Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-10T22:28:17.122Z Has data issue: false hasContentIssue false

Echinococcus granulosus: a comparison of free amino acid concentration in hydatid fluid from primary and secondary cysts and host plasma

Published online by Cambridge University Press:  06 April 2009

Hilary Hurd
Affiliation:
Parasitology Research Laboratory, Department of Biological Sciences, University of Keele, Keele, Staffs ST5 5BG

Summary

A total of 28 components were detected in the free amino acid (FAA) pool of hydatid fluid from primary and secondary equine cysts, secondary ovine cysts and host plasma. Examination of data from equine cysts revealed that the majority of FAAs were present in significantly greater concentrations in secondary cysts, glycine being over 30 times more concentrated. Values for total carbohydrates and glucose did not, however, differ significantly and total protein content was greater in primary cysts. Comparison of the (FAA) pool of secondary equine and ovine cysts revealed strain variation. It was demonstrated that most FAAs were more concentrated in hydatid fluid than in the corresponding host plasma, many concentration ratios exceeding 10. The possible contribution that mediated amino acid transport across the cyst wall and parasite amino acid metabolism makes to the composition of the FAA pool was discussed. No significant plasma aminoacidaemia was associated with infection.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bortoletti, G. & Ferretti, G. (1978). Ultrastructural aspects of fertile and sterile cysts of Echinococcus granulosus developed in hosts of different species. International Journal for Parasitology 8, 421–31.CrossRefGoogle ScholarPubMed
Chappell, L. H. & Read, C. P. (1973). Studies on the free pool of amino acids of the cestode Hymenolepsis diminuta. Parasitology 67, 289305.CrossRefGoogle Scholar
Chappell, L. H. & Walker, E. (1982). Schistosoma mansoni: incorporation and metabolism of protein amino acids in vitro. Comparative Biochemistry and Physiology 73B, 701–7.Google Scholar
Ertel, J. & Isseroff, H. (1976). Proline in Fascioliasis. II. Characteristics of partially purified ornithine-δ-transaminase from Fasciola. Rice University Studies 62, 97109.Google Scholar
Frayha, G. J. & Haddad, R. (1980). Comparative chemical composition of protoscoleces and hydatid cyst fluid of Echinococcus granulosus (Cestoda). International Journal for Parasitology 10, 359–64.Google Scholar
Gaur, A. S. & Agarwal, S. M. (1981). Studies on amino acids and sugars in larval Hydatigena taeniaeformis (Batch, 1758). Proceedings of the Indian Academy of Parasitology 2, 46.Google Scholar
Harris, B. G. (1983). Protein Metabolism. In Biology of the Eucestoda vol. 2, pp. 335341 (ed. Arme, C. and Pappas, P. W.). New York and London: Academic Press.Google Scholar
Jeffs, S. A. & Arme, C. (1987). Echinococcus granulosus: specificity of amino acid transport systems in protoscoleces. Parasitology 95, 71–8.Google Scholar
Jeffs, S. A. & Arme, C. (1988). Echinococcus granulosus (Cestoda): uptake of L-amino acids by secondary hydatid cysts. Parasitology 96, 145–56.Google Scholar
Krvavica, S.Martincic, T. & Asaj, R. (1959). Metabolism of amino acids in some parasites II. Amino acids in the hydatid fluid and germinal layer of Echinococcus. Verterinarski Archiv 29, 314–21.Google Scholar
Mcmanus, D. P. (1981). A biochemical study of adult and cystic stages of Echinococcus granulosus of human and animal origin from Kenya. Journal of Helminthology 55, 21–7.CrossRefGoogle ScholarPubMed
Mcmanus, D. P. & Bryant, C. (1986). Biochemistry and physiology of Echinococcus. In The Biology of Echinococcus and Hydatid Disease, pp. 114142 (ed. Thompson, R. C. A.). London:George Allen & Unwin.Google Scholar
Mcmanus, D. P. & Smyth, J. D. (1978). Differences in the chemical composition and carbohydrate metabolism of Echinococcus granulosus (horse and sheep strain) and E. multilocularis. Parasitology 77, 103–9.CrossRefGoogle ScholarPubMed
Pathak, K. M. L., Gaur, S. N. S. & Verma, H. C. (1980). Quantitative estimation of amino acids in cysticercus of Taenia hydatigena. Veterinary Parasitology 7, 375–8.Google Scholar
Peterson, G. L. (1983). Determination of total protein. Methods in Enzymology 91, 95119.Google Scholar
Roe, J. A. (1955). The determination of sugar in blood and spinal fluid with anthrone reagent. Journal of Biochemistry 212, 335–43.Google ScholarPubMed
Sanchez, A. F. & Sanchez, A. C. (1971). Estudio de algunas propiedades fisicas y componentes quimicos del liquido y pared germinativa de quistes hidatidicos de diversas especies y de diferente localizacion. Revta Iberica Parasitologia 31, 347–66.Google Scholar
Thompson, R. C. A. (1986). Biology and systematics of Echinococcus. In The Biology of Echinococcus and Hydatid Disease, pp. 543, (ed. Thompson, R. C. A.). London: George Allen & Unwin.Google Scholar
Wack, M., Komuniecki, R. & Roberts, L. S. (1983). Amino acid metabolism in the rat tapeworm, Hymenolepsis diminuta. Comparative Biochemistry and Physiology 74B, 399402.Google Scholar
Ward, P. F. V. & Crompton, D. W. T. (1986). Linked metabolism of L-serine and L-alanine by Moniliformis moniliformis (Acanthocephala) in vitro. Parasitology 93, 333–40.Google Scholar
Wheatley, D. N. & Inglis, M. S. (1980). An intracellular perfusion system linking pools and protein synthesis. Journal of Theorectical Biology 83, 437–45.CrossRefGoogle ScholarPubMed