Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-17T23:28:18.876Z Has data issue: false hasContentIssue false

Size patterns through time: the case of the Early Jurassic ammonite radiation

Published online by Cambridge University Press:  08 April 2016

Jean-Louis Dommergues
Affiliation:
Biogéosciences (UMR CNRS 5561), Université de Bourgogne, 6 boulevard Gabriel, 21000 Dijon, France. E-mail: Jean-Louis.Dommergues@u-bourgogne.fr
Sophie Montuire
Affiliation:
Biogéosciences (UMR CNRS 5561), Université de Bourgogne, 6 boulevard Gabriel, 21000 Dijon, France. E-mail: Sophie.Montuire@u-bourgogne.fr
Pascal Neige
Affiliation:
Biogéosciences (UMR CNRS 5561), Université de Bourgogne, 6 boulevard Gabriel, 21000 Dijon, France. E-mail: Pascal.Neige@u-bourgogne.fr

Abstract

The shell size of 1236 ammonite species representing all known Early Jurassic faunas is analyzed. Size patterns are studied for the entire period and then at the biozone scale for the first four stages of the Jurassic (28 Myr), during which ammonites recovered from the crisis at the Triassic/Jurassic (T/J) boundary. Our analysis reveals that (1) a size continuum (normal distribution from “dwarfs” to “giants”) exists for all Early Jurassic ammonites; (2) although there are no sustained trends (e.g., no Cope's rule), the succession is not monotonous and patterns may differ conspicuously from one biozone to the next; and (3) increases and decreases in size range are the most frequent evolutionary styles of size change. The only pattern that can be connected with a particular episode of Early Jurassic ammonite history is the initial increase in size disparity during the first four biozones attributable to phyletic radiation after the T/J crisis. Subsequent correlations with environmental constraints (e.g., sea-level changes), although suspected, cannot be shown.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J. 2000. Understanding the dynamics of trends within lineages. Paleobiology 26:319329.2.0.CO;2>CrossRefGoogle Scholar
Becker, R. T., and Kullmann, J. 1996. Paleozoic ammonoids in space and time. Pp. 711753in Landman, , et al. 1996.Google Scholar
Benton, M. J. 1999. The history of life: large databases in paleontology. Pp. 249283in Harper, D. A. T., ed. Numerical paleobiology. Wiley, Chichester, England.Google Scholar
Boletzky, S. von 1974. Effets de la sous-nutrition prolongée sur le développement de la coquille de Sepia officinalis L. (Mollusca, Cephalopoda). Bulletin de la Société Zoologique de France 99:667673.Google Scholar
Bruguière, J. G. 1789. Histoire naturelle des vers, Vol. 1. Part of Encyclopédie méthodique. Chez Panckoucke, Paris.Google Scholar
Buckman, S. S. 1887–1907. A monograph on the Inferior-Oolite ammonites of the British Islands. Monographs of the Palaeontographical Society of London XL/LXI.Google Scholar
Davis, R. A., Landman, N. H., Dommergues, J. L., Marchand, D., and Bucher, H. 1996. Mature modifications and dimorphism of ammonoid cephalopods. Pp. 463539in Landman, et al. 1996.Google Scholar
Dommergues, J. L. 1980. Prodactylioceras davoei (Sow.) (Ammonitina), en Bourgogne. Paléontologie et dynamique du peuplement. Bulletin Scientifique de Bourgogne 33:3355.Google Scholar
Dommergues, J. L., and Meister, C. 1999. Cladistic formalisation of relationships within a superfamily of Lower Jurassic Ammonitina: Eoderocerataceae Spath, 1929. Revue de Paléobiologie 18:273286.Google Scholar
Dommergues, J. L., Laurin, B., and Meister, C. 1996. Evolution of ammonoid morphospace during the Early Jurassic radiation. Paleobiology 22:219240.Google Scholar
Dommergues, J. L., Laurin, B., and Meister, C. 2001. The recovery and radiation of Early Jurassic ammonoids: morphologic versus palaeobiogeographical patterns. Palaeogeography, Palaeoclimatology, Palaeoecology 165:195213.Google Scholar
Elmi, S., and Benshili, K. 1987. Relations entre la structuration tectonique, la composition des peuplements et l'évolution; exemple du Toarcien du Moyen-Atlas méridional (Maroc). Bollettino della Società Paleontologica Italiana 26(1–2):4762.Google Scholar
