Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-ssw5r Total loading time: 0.989 Render date: 2022-08-18T20:04:47.114Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Article contents

Size patterns through time: the case of the Early Jurassic ammonite radiation

Published online by Cambridge University Press:  08 April 2016

Jean-Louis Dommergues
Affiliation:
Biogéosciences (UMR CNRS 5561), Université de Bourgogne, 6 boulevard Gabriel, 21000 Dijon, France. E-mail: Jean-Louis.Dommergues@u-bourgogne.fr
Sophie Montuire
Affiliation:
Biogéosciences (UMR CNRS 5561), Université de Bourgogne, 6 boulevard Gabriel, 21000 Dijon, France. E-mail: Sophie.Montuire@u-bourgogne.fr
Pascal Neige
Affiliation:
Biogéosciences (UMR CNRS 5561), Université de Bourgogne, 6 boulevard Gabriel, 21000 Dijon, France. E-mail: Pascal.Neige@u-bourgogne.fr

Abstract

The shell size of 1236 ammonite species representing all known Early Jurassic faunas is analyzed. Size patterns are studied for the entire period and then at the biozone scale for the first four stages of the Jurassic (28 Myr), during which ammonites recovered from the crisis at the Triassic/Jurassic (T/J) boundary. Our analysis reveals that (1) a size continuum (normal distribution from “dwarfs” to “giants”) exists for all Early Jurassic ammonites; (2) although there are no sustained trends (e.g., no Cope's rule), the succession is not monotonous and patterns may differ conspicuously from one biozone to the next; and (3) increases and decreases in size range are the most frequent evolutionary styles of size change. The only pattern that can be connected with a particular episode of Early Jurassic ammonite history is the initial increase in size disparity during the first four biozones attributable to phyletic radiation after the T/J crisis. Subsequent correlations with environmental constraints (e.g., sea-level changes), although suspected, cannot be shown.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alroy, J. 2000. Understanding the dynamics of trends within lineages. Paleobiology 26:319329.2.0.CO;2>CrossRefGoogle Scholar
Becker, R. T., and Kullmann, J. 1996. Paleozoic ammonoids in space and time. Pp. 711753in Landman, , et al. 1996.Google Scholar
Benton, M. J. 1999. The history of life: large databases in paleontology. Pp. 249283in Harper, D. A. T., ed. Numerical paleobiology. Wiley, Chichester, England.Google Scholar
Boletzky, S. von 1974. Effets de la sous-nutrition prolongée sur le développement de la coquille de Sepia officinalis L. (Mollusca, Cephalopoda). Bulletin de la Société Zoologique de France 99:667673.Google Scholar
Bruguière, J. G. 1789. Histoire naturelle des vers, Vol. 1. Part of Encyclopédie méthodique. Chez Panckoucke, Paris.Google Scholar
Buckman, S. S. 1887–1907. A monograph on the Inferior-Oolite ammonites of the British Islands. Monographs of the Palaeontographical Society of London XL/LXI.Google Scholar
Davis, R. A., Landman, N. H., Dommergues, J. L., Marchand, D., and Bucher, H. 1996. Mature modifications and dimorphism of ammonoid cephalopods. Pp. 463539in Landman, et al. 1996.Google Scholar
Dommergues, J. L. 1980. Prodactylioceras davoei (Sow.) (Ammonitina), en Bourgogne. Paléontologie et dynamique du peuplement. Bulletin Scientifique de Bourgogne 33:3355.Google Scholar
Dommergues, J. L., and Meister, C. 1999. Cladistic formalisation of relationships within a superfamily of Lower Jurassic Ammonitina: Eoderocerataceae Spath, 1929. Revue de Paléobiologie 18:273286.Google Scholar
Dommergues, J. L., Laurin, B., and Meister, C. 1996. Evolution of ammonoid morphospace during the Early Jurassic radiation. Paleobiology 22:219240.CrossRefGoogle Scholar
Dommergues, J. L., Laurin, B., and Meister, C. 2001. The recovery and radiation of Early Jurassic ammonoids: morphologic versus palaeobiogeographical patterns. Palaeogeography, Palaeoclimatology, Palaeoecology 165:195213.CrossRefGoogle Scholar
Elmi, S., and Benshili, K. 1987. Relations entre la structuration tectonique, la composition des peuplements et l'évolution; exemple du Toarcien du Moyen-Atlas méridional (Maroc). Bollettino della Società Paleontologica Italiana 26(1–2):4762.Google Scholar
Foote, M. 1996. Models of morphological diversification. Pp. 6286in Jablonski, D., Erwin, D. H. and Lipps, J. H., eds. Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
