Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T10:47:58.396Z Has data issue: false hasContentIssue false

The metabolism of xenobiotic compounds by Hymenolepis diminuta (Cestoda: Cyclophyllidea)

Published online by Cambridge University Press:  06 April 2009

Widad A. Munir
Affiliation:
Department of Zoology, University College of Wales, Aberystwyth, Dyfed S Y23 3DA
J. Barrett
Affiliation:
Department of Zoology, University College of Wales, Aberystwyth, Dyfed S Y23 3DA

Extract

The hydrolytic, reductive and oxidative enzyme systems involved in the phase I biotrans formation of xenobiotic compounds have been investigated in Hymenolepis diminuta. Adult H. diminuta are able to carry out a range of hydrolytic and reductive reactions, but in common with other helminths oxidative detoxification reactions were absent (oxidative demethylation, aniline hydroxylation, nitrobenzene hydroxylation, biphenyl hydroxylation). These oxidative reactions were readily demonstrated in rat liver. Extracts of H. diminuta hydrolysed nitrophenylphosphates and inorganic pyrophosphate, but not arylsulphates, nor could epoxide hydratase activity be detected. N-Deacetylase activity was present. However, O-deacetylase activity could not be demonstrated, although butyrate and palmitate, but not benzoate, esters were hydrolysed. H. diminuta was capable of hydrolysing a range of a-and β-glycosides, but not β-glucuronides. Extracts of H. diminuta reduced azo-compounds, aldehydes and disulphides, but ketones and aromatic nitro-compounds were not reduced. The phase I detoxification systems of H. diminuta differ considerably from those of its rat host; the results also suggest that, within the cestodes, there may be considerable species variation in detoxification reactions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barrett, J. (1981). Biochemistry of Parasitic Helminths. London: Macmillan.CrossRefGoogle Scholar
Bogitsh, B. J. (1967). Histochemical localization of some enzymes in cysticercoids in two species of Hymenolepis. Experimental Parasitology 21, 373–9.CrossRefGoogle Scholar
Butterworth, J. & Probert, A. J. (1970). Non-specific phosphomonoesterases of Ascaris suum I. Effect of inhibitors, activators and chelators. Experimental Parasitology 28, 557–65.CrossRefGoogle ScholarPubMed
Creaven, P. J., Parke, D. V. & Williams, R. T. (1965). A fluorimetric study of the hydroxylation of biphenyl in vitro by liver preparations of various species. The Biochemical Journal 96, 879–85.CrossRefGoogle ScholarPubMed
Dean, R. B. & Dixon, W. J. (1951). Simplified statistics for small numbers of observations. Analytical Chemistry 23, 636–8.CrossRefGoogle Scholar
Dike, S. C. & Read, C. P. (1971 a). Tegumentary phosphohydrolases of Hymenolepis diminuta. Journal of Parasitology 57. 81–7.CrossRefGoogle ScholarPubMed
Dike, S. C. & Read, C. P. (1971 b). Relation of tegumentary phosphohydrolase and sugar transport in Hynienolepis diminuta. Journal of Parasitology 57: 1251–5.CrossRefGoogle ScholarPubMed
Dixon, M. (1953). The determination of enzyme inhibitor constants. The Biochemical Journal 55, 170–1.CrossRefGoogle ScholarPubMed
Douch, P. G. C. (1975 a). 4-Nitrobenzoie acid reductase of the nematode Ascaris lumbricoides var. suum. Localization of the enzyme and optimum assay conditions. Xenobiotica 5, 293302.CrossRefGoogle ScholarPubMed
Douch, P. G. C. (1975 b). 4-Nitrobenzoic acid reductase of Ascarislumbricoides var suum. Substrate specificity and reaction products. Xenobiotica 5, 401–6.Google Scholar
Douch, P. G. C. (1975 c). The effect of flavins and enzyme inhibitors on 4-nitrobenzoic acid reductase and azo reductase of Ascaris lumbricoides var. suum. Xenobiotica 5, 657–63.CrossRefGoogle Scholar