Foote, M. 1996. Models of morphological diversification. Pp. 6286in Jablonski, D., Erwin, D. H. and Lipps, J. H., eds. Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
Fucini, A. 1899–1900. Ammoniti del Lias Medio dell' Appennino Centrale existenti nel museo di Pisa. Palaeontographia Italica 5/ 6:1104.Google Scholar
Groupe français d'étude du Jurassique. 1997. Biostratigraphie du Jurassique ouest-européen et méditerranéan (Cariou, E., and P. Hantzpergue coordonnateurs). Bulletin du Centre de Recherche Elf Exploration Production Mémoire 17:1440.Google Scholar
Guex, J. 1995. Ammonites hettangiennes de la Gabbs Valley Range (Nevada, USA). Mémoires de Géologie (Lausanne) 27:1131.Google Scholar
Hallam, A. 1975. Evolutionary size increase and longevity in Jurassic bivalves and ammonites. Nature 258:493496.Google Scholar
Hallam, A. 1990. Biotic and abiotic factors in the evolution of Early Mesozoic marine molluscs. Pp. 249269in Ross, R. M. and Allmon, W. D., eds. Causes of evolution: a paleontological perspective. University of Chicago Press, Chicago.Google Scholar
Hallam, A. 2001. A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge. Palaeogeography, Palaeoclimatology, Palaeoecology 167:2337.Google Scholar
Haq, B. U., Hardenbol, J., and Vail, P. R. 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. Pp. 71108in Wilgus, C. K., Hastings, B. S., Kendall, C. G. St. C., Posamentier, H. W., Ross, C. A., and Van Wagoner, J. C., eds. Sea-level changes: an integrated approach. SEPM (Society of Economic Paleontologists and Mineralogists) Special Publication 42.Google Scholar
Hardenbol, J., Thierry, J., Farley, M. B., Jacquin, T., de Graciansky, P.-C., and Vail, P. 1998. Jurassique Sequence Chronostratigraphy. Chart 6 in de Graciansky, P.-C., Hardenbol, J., Jacquin, T., and Vail, P., eds. Mesozoic and Cenozoic sequence stratigraphy of European basins. SEPM (Society of Economic Paleontologists and Mineralogists) Special Publication 60.Google Scholar
Haug, E. 1892. Sur l'étage Aalénien. Comptes Rendus Sommaires de la Société Géologique de France XX:clxxivclxxvi.Google Scholar
Hillebrandt, A. von 1988. Ammonite biostratigraphy of the South American Hettangian. description of two new species of Psiloceras. In Rocha, R. B. and Soares, A. F., eds. Second International Symposium on Jurassic Stratigraphy, Lisbon, pp. 5570.Google Scholar
Hillebrandt, A. von 2000. Die ammoniten-fauna des südamerikanischen Hettangium (basaler Jura). Palaeontographica, Abteilung A 258(4–6):65116.Google Scholar
House, M. R. 1989. Ammonoid extinction events. Philosophical Transactions of the Royal Society of London 325:307326.Google Scholar
Howarth, M. K. 1992. The ammonite family Hildoceratidae in the Lower Jurassic of Britain. Monograph of the Palaeontographical Society 590:1200.Google Scholar
Hyatt, A. 1889. Genesis of the Arietidae. Smithsonian Contributions to Knowledge 673:1238.Google Scholar
Jablonski, D. 1996. Body size and macroevolution. Pp. 256289in Jablonski, D., Erwin, D. H., and Lipps, J. H., eds. Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
Jablonski, D. 1997. Body-size evolution in Cretaceous molluscs and the status of Cope's rule. Nature 385:250252.Google Scholar
Jablonski, D. 1999. The future of the fossil record. Science 284:21142116.Google Scholar
Jakobs, G. K., Smith, P. L., and Tipper, H. W. 1994. An ammonite zonation for the Toarcian (Lower Jurassic) of the North American Cordillera. Canadian Journal of Earth Sciences 31:919942.Google Scholar
Kennedy, W. J. 1977. Ammonite evolution. In Hallam, A., ed. Patterns of evolution, as illustrated by the fossil record. Developments in Palaeontology and Stratigraphy 5:251281. Elsevier, Amsterdam.Google Scholar
Kennedy, W. J., and Cobban, W. A. 1976. Aspects of ammonite biology, biogeography, and biostratigraphy. Special Paper in Palaeontology 17:194.Google Scholar
Klug, C. 1999. Devonian ammonoid biometry and global events: preliminary results. Berichte der Geologischen Bundesanstalt 46:59.Google Scholar
Landman, N. H., Tanabe, K., and Davis, R. A., eds. 1996. Topics in geobiology, Vol. 13. Plenum, New York.Google Scholar
Little, C. T. S., and Benton, M. J. 1995. Early Jurassic mass extinction: a global long-term event. Geology 23:495498.Google Scholar
