Parasitology 142, 15631573.Google Scholar
Viel, A., le, M. M., Philippe, H., Morales, J., Mazabraud, A. and Denis, H. (1991). Structural and functional properties of thesaurin a (42Sp50), the major protein of the 42 S particles present in Xenopus laevis previtellogenic oocytes. Journal of Biological Chemistry 266, 1039210399.Google Scholar
Weisenberger, D. and Scheer, U. (1995). A possible mechanism for the inhibition of ribosomal RNA gene transcription during mitosis. Journal of Cell Biology 129, 561575.Google Scholar
White, R. J. (2011). Transcription by RNA polymerase III: more complex than we thought. Nature Reviews Genetics 12, 459463.Google Scholar
Wolin, S. L. and Cedervall, T. (2002). The La protein. Annual Review of Biochemistry 71, 375403.Google Scholar
Supplementary material: File

Moreno-Campos supplementary material

Figure legends

Download Moreno-Campos supplementary material(File)
File 14.1 KB
Supplementary material: PDF

Moreno-Campos supplementary material

Figure S1

Download Moreno-Campos supplementary material(PDF)
PDF 4.8 MB
Supplementary material: Image

Moreno-Campos supplementary material

Figure S2

Download Moreno-Campos supplementary material(Image)
Image 2 MB
Supplementary material: Image

Moreno-Campos supplementary material

Figure S3

Download Moreno-Campos supplementary material(Image)
Image 2.5 MB