Douch, P. G. C. (1975 d). Azo- and nitro-reductases of the cestode Moniezia expansa. Localization of the enzyme activities and optimum assay conditions. Xenobiotica 5, 773–80.CrossRefGoogle Scholar
Douch, P. G. C. (1976 a). Azo- and nitro-reductase activities and cytochromes of Ascaris lumbricoides var. suum and Moniezia expansa. Xenobiotica 6, 531–6.Google Scholar
Douch, P. G. C. (1976 b). Azo- and nitro-reductases of the cestode Moniezia expansa. Substrate specificity, reaction products and the effects of flavins and other compounds. Xenobiotica 6, 399404.CrossRefGoogle ScholarPubMed
Douch, P. G. C. (1978 a). L-leucyl-α-naphthylamidases of the cestode, Moniezia expansa, and the nematode, Ascaris suum. Comparative Biochemistry and Physiology 60 B, 63–6.Google Scholar
Douch, P. G. C. (1978 b). The localization and some properties of the acetylsalicylic acid O-deacetylases of Ascaris lumbricoides var. suum and Moniezia expansa. Xenobiotica 8, 177–82.CrossRefGoogle ScholarPubMed
Douch, P. G. C. (1979). The metabolism of the anthelmintics clioxanide and resorantel and related compounds in vitro by Moniezia expansa, Ascaris suum and mouse- and sheep-liver enzymes. Xenobiotica 9, 263–8.CrossRefGoogle Scholar
Douch, P. G. C. & Blair, S. S. B. (1975). The metabolism of foreign compounds in the cestode, Moniezia expansa and the nematocle Ascaris lumbricoides var. suum. Xenobiotica 5, 279–92.Google Scholar
Douch, P. G. C. & Buchanan, L. L..(1978). Glutathione conjugation of some xenobiotics by Ascaris suum and Moniezia expansa. Xenobiotica 8, 171–6.CrossRefGoogle ScholarPubMed
Douch, P. G. C. & Buchanan, L. L. (1979 a). Some properties of the sulphoxidases and sulphoxide reductases of the cestocle Moniezia expansa, the nematode Ascaris suum and mouse liver. Xenobiotica 9, 675–9.CrossRefGoogle ScholarPubMed
Douch, P. G. C. & Buchanan, L. L. (1979 b). The metabolism of nitrophenolic and 5-arylazorhodanine anthelmintics by Ascaris suum, Moniezia expansa and by mouse- and sheep-liver enzymes. Xenobiotica 9, 467–74.Google Scholar
Douch, P. G. C. & Gahagan, H. M. (1976). Subcellular localization and some properties of the N-cleacetylase of the cestode Moniezia expansa. Xenobiotica 6, 769–73.CrossRefGoogle ScholarPubMed
Douch, P. G. C. & Gahagan, H. M. (1977 a). The metabolism of niclosamide and related compounds by Moniezia expansa, Ascaris lumbricoides var. suum. and mouse- and sheep-liver enzymes. Xenobiotica 7, 301–7.CrossRefGoogle Scholar
Douch, P. G. C. & Gahagan, H. M. (1977 b). The localization and some properties ofthe N-deacetylase of Ascaris lumbricoides var. suum. Xenobiotica 7, 309–14.CrossRefGoogle Scholar
Fisher, F. M. (1965). A detoxication mechanism in cestodes. Journal of Parasitology 51 (Suppl.), 44.Google Scholar
Gornall, A. G., Bardawill, C. J. & David, M. M. (1949). Determination of serum proteins by means of the Biu ret reagent. Journal of Biological Chemistry 177, 751–66.Google Scholar
Guengerich, F. P. & Mason, P. S. (1980). Alcohol dehyclrogenase-coupled spectrophotometric assay of epoxide hydratase activity. Analytical Biochemistry 104, 445–51.CrossRefGoogle ScholarPubMed
Heppel, L. A. (1955). Inorganic pyrophosphatase from yeast. In Methods in Enzymology vol. 2 (ed. Colowick, S. P. and Kaplan, N. O.), pp. 570–6. New York: Academic Press.Google Scholar
Jorgensen, B. B. & Jorgensen, O. B. (1967). Inhibition of barley malt α-glucosidase by Tris (hydroxymethyl aminomethane) and erythritol. Biochimica et Biophysica Ada 146, 167–72.CrossRefGoogle ScholarPubMed