Manger, W. L., Meeks, L. K., and Stephen, D. A. 1999. Pathologic gigantism in middle Carboniferous cephalopods, southern midcontinent, United States. Pp. 7789in Oloriz, F. and Rodriguez–Tovar, F. J., eds. Advancing research on living and fossil cephalopods. Kluwer Academic/Plenum, New York.CrossRefGoogle Scholar
McShea, D. W. 1994. Mechanisms of large-scale evolutionary trends. Evolution 48:17471763.Google Scholar
McShea, D. W. 2000. Trends, tools, and terminology. Paleobiology 26:330333.Google Scholar
Mignot, Y., Elmi, S., and Dommergues, J. L. 1993. Croissance et miniaturisation de quelques Hildoceras (Cephalopoda) en liaison avec des environnements contraignants de la Téthys toarcienne. Geobios Mémoire Spécial 15:305312.Google Scholar
Neige, P., Marchand, D., and Bonnot, A. 1997. Ammonoid morphological signal versus sea-level changes. Geological Magazine 134:261264.Google Scholar
Neige, P., Elmi, S., and Rulleau, L. 2001. Existe-t-il une crise au passage Lias–Dogger chez les ammonites? Approche morphométrique par quantification de la disparité morphologique. Bulletin de la Société Géologique de France 172:125132.Google Scholar
Newell, N. D. 1949. Phyletic size increase, an important trend illustrated by fossil invertebrates. Evolution 3:103124.Google Scholar
Nikolayeva, S. V., and Barskov, I. S. 1994. Morphogenetic trends in the evolution of Carboniferous ammonoids. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 193:401418.Google Scholar
Oppel, A. 1856–1858. Di Juraformation Englands, Frankreichs und südwestlichen Deutschlands, nach ihren einzelnen gliedern eingetheilt und verglichen. Württemburg naturwissenschaftliches Jahresheft 1214.Google Scholar
Orbigny, A. d'. 1842–1851. Paléontologie française: terrains jurassiques, Partie 1. Céphalopodes. Masson, Paris.Google Scholar
Pálfy, J., Smith, P. L., Mortensen, J. K., and Friedman, R. M. 1999. Integrated ammonite biochronology and U-Pb geochronometry from a basal Jurassic section in Alaska. Geological Society of America Bulletin 111:15371549.2.3.CO;2>CrossRefGoogle Scholar
Pálfy, J., Smith, P. L., and Mortensen, J. K. 2000. A U-Pb and 40Ar/39Ar time scale for the Jurassic. Canadian Journal of Earth Sciences 37:923944.CrossRefGoogle Scholar
Quenstedt, F. A. 1856–1858. Der Jura. Verlag der H. Laupp'shen Buchhandlung, Tübingen.Google Scholar
Raup, D. M. 1967. Geometric analysis of shell coiling: coiling in ammonoids. Journal of Paleontology 41:4365.Google Scholar
Saunders, W. B., and Swan, A. R. H. 1984. Morphology and morphologic diversity of mid-Carboniferous (Namurian) ammonoids in time and space. Paleobiology 10:195228.Google Scholar
Simpson, M. 1855. The fossils of the Yorkshire Lias. Whittaker, London.Google Scholar
Smith, P., Tipper, H. W., Taylor, D. G., and Guex, J. 1988. An ammonite zonation for the Lower Jurassic of Canada and the United States: the Pliensbachian. Canadian Journal of Earth Sciences 25:15031523.Google Scholar
Smith, P. L., Beyers, J. M., Carter, E. S., Jakobs, G. K., Pálfy, J., Pessagno, E., and Tipper, H. W. 1994. North America. Lower Jurassic. Newsletters on Stratigraphy 31(1):3370.Google Scholar
Stanley, S. M. 1973. An explanation for Cope's rule. Evolution 27(1):126.Google Scholar
Stevens, G. R. 1988. Giant ammonites: a review. Pp. 141166in Wiedmann, J. and Kullmann, J., eds. Cephalopods: present and past. E. Schweizerbart, Stuttgart.Google Scholar
Taylor, D. G. 1998. Late Hettangian-Early Sinemurian (Jurassic) ammonite biochronology of the Western Cordillera, United States. Geobios 31:467497.CrossRefGoogle Scholar
Taylor, D. G. 2000. The Canadensis zone (Early Jurassic) in the Shoshone mountains, Nevada. GeoResearch Forum 6:211224.Google Scholar
Thomson, R. C., and Smith, P. L. 1992. Pliensbachian (Lower Jurassic) biostratigraphy and ammonite Fauna of the Spatsizi Area, North-Central British Columbia. Geological Survey of Canada Bulletin 437:187.Google Scholar
Wiedmann, J. 1969. The heteromorphs and ammonoid extinction. Biological Review 44:563602.Google Scholar
Wiedmann, J., and Kullmann, J. 1996. Crises in ammonoid evolution. Pp. 795813in Landman, , et al. 1996.Google Scholar