Fucini, A. 1899–1900. Ammoniti del Lias Medio dell' Appennino Centrale existenti nel museo di Pisa. Palaeontographia Italica 5/ 6:1104.Google Scholar
Groupe français d'étude du Jurassique. 1997. Biostratigraphie du Jurassique ouest-européen et méditerranéan (Cariou, E., and P. Hantzpergue coordonnateurs). Bulletin du Centre de Recherche Elf Exploration Production Mémoire 17:1440.Google Scholar
Guex, J. 1995. Ammonites hettangiennes de la Gabbs Valley Range (Nevada, USA). Mémoires de Géologie (Lausanne) 27:1131.Google Scholar
Hallam, A. 1975. Evolutionary size increase and longevity in Jurassic bivalves and ammonites. Nature 258:493496.CrossRefGoogle Scholar
Hallam, A. 1990. Biotic and abiotic factors in the evolution of Early Mesozoic marine molluscs. Pp. 249269in Ross, R. M. and Allmon, W. D., eds. Causes of evolution: a paleontological perspective. University of Chicago Press, Chicago.Google Scholar
Hallam, A. 2001. A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge. Palaeogeography, Palaeoclimatology, Palaeoecology 167:2337.CrossRefGoogle Scholar
Haq, B. U., Hardenbol, J., and Vail, P. R. 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. Pp. 71108in Wilgus, C. K., Hastings, B. S., Kendall, C. G. St. C., Posamentier, H. W., Ross, C. A., and Van Wagoner, J. C., eds. Sea-level changes: an integrated approach. SEPM (Society of Economic Paleontologists and Mineralogists) Special Publication 42.Google Scholar
Hardenbol, J., Thierry, J., Farley, M. B., Jacquin, T., de Graciansky, P.-C., and Vail, P. 1998. Jurassique Sequence Chronostratigraphy. Chart 6 in de Graciansky, P.-C., Hardenbol, J., Jacquin, T., and Vail, P., eds. Mesozoic and Cenozoic sequence stratigraphy of European basins. SEPM (Society of Economic Paleontologists and Mineralogists) Special Publication 60.Google Scholar
Haug, E. 1892. Sur l'étage Aalénien. Comptes Rendus Sommaires de la Société Géologique de France XX:clxxivclxxvi.Google Scholar
Hillebrandt, A. von 1988. Ammonite biostratigraphy of the South American Hettangian. description of two new species of Psiloceras. In Rocha, R. B. and Soares, A. F., eds. Second International Symposium on Jurassic Stratigraphy, Lisbon, pp. 5570.Google Scholar
Hillebrandt, A. von 2000. Die ammoniten-fauna des südamerikanischen Hettangium (basaler Jura). Palaeontographica, Abteilung A 258(4–6):65116.Google Scholar
House, M. R. 1989. Ammonoid extinction events. Philosophical Transactions of the Royal Society of London 325:307326.CrossRefGoogle Scholar
Howarth, M. K. 1992. The ammonite family Hildoceratidae in the Lower Jurassic of Britain. Monograph of the Palaeontographical Society 590:1200.Google Scholar
Hyatt, A. 1889. Genesis of the Arietidae. Smithsonian Contributions to Knowledge 673:1238.Google Scholar
Jablonski, D. 1996. Body size and macroevolution. Pp. 256289in Jablonski, D., Erwin, D. H., and Lipps, J. H., eds. Evolutionary paleobiology. University of Chicago Press, Chicago.Google ScholarPubMed
Jablonski, D. 1997. Body-size evolution in Cretaceous molluscs and the status of Cope's rule. Nature 385:250252.CrossRefGoogle Scholar
Jablonski, D. 1999. The future of the fossil record. Science 284:21142116.CrossRefGoogle ScholarPubMed
Jakobs, G. K., Smith, P. L., and Tipper, H. W. 1994. An ammonite zonation for the Toarcian (Lower Jurassic) of the North American Cordillera. Canadian Journal of Earth Sciences 31:919942.CrossRefGoogle Scholar
Kennedy, W. J. 1977. Ammonite evolution. In Hallam, A., ed. Patterns of evolution, as illustrated by the fossil record. Developments in Palaeontology and Stratigraphy 5:251281. Elsevier, Amsterdam.Google Scholar
Kennedy, W. J., and Cobban, W. A. 1976. Aspects of ammonite biology, biogeography, and biostratigraphy. Special Paper in Palaeontology 17:194.Google Scholar
Klug, C. 1999. Devonian ammonoid biometry and global events: preliminary results. Berichte der Geologischen Bundesanstalt 46:59.Google Scholar
Landman, N. H., Tanabe, K., and Davis, R. A., eds. 1996. Topics in geobiology, Vol. 13. Plenum, New York.Google Scholar
Little, C. T. S., and Benton, M. J. 1995. Early Jurassic mass extinction: a global long-term event. Geology 23:495498.2.3.CO;2>CrossRefGoogle Scholar
Manger, W. L., Meeks, L. K., and Stephen, D. A. 1999. Pathologic gigantism in middle Carboniferous cephalopods, southern midcontinent, United States. Pp. 7789in Oloriz, F. and Rodriguez–Tovar, F. J., eds. Advancing research on living and fossil cephalopods. Kluwer Academic/Plenum, New York.CrossRefGoogle Scholar