Knowles, C. O. & Casida, J. E. (1966). Mode of action of organophosphate anthelmintics. Cholines terase inhibition in Ascaris lumbricoides. Journal of Agricultural and Food Chemistry 14, 566–72.Google Scholar
Körting, W. & Barrett, J. (1977). Carbohydrate catabolism in the plerocercoids of Schistocephalus solidus (Cestocla: Pseudlophyllidlea). International Journal for Parasitology 7, 411–17.CrossRefGoogle Scholar
Kurelec, B. (1971). Metabolic paths of benzoic acid in the parasitic helminths Fasciola hepatica and Moniezia benedeni. International Journal of Biochemistry 2, 245–8.CrossRefGoogle Scholar
Lee, D. L., Rothman, A. H. & Senturia, J. B. (1963). Esterases in Hymenolepis and in Hydatigera. Experimental Parasitology 14, 285–95.CrossRefGoogle ScholarPubMed
Levvy, G. A. & Conchie, J. (1966). Mammalian glycosidases and their inhibition by aldonolactones. In Methods in Enzymology vol. 8 (ed. Xeufeld, E. F. and Ginsberg, V.), PP. 571–84. New York: Academic Press.Google Scholar
Lowry, O. H. (1957). Micromethods for the assay of enzymes. In Methods in. Enzymology vol. 4 (ed. Colowick, S. P. and Kaplan, N. O.), pp. 366–81. New York: Academic Press.Google Scholar
Ma, L. (1964). Acid phosphatase in Clonorchis sinensis. Journal of Parasitology 50, 235–40.Google Scholar
Maki, J. & Yanaoisawa, T. (1979). Acid phosphatase activity demonstrated by intact Angiostrongylus cantonensis with special reference to its function. Para8itology 79, 417–23.Google Scholar
Maki, J. & Yanagisawa, T. (1980). Acid phosphatase activity demonstrated in the nematodes Dirofilaria inimitis and Angiostrongylus cantonensis with special reference to the characters and distribution. Parasitology 80, 2338.CrossRefGoogle Scholar
Mazel, P. (1979). Experiments illustrating drug metabolism in vitro. In Fundamentals of Drug Metabolism and Drug Disposition (ed. Bert, N. L., Mandel, H. G. and Way, E. L.), pp. 546–82. Huntingdon, New York: Krieger.Google Scholar
Mead, J. A. R., Smith, J. N. & Williams, R. T. (1955). Studies in detoxication. The Biochemical Journal 61, 569–74.CrossRefGoogle ScholarPubMed
Moczon, T. (1980). Histochemical studies on the enzymes of Hymenolepis diminuta (Rud., 1819) (Cestoda). XI. Some hydrolases of oligosaccharides in mature tapeworms. Acta Parasitologica Polonica 27, 477–86.Google Scholar
Morello, A., Repetto, Y. & Atlas, A. (1982). Characterization of glutathione-s-transferase activity in Echinococcus granulosus. Comparative Biochemistry and Physiology 72 B, 449–52.Google ScholarPubMed
Nimmo-Smith, R. H. & Standen, O. D. (1963). Phosphomonoesterases of Schistosoma mansoni. Experimental Parasitology 13, 305–22.Google Scholar
Repetto, Y. & Morello, A. (1981). Detoxification mechanisms in Echinococcus granulosus: glutathione-s-transferase. IRCS Medical Science. Biochemistry 9, 698.Google Scholar
Sanchez-Moreno, M. & Barrett, J. (1979). Monoamine oxidase in adult Hymenolepis diminuta (Cestoda). Parasitology 78, 15.CrossRefGoogle Scholar
Seideoard, J. & De Pierre, L. L. (1983). Microsomal epoxide hydrolase, properties, regulation and function. Biochimica et Biophysica Acta 695, 251–70.Google Scholar
Storey, K. B. & Storey, J. M. (1981). Biochemical strategies of overwintering in the Gall fly larva, Eurosta solidaginis: effect of low temperature acclimation on the activities ofenzymes of intermediary metabolism. Journal of Comparative Physiology B 144, 191–9.CrossRefGoogle Scholar
Wilkinson, G. N. (1961). Statistical estimations in enzyme kinetics. The Biochemical Journal 80, 324–32.CrossRefGoogle ScholarPubMed
Zannoni, V. G. (1979). Microsomal p-nitroanisole O-demethylase. In Fundamentals of Drug Metabolism and Drug Disposition (ed. Bert, N. L., Mandel, H. G. and Way, E. L.), pp. 566–9. Huntingdon, New York: Krieger.Google Scholar