On the growth of recurrence sequences
Published online by Cambridge University Press: 24 October 2008
Extract
In this note, we discuss some questions on the arithmetic properties of recurrence sequences. Our primary purpose is to mention some methods which originated as lemmas in certain transcendence studies, but in order to give context to these ideas, we briefly review other techniques applicable to the problems considered. These problems concern the distribution of zeros in a recurrence, the rate of growth of its terms and the size of the greatest prime factor of the terms.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 81 , Issue 3 , May 1977 , pp. 369 - 376
- Copyright
- Copyright © Cambridge Philosophical Society 1977
References
REFERENCES
(1)Cassels, J. W. S.An embedding theorem for fields. Bull. Austral. Math. Soc. 14 (1976), 193–198.CrossRefGoogle Scholar
(3)Laxton, R. R.Linear recurrences of order 2. J. Austral. Math. Soc. 7 (1967), 108–114.CrossRefGoogle Scholar
(5)Lewis, D. J. Diophantine equations: p-adic methods. In ‘Studien in number theory’, ed. LeVeque, W. J.. Studies in Mathematics 6 (MAA, 1969), 25–75.Google Scholar
(6)Loxton, J. H. and Van Der Poorten, A. J.Arithmetic properties of certain functions in several variables. J. Number Theory (to appear).Google Scholar
(7)Mahler, K.Über das Verschwinden von Potenzreihen mehrerer Veränderlichen in speziellen Punktfolgen. Math. Ann. 103 (1930), 573–587.CrossRefGoogle Scholar
(8)Mahler, K.Eine arithmetische Eigenschaft der rekurrierenden Reihe. Mathematica (Leiden) 3 (1934/1935), 153–156.Google Scholar
(9)Mahler, K.Eine arithmetische Eigenschaft der Taylor Koeffizienten rationaler Funktionen. Proc. Akad. Wet. Amsterdam 38 (1935), 51–60.Google Scholar
(10)Mahler, K.On the Taylor coefficients of rational functions. Proc. Cambridge Philos. Soc. 52 (1956), 39–48.CrossRefGoogle Scholar
(12)Mignotte, M. Suites récurrentes linéaires. Sém. Delange-Pisot-Poitou, 15e année (1973/1934), no. G 14.Google Scholar
(13)Mignotte, M.A note on linear recursive sequences. J. Austral. Math. Soc. (A) 20 (1975), 242–244.CrossRefGoogle Scholar
(14)Poorten, A. J. Van Der. Generalisations of Turdn's main theorems on lower bounds for sums of powers. Bull. Austral. Math. Soc. 2 (1970), 15–37.CrossRefGoogle Scholar
(15)Poorten, A. J. Van Der. Zeros of p-adic exponential polynomials. Nederl. Akad. Wetensch Indag. Math. 38 (1976), 46–49.CrossRefGoogle Scholar
(16)Poorten, A. J. Van Der. Hermite interpolation and p-adic exponential polynomials. J. Austral. Math. Soc. 22 (1976), 12–26.CrossRefGoogle Scholar
(17)Poorten, A. J. Van Der and Tijdeman, R.On common zeros of exponential polynomials. Enseignement Math. 21 (1975), 57–67.Google Scholar
(18)Ritt, J. F.A factorisation theory for functions. Trans. Amer. Math. Soc. 29 (1927), 584–596.Google Scholar
(19)Schinzel, A.On two theorems of Gelfond and some of their applications. Acta Arith. 13 (1967), 177–236.CrossRefGoogle Scholar
(20)Skolem, T. Ein Verfahren zur Behandlung gewisser exponentialer Gleichungen und dio phantischer Gleichungen. Comptes rendus du 8e Congrès des Mathematicians scandinaves (Stockholm, 1934), pp. 163–188. (Lund, Häkan Ohlssons Boktryckeri, 1935.)Google Scholar
(21)Stewart, C. L. Divisor properties of arithmetical sequences. Ph.D. thesis, University of Cambridge (1976).Google Scholar
(22)Stewart, C. L. On the divisors of Fermat, Fibonacci, Lucas and Lehmer numbers. (To appear.)Google Scholar
(23)Strassman, R.Über den Wertevorrat von Potenzreihen im Gebiet der p-adischen Zahlen. J. Reine Angew. Math. 159 (1928), 13–28.CrossRefGoogle Scholar
(24)Ward, M.Some diophantine problems connected with linear recurrences. Report of the Institute in the Theory of Numbers (University of Colorado, 1959), pp. 250–257.Google Scholar
- 9
- Cited by