Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T10:24:43.578Z Has data issue: false hasContentIssue false

Low pH Chemical Etch Route for Smooth H-Terminated Si(100) And Study Of Subsequent Chemical Stability

Published online by Cambridge University Press:  10 February 2011

B. J. Hinds
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695–8202
D. E. Aspnes
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695–8202
G. Lucovsky
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695–8202
Get access

Abstract

To form atomically flat H-passivated Si(100) surfaces, wet chemical etching of sacrificial SiO2 layer has been examined. Roughness and chemical overlayer thickness, as monitored by ellipsometry shows a minima at an optimal solution of 1:0.5:30 HF(49wt\%):H2SO4 (98wt\%):H2O. A mechanistic study offers no evidence for a chemical smoothing from preferential non-Si(100) facet etching. Silicon planarization can be induced by rapid thermal annealing RTA of chemical oxides. The H-terminated Si(100) surfaces are found to be moderately reactive to ambient conditions as monitored by in-situ ellipsometry and Auger analysis. Atomic force microscopy (AFM) measurements show Si(100) surfaces to have a rms ∼1.0Å and Rmax values of 1.6–0.9Å. With measured roughness incorporate into ellipsometric model, a 5Å native oxide overlayer is rapidly incorporated into the Si(100) surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ohmi, T., Miyashita, M., Itano, M., Imaoka, T., and Kawanabe, I. IEEE Trans. on Electron Dev. 39, 537 (1992).10.1109/16.123475CrossRefGoogle Scholar
[2] Higashi, G.S., Chabal, Y.J., Trucks, G.W., and Raghavachari, K., Appl. Phys. Lett. 56, 656 (1990).10.1063/1.102728CrossRefGoogle Scholar
[3] Morita, Y., and Tokumoto, H., J. Vac. Sci. Technol. A 14, 854 (1996).10.1116/1.580403CrossRefGoogle Scholar
[4] Hirose, M., Hiroshima, M., Yasaka, T., and Miyazaki, S., J. Vac. Sci. Technol. A 12 1864 (1994).10.1116/1.579019CrossRefGoogle Scholar
[5] Schmidt, D., Niimi, H., Hinds, B.J., Aspnes, D.E., Lucovsky, G., J. Vac. Sci. Technol. A 14 2812 (1996).10.1116/1.588838CrossRefGoogle Scholar
[6] Warren, L.J., Anal. Chim. Acta 53, 199 (1971).10.1016/S0003-2670(01)80089-1CrossRefGoogle Scholar
[7] Aspnes, D. E. and Studna, A.A., Appl. Opt. 14, 220 (1975).10.1364/AO.14.000220CrossRefGoogle Scholar
[8] Yasuda, T. and Aspnes, D.E., Appl. Opt. 33, 7435 (1994).10.1364/AO.33.007435CrossRefGoogle Scholar
[9] Niwano, M., Kageyama, J., Kurita, K., Kinashi, K., Takahashi, I., and Mayamota, N., J. Appl. Phys. 76, 2157 (1994).10.1063/1.357627CrossRefGoogle Scholar
[10] Kluth, G. J. and Maboudian, R., J. Appl. Phys. 80, 5408 (1996).10.1063/1.362727CrossRefGoogle Scholar
[11] Verhaverbeke, S., Bender, H., Meuris, M, Mertens, P.W., Schmidt, H.F., and Heyns, M.M. in Surface Chemical Cleaning and Passivation for Semiconductor processing edited by, Higashi, G.S. Irene, E.A., and Ohmi, T. (Mater. Res. Soc. Proc. 60, Pittsburgh, PA, 1993) pp. 457466.Google Scholar
[12] Chen, X. and Gibson, J.M., Appl. Phys. Lett. 70, 1462 (1997).CrossRefGoogle Scholar