During 1934-1936, W. L. Ferrar investigated the relation between summation formulae and Dirichlet series with functional equations, inspired by Voronoi’s works (1904) on summation formula with respect to the numbers of divisors. In [11] A. Weil showed that the automorphic properties of theta series are expressed by generalized Poisson summation formulae with respect to the so-called Weil representation. On the other hand, T. Kubota, in his study of the reciprocity law in a number field, defined a generalized theta series and a generalized Weil type representation of SL(2, C) and obtained similar results to those of A. Weil (1970-1976, [5], [6], [7]). The methods, used by W. L. Ferrar and T. Kubota, to obtain (generalized Poisson) summation formulae depend similarly on functional equations of Dirichlet series (attached to the generalized theta series).