Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T17:20:34.269Z Has data issue: false hasContentIssue false

Carrier Dynamics Studies of Thick GaN Grown by HVPE

Published online by Cambridge University Press:  03 September 2012

G.E. Bunea
Affiliation:
Departments of Physics and Electrical and Computer Engineering and Photonics Center, Boston University, Boston, MA 02215, U.S.A
M.S. Ünlü
Affiliation:
Departments of Physics and Electrical and Computer Engineering and Photonics Center, Boston University, Boston, MA 02215, U.S.A
B.B. Goldberg
Affiliation:
Departments of Physics and Electrical and Computer Engineering and Photonics Center, Boston University, Boston, MA 02215, U.S.A
Get access

Abstract

We present a comparison between optical properties of two samples grown by hydride vapor phase epitaxy, one directly on Sapphire substrate (non-ELO) and one epitaxial lateral overgrown (ELO) on SiO2 patterned Sapphire substrate. The ELO material shows an improvement of the UV emission and slight decrease of the yellow emission. The band edge emission is red shifted due to the relaxation of the compressive strain. In spite of the increase in the UV emission, the lifetime of the excitons in the ELO material is more than twice lower than non-ELO material. We attribute this to screening effects of the background electron concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rigby, P., Nature (London) 384, 610 (1996).Google Scholar
2. Molnar, R.J., Götz, W., Romano, L.T., and Johnson, N.M., J. Cryst. Growth 178: (1-2) 147156 (1997).Google Scholar
3. Bunea, G.E., Herzog, W.D., Ünlü, M.S., Goldberg, B.B., Molnar, R.J., Appl. Phys. Lett. 75, 838 (1999).Google Scholar
4. Singh, Raj, Barrett, R.J., Gomes, J.J., Dabkowski, Ferdynand P., Moustakas, T.D., MRS Internet J. Nitride Semicond. Res. 3, 13 (1998).Google Scholar
5. Nakamura, S., Senoh, M., Nagahama, S., Appl. Phys. Lett. 72, 211 (1998).Google Scholar
6. Kozodoy, P., Ibbetson, J. P., Marchand, H., Fini, P. T., Keller, S., Speck, J. S., DenBaars, S. P., Mishra, U. K., Appl. Phys. Lett. 73, 975 (1998).Google Scholar
7. Dexter, D., in Solid State Physics, Edited by Seitz, F. and Turnbull, D. (Academic, New York, 1958), Vol. 6, p. 353.Google Scholar
8. 't Hooft, G.W., Poel, W.A.J.A. van der, Molenkamp, L.W., and Foxon, C.T., Phys. Rev. B 35, 8281 (1987).Google Scholar
9. Strite, S. and Morkoç, H., J. Vac. Sci. Technol. B 10, 1237 (1992).Google Scholar
10. Shan, W., Xie, X.C., Song, J.J., and Goldenberg, B., Appl. Phys. Lett. 67, 2512 (1995).Google Scholar
11. Hwang, C.J., Phys.Rev. B 8, 646 (1973).Google Scholar
12. Bergman, J.P., Holtz, P.O., Monemar, B., Sundaram, M., Merz, J.L., and Gossard, A.C., Phys. Rev. B 43, 4765 (1991).Google Scholar
13. Massa, J.S., Buller, G.S., Walker, A.C., Simpson, J., Prior, K.A., and Cavenett, B.C., Appl. Phys. Lett. 64, 589 (1994).Google Scholar
14. Allegre, J., Lefebvre, P., Camassel, J., Beaumont, B., Gibart, P., MRS Internet J. Nitride Semicond. Res. 2, 32(1997).Google Scholar