McShea, D. W. 1994. Mechanisms of large-scale evolutionary trends. Evolution 48:17471763.CrossRefGoogle ScholarPubMed
McShea, D. W. 2000. Trends, tools, and terminology. Paleobiology 26:330333.2.0.CO;2>CrossRefGoogle Scholar
Mignot, Y., Elmi, S., and Dommergues, J. L. 1993. Croissance et miniaturisation de quelques Hildoceras (Cephalopoda) en liaison avec des environnements contraignants de la Téthys toarcienne. Geobios Mémoire Spécial 15:305312.CrossRefGoogle Scholar
Neige, P., Marchand, D., and Bonnot, A. 1997. Ammonoid morphological signal versus sea-level changes. Geological Magazine 134:261264.CrossRefGoogle Scholar
Neige, P., Elmi, S., and Rulleau, L. 2001. Existe-t-il une crise au passage Lias–Dogger chez les ammonites? Approche morphométrique par quantification de la disparité morphologique. Bulletin de la Société Géologique de France 172:125132.Google Scholar
Newell, N. D. 1949. Phyletic size increase, an important trend illustrated by fossil invertebrates. Evolution 3:103124.CrossRefGoogle ScholarPubMed
Nikolayeva, S. V., and Barskov, I. S. 1994. Morphogenetic trends in the evolution of Carboniferous ammonoids. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 193:401418.Google Scholar
Oppel, A. 1856–1858. Di Juraformation Englands, Frankreichs und südwestlichen Deutschlands, nach ihren einzelnen gliedern eingetheilt und verglichen. Württemburg naturwissenschaftliches Jahresheft 1214.Google Scholar
Orbigny, A. d'. 1842–1851. Paléontologie française: terrains jurassiques, Partie 1. Céphalopodes. Masson, Paris.Google Scholar
Pálfy, J., Smith, P. L., Mortensen, J. K., and Friedman, R. M. 1999. Integrated ammonite biochronology and U-Pb geochronometry from a basal Jurassic section in Alaska. Geological Society of America Bulletin 111:15371549.2.3.CO;2>CrossRefGoogle Scholar
Pálfy, J., Smith, P. L., and Mortensen, J. K. 2000. A U-Pb and 40Ar/39Ar time scale for the Jurassic. Canadian Journal of Earth Sciences 37:923944.CrossRefGoogle Scholar
Quenstedt, F. A. 1856–1858. Der Jura. Verlag der H. Laupp'shen Buchhandlung, Tübingen.Google Scholar
Raup, D. M. 1967. Geometric analysis of shell coiling: coiling in ammonoids. Journal of Paleontology 41:4365.Google Scholar
Saunders, W. B., and Swan, A. R. H. 1984. Morphology and morphologic diversity of mid-Carboniferous (Namurian) ammonoids in time and space. Paleobiology 10:195228.CrossRefGoogle Scholar
Simpson, M. 1855. The fossils of the Yorkshire Lias. Whittaker, London.Google Scholar
Smith, P., Tipper, H. W., Taylor, D. G., and Guex, J. 1988. An ammonite zonation for the Lower Jurassic of Canada and the United States: the Pliensbachian. Canadian Journal of Earth Sciences 25:15031523.CrossRefGoogle Scholar
Smith, P. L., Beyers, J. M., Carter, E. S., Jakobs, G. K., Pálfy, J., Pessagno, E., and Tipper, H. W. 1994. North America. Lower Jurassic. Newsletters on Stratigraphy 31(1):3370.CrossRefGoogle Scholar
Stanley, S. M. 1973. An explanation for Cope's rule. Evolution 27(1):126.CrossRefGoogle ScholarPubMed
Stevens, G. R. 1988. Giant ammonites: a review. Pp. 141166in Wiedmann, J. and Kullmann, J., eds. Cephalopods: present and past. E. Schweizerbart, Stuttgart.Google Scholar
Taylor, D. G. 1998. Late Hettangian-Early Sinemurian (Jurassic) ammonite biochronology of the Western Cordillera, United States. Geobios 31:467497.CrossRefGoogle Scholar
Taylor, D. G. 2000. The Canadensis zone (Early Jurassic) in the Shoshone mountains, Nevada. GeoResearch Forum 6:211224.Google Scholar
Thomson, R. C., and Smith, P. L. 1992. Pliensbachian (Lower Jurassic) biostratigraphy and ammonite Fauna of the Spatsizi Area, North-Central British Columbia. Geological Survey of Canada Bulletin 437:187.Google Scholar
Wiedmann, J. 1969. The heteromorphs and ammonoid extinction. Biological Review 44:563602.CrossRefGoogle Scholar
Wiedmann, J., and Kullmann, J. 1996. Crises in ammonoid evolution. Pp. 795813in Landman, , et al. 1996.Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Size patterns through time: the case of the Early Jurassic ammonite radiation
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Size patterns through time: the case of the Early Jurassic ammonite radiation
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Size patterns through time: the case of the Early Jurassic ammonite radiation
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *