Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T23:39:13.052Z Has data issue: false hasContentIssue false

Dryland vegetation from the Middle Pennsylvanian of Indiana (Illinois Basin): the dryland biome in glacioeustatic, paleobiogeographic, and paleoecologic context

Published online by Cambridge University Press:  14 September 2016

Arden R. Bashforth
Affiliation:
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA 〈bashfortha@si.edu〉; 〈dimichel@si.edu〉
William A. DiMichele
Affiliation:
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA 〈bashfortha@si.edu〉; 〈dimichel@si.edu〉
Cortland F. Eble
Affiliation:
Kentucky Geological Survey, University of Kentucky, Lexington, KY 40560, USA 〈eble@uky.edu〉
W. John Nelson
Affiliation:
Illinois State Geological Survey, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA 〈jnnelson@illinois.edu〉

Abstract

A macrofloral assemblage dominated by elements of the Euramerican dryland biome is described from the Brazil Formation in Clay County, Indiana (Illinois Basin). Fossils were recovered from a thin heterolithic unit between a shallow-marine bed and the paleosol beneath the Minshall Coal, a Middle Pennsylvanian succession deposited near the Atokan-Desmoinesian and Bolsovian-Asturian boundaries. Sedimentological indicators imply accumulation under a seasonal climate, including interbedded siltstone and sandstone deposited during flashfloods, intraclasts eroded from local sources, and charcoal produced by wildfires. The macrofloral assemblage is consistent with a dryland setting, being dominated by large, coriaceous gymnosperm leaves with mesic to xeric traits, including Cordaites spp. indet., Lesleya sp. indet., and Taeniopteris sp. cf. T. multinervia. Sphenopsids and ferns typical of the wetland biome are rare. In contrast, the microfloral assemblage is dominated by fern spores, with lesser lycopsid spores and cordaitalean pollen. The succession indicates that the dryland biome predominated during late regression, prior to the onset of perhumid conditions that resulted in peat accumulation at late lowstand. However, the abundance of palynomorphs from wetland vegetation implies gradual fragmentation of the prevailing dryland flora and replacement by the wetland biome in the transition to glacial maximum. The taphonomic and paleobiogeographic context confirms that floras adapted to seasonal moisture deficit periodically dispersed into tropical lowlands, rather than being transported from ‘extrabasinal’ or ‘upland’ environments. The precocious occurrence of Taeniopteris, more typical of Late Pennsylvanian and Permian floras, may be the earliest record of the fossil-genus, and exemplifies the association of derived plant taxa with dryland habitats. The predominance of broad-leaved gymnosperms with mesic to xeric characters suggests that dryland communities contained more slow-growing and long-lived plants than contemporaneous wetland floras.

Type
Articles
Copyright
Copyright © 2016, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, M.L., 1958, The American species of Asterophyllites, Annularia, and Sphenophyllum : Bulletins of American Paleontology, v. 38, p. 289390.Google Scholar
Aitken, J.F., and Flint, S.S., 1995, The application of high-resolution sequence stratigraphy to fluvial systems: a case study from the Upper Carboniferous Breathitt Group, eastern Kentucky, USA: Sedimentology, v. 42, p. 330.Google Scholar
Algeo, T.J., and Heckel, P.H., 2008, The Late Pennsylvanian Midcontinent Sea of North America: a review: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 268, p. 205221.Google Scholar
Allen, J.P., Fielding, C.R., Gibling, M.R., and Rygel, M.C., 2011, Fluvial response to paleoequatorial climate fluctuations during the late Paleozoic ice age: Geological Society of America Bulletin, v. 123, p. 15241538.Google Scholar
Anderson, J.M., Anderson, H.M., and Cleal, C.J., 2007, Brief history of the gymnosperms: classification, biodiversity, phytogeography and ecology: Strelitzia, v. 20, 280 p.Google Scholar
Andrews, E.B., 1875, Description of fossil plants from the coal measures of Ohio: Report of the Geological Survey of Ohio, v. 2, pt. 2 (Palæontology), p. 414–426, pls. 96–103.Google Scholar
Archer, A.W., and Greb, S.F., 1995, An Amazon-scale drainage system in the Early Pennsylvanian of central North America: Journal of Geology, v. 103, p. 611627.Google Scholar
Archer, A.W., Feldman, H.R., Kvale, E.P., and Lanier, W.P., 1994, Comparison of drier- to wetter-interval estuarine roof facies in the Eastern and Western Interior coal basins, USA: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 106, p. 171185.Google Scholar
Archer, A.W., Elrick, S., Nelson, W.J., and DiMichele, W.A., 2016, Cataclysmic burial of Pennsylvanian Period coal swamps in the Illinois Basin: Hypertidal sedimentation during Gondwanan glacial melt-water pulses, in Tessier, B., and Reynaud, J.-Y., eds., Contributions to Modern and Ancient Tidal Sedimentology: Proceedings of the Tidalites 2012 Conference: International Association of Sedimentologists Special Publication 47, p. 217–231.Google Scholar
Artis, E.T., 1825, Antediluvian Phytology, Illustrated by a Collection of the Fossil Remains of Plants, Peculiar to the Coal Formations of Great Britain: London, J. Cumberland, 24 p., pls. 1–21.Google Scholar
Axsmith, B.J., Serbet, R., Krings, M., Taylor, T.N., Taylor, E.L., and Mamay, S.H., 2003, The enigmatic Paleozoic plants Spermopteris and Phasmatocycas reconsidered: American Journal of Botany, v. 90, p. 15851595.Google Scholar
Barthel, M., 1962, Epidermisuntersuchungen an einigen inkohlten Pteridospermenblättern des Oberkarbons und Perms: Geologie, Beiheft, v. 33, 140 p.Google Scholar
Barthel, M., 1976, Die Rotliegendflora Sachsens: Abhandlungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden, v. 24, 190 p., pls. 1–97.Google Scholar
Barthel, M., 2006, Die Rotliegendflora des Thüringer Waldes. Teil 4: Farnsamer und Farnlaub unbekannter taxonomischer Stellung: Veröffentlichungen Naturhistorisches Museum Schloß Bertholdsburg Schleusingen, v. 21, p. 3372.Google Scholar
Bashforth, A.R., 2005, Late Carboniferous (Bolsovian) macroflora from the Barachois Group, Bay St. George Basin, southwestern Newfoundland, Canada: Palaeontographica Canadiana, v. 24, 123 p.Google Scholar
Bashforth, A.R., Falcon-Lang, H.J., and Gibling, M.R., 2010, Vegetation heterogeneity on a Late Pennsylvanian braided-river plain draining the Variscan Mountains, La Magdalena Coalfield, northwestern Spain: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 292, p. 367390.Google Scholar
Bashforth, A.R., Drábková, J., Opluštil, S., Gibling, M.R., and Falcon-Lang, H.J., 2011, Landscape gradients and patchiness in riparian vegetation on a Middle Pennsylvanian braided-river plain prone to flood disturbance (Nýřany Member, Central and Western Bohemian Basin, Czech Republic): Review of Palaeobotany and Palynology, v. 163, p. 153189.Google Scholar
Bashforth, A.R., Cleal, C.J., Gibling, M.R., Falcon-Lang, H.J., and Miller, R.F., 2014, Paleoecology of Early Pennsylvanian vegetation on a seasonally dry tropical landscape (Tynemouth Creek Formation, New Brunswick, Canada): Review of Palaeobotany and Palynology, v. 200, p. 229263.Google Scholar
Bashforth, A.R., DiMichele, W.A., Eble, C.F., and Nelson, W.J., 2016, A Middle Pennsylvanian macrofloral assemblage from wetland deposits in Indiana (Illinois Basin): a taxonomic contribution with biostratigraphic, paleobiogeographic, and paleoecologic implications: Journal of Paleontology, v. 90, p. 589631.Google Scholar
Bassler, H., 1916, A cycadophyte from the North American coal measures: American Journal of Science, Series 4, v. 42, p. 2126.Google Scholar
Beck, A.L., and Labandeira, C.C., 1998, Early Permian insect folivory on a gigantopterid-dominated riparian flora from north-central Texas: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 142, p. 139173.Google Scholar
Bell, W.A., 1938, Fossil flora of Sydney Coalfield, Nova Scotia: Geological Survey of Canada Memoir, v. 215, 334 p.Google Scholar
Bell, W.A., 1940, The Pictou Coalfield, Nova Scotia: Geological Survey of Canada Memoir, v. 225, 161 p.Google Scholar
Bell, W.A., 1962, Flora of Pennsylvanian Pictou Group of New Brunswick: Geological Survey of Canada Bulletin, v. 87, 71 p., pls. 1–56.Google Scholar
Blake, B.M., Cross, A.T., Eble, C.F., Gillespie, W.H., and Pfefferkorn, H.W., 2002, Selected plant megafossils from the Carboniferous of the Appalachian region, United States: geographic and stratigraphic distribution, in Hills, L.V., Henderson, C.M., and Bamber, E.W., eds., Carboniferous and Permian of the World: Canadian Society of Petroleum Geologists Memoir, v. 19, p. 259335.Google Scholar
Blakey, R., 2013, North America key time-slices paleotectonic and sedimentation maps: Carboniferous—Pennsylvanian. cpgeosystems.com/images/penn-facies.jpg [Aug 2014].Google Scholar
Bohacs, K.M., and Suter, J., 1997, Sequence stratigraphic distribution of coaly rocks: fundamental controls and paralic examples: American Association of Petroleum Geologists Bulletin, v. 81, p. 16121639.Google Scholar
Boneham, R.F., 1974, Chieftain No. 20 flora (Middle Pennsylvanian) of Vigo County, Indiana: Proceedings of the Indiana Academy of Science, v. 84, p. 89113.Google Scholar
Boureau, É., 1964, Traité de Paléobotanique. Tome 3: Sphenophyta, Noeggerathiophyta: Paris, Masson et Cie, 544 p.Google Scholar
Boyce, C.K., 2008, The fossil record of plant physiology and development—What leaves can tell us, in Kelley, P.H., and Bambach, R.K., eds., From Evolution to Geobiology: Research Questions Driving Paleontology at the Start of a New Century: Paleontological Society Papers, v. 14, p. 133146.Google Scholar
Boyce, C.K., Lee, J.-E., Field, T.S., Brodribb, T.J., and Zwieniecki, M.A., 2010, Angiosperms helped put the rain in the rainforests: the impact of plant physiological evolution on tropical biodiversity: Annals of the Missouri Botanical Garden, v. 97, p. 527540.Google Scholar
Braun, C.F.W., 1843, Beiträge zur Urgeschichte der Pflanzen, in Graf, G., ed.., Beiträge zur Petrefacten-Kunde, Heft 6, Bayreuth, Commision der Buchner’schen Buchhandlung, p. 146.Google Scholar
Brongniart, A., 1822, Sur la classification et la distribution des végétaux fossiles, et sur ceux des terrains de sédiment supérieur en particulier: Mémoires du Muséum d’Histoire naturelle, v. 8, p. 203240, 297–348, pls. 1–6.Google Scholar
Brongniart, A., 1824, Observations sur les végétaux fossiles renfermés dans les grès de Hoer en Scanie: Annales des Sciences Naturelles, v. 4, p. 200224.Google Scholar
Brongniart, A., 1828a, Prodrome d’une Histoire des Végétaux Fossiles: Paris, F.G. Levrault, 223 p.Google Scholar
Brongniart, A., 1828b, Histoire des Végétaux Fossiles, ou Recherches Botaniques et Géologiques sur les Végétaux Renfermés dans les Diverses Couches du Globe: Paris, G. Dufour, v. 1, pt. 2, p. 81–136, pls. 9bis, 10, 12, 15, 19–27.Google Scholar
Broutin, J., Doubinger, J., Farjanel, G., Freytet, P., Kerp, H., Langiaux, J., Lebreton, M.-L., Sebban, S., and Satta, S., 1990, Le renouvellement des flores au passage Carbonifère Permien: approches stratigraphique, biologique, sédimentologique: Comptes Rendus de l’Académie des Sciences, Série 2, Mécanique, Physique, Chimie, Sciences de l’Univers, Sciences de la Terre, v. 311, p. 15631569.Google Scholar
Buatois, L.A., Gingras, M.K., Maceachern, J., Mángano, M.G., Zonneveld, J-P., Pemberton, S.G., Netto, R.G., and Martin, A., 2005, Colonization of brackish-water systems through time: evidence from the trace-fossil record: Palaios, v. 20, p. 321347.CrossRefGoogle Scholar
Burnham, R.J., 1989, Relationships between standing vegetation and leaf litter in a paratropical forest: implications for paleobotany: Review of Palaeobotany and Palynology, v. 58, p. 532.Google Scholar
Burnham, R.J., 1993, Reconstructing richness in the plant fossil record: Palaios, v. 8, p. 376384.CrossRefGoogle Scholar
Bush, M.B., and de Oliveira, P.E., 2006, The rise and fall of the Refugial Hypothesis of Amazonian speciation: a paleoecological perspective: Biota Neotropica, http://dx.doi.org/10.1590/S1676-06032006000100002.Google Scholar
Butterworth, M.A., and Williams, R.W., 1958, The small spore floras of coals in the Limestone Coal Group and Upper Limestone Group of the Lower Carboniferous of Scotland: Transactions of the Royal Society of Edinburgh, v. 63, p. 353392.CrossRefGoogle Scholar
Cecil, C.B., 1990, Paleoclimate controls on stratigraphic repetition of chemical and siliciclastic rocks: Geology, v. 18, p. 533536.Google Scholar
Cecil, C.B., 2003, The concept of autocyclic and allocyclic controls on sedimentation and stratigraphy, emphasizing the climatic variable, in Cecil, C.B., and Edgar, N.T., eds., Climate Controls on Stratigraphy: Society for Sedimentary Geology (SEPM) Special Publication 77, p. 1320.Google Scholar
Cecil, C.B., Stanton, R.W., Neuzil, S.G., Dulong, F.T., Ruppert, L.F., and Pierce, B.S., 1985, Paleoclimate controls on late Paleozoic sedimentation and peat formation in the central Appalachian Basin (USA): International Journal of Coal Geology, v. 5, p. 195230.Google Scholar
Cecil, C.B., Dulong, F.T., West, R.R., Stamm, R., Wardlaw, B.A., and Edgar, N.T., 2003, Climate controls on the stratigraphy of a Middle Pennsylvanian cyclothems in North America, in Cecil, C.B., and Edgar, N.T., eds., Climate Controls on Stratigraphy: Society for Sedimentary Geology (SEPM) Special Publication 77, p. 151182.Google Scholar
Cecil, C.B., DiMichele, W.A., and Elrick, S.D., 2014, Middle and Late Pennsylvanian cyclothems, American Midcontinent: Ice-age environmental changes and terrestrial biotic dynamics: Comptes Rendus Geoscience, v. 346, p. 159168.CrossRefGoogle Scholar
Césari, S.N., and Hünicken, M., 2013, Heterophylly in Cordaites-like foliage from western Gondwana: Review of Palaeobotany and Palynology, v. 196, p. 918.CrossRefGoogle Scholar
Chaloner, W.G., 1958, The Carboniferous upland flora: Geological Magazine, v. 95, p. 261262.Google Scholar
Chaney, D.S., and DiMichele, W.A., 2007, Paleobotany of the classic redbeds (Clear Fork Group–Early Permian) of north central Texas, in Wong, T.E., ed., Proceedings of the XVth International Congress on Carboniferous and Permian Stratigraphy (Utrecht, 2003), p. 357366.Google Scholar
Chaney, D.S., Sues, H.-D., and DiMichele, W.A., 2005, A juvenile skeleton of the nectridean amphibian Diplocaulis and associated flora and fauna from the Mitchell Creek Flats locality (upper Waggoner Ranch Formation; Early Permian), Baylor County, north-central Texas: New Mexico Museum of Natural History and Science Bulletin, v. 30, p. 3947.Google Scholar
Cleal, C.J., 1991, Carboniferous and Permian biostratigraphy, in Cleal, C.J., ed., Plant Fossils in Geological Investigation, The Palaeozoic: Chichester, Ellis Horwood, p. 182215.Google Scholar
Cleal, C.J., 1997, The palaeobotany of the upper Westphalian and Stephanian of southern Britain and its geological significance: Review of Palaeobotany and Palynology, v. 95, p. 227253.Google Scholar
Cleal, C.J., and Thomas, B.A., 1994, Plant Fossils of the British Coal Measures: Palaeontological Association Field Guide to Fossils, v. 6, 222 p.Google Scholar
Cleal, C.J., and Thomas, B.A., 2010, Botanical nomenclature and plant fossils: Taxon, v. 59, p. 261268.Google Scholar
Comer, V.J., 1992, The first documentation of a lower Middle Pennsylvanian Upland flora from the eastern margin of the Eastern Interior Basin (Illinois Basin) [M.Sc. dissertation]: Charleston, Eastern Illinois University, 87 p.Google Scholar
Corsin, P., 1951, Bassin houiller de la Sarre et de la Lorraine. I. Flore fossile. Part 4. Pécoptéridées: Études des Gîtes Minéraux de la France, p. 175–370, pls. 113–199.Google Scholar
Cridland, A.A., and Morris, J.E., 1960, Spermatopteris, a new genus of pteridosperms from the Upper Pennsylvanian Series of Kansas: American Journal of Botany, v. 47, p. 855859.Google Scholar
Cridland, A.A., and Morris, J.E., 1963, Taeniopteris, Walchia and Dichophyllum in the Pennsylvanian System of Kansas: The University of Kansas Science Bulletin, v. 44, p. 7185.Google Scholar
Crookall, R., 1969, Fossil plants of the Carboniferous rocks of Great Britain (Second Section): Memoirs of the Geological Survey of Great Britain, Palaeontology, v. 4, pt. 5, p. 573792, pls. 57–150.Google Scholar
Crookall, R., 1970, Fossil plants of the Carboniferous rocks of Great Britain (Second Section): Memoirs of the Geological Survey of Great Britain, Palaeontology, v. 4, pt. 6, p. 793840, pls. 151–159.Google Scholar
Dalinval, A., 1960, Contribution à l’étude des pécoptéridées. Les Pecopteris du bassin houiller du Nord de la France. I. Flore fossile, Part 3. Études géologiques pour l’Atlas de topographie souterraine, Service géologique des Houillères du Basssin du Nord et du Pas-de-Calais, 222 p., pls. 1–59.Google Scholar
Darrah, W.C., 1935, Permian elements in the fossil flora of the Appalachian Province. I. Taeniopteris : Botanical Museum Leaflets, Harvard University, v. 3, p. 137148.Google Scholar
Darrah, W.C., 1969, A Critical Review of the Upper Pennsylvanian Floras of Eastern United States with Notes on the Mazon Creek Flora of Illinois: Gettysburg, Privately published, 220 p., pls. 1–80.Google Scholar
Davydov, V.I., Crowley, J.L., Schmitz, M.D., and Poletaev, V.I., 2010, High-precision U-Pb zircon age calibration of the global Carboniferous time scale and Milankovitch band cyclicity in the Donets Basin, eastern Ukraine: Geochemistry, Geophysics, Geosystems, v. 11, doi:10.1029/2009GC002736.Google Scholar
Dawson, J.W., 1871, The Fossil Plants of the Devonian and Upper Silurian Formations of Canada: Montreal, Geological Survey of Canada, 92 p., pls. 1–20.Google Scholar
Devera, J.A., 1989, Ichnofossil assemblages and associated lithofacies of the Lower Pennsylvanian (Caseyville and Tradewater formations), southern Illinois, in Cobb, J.C., ed., Geology of the Lower Pennsylvanian in Kentucky, Indiana, and Illinois: Illinois Basin Studies, v. 1, p. 5783.Google Scholar
DiMichele, W.A., 2014, Wetland-dryland vegetational dynamics in the Pennsylvanian Ice Age tropics: International Journal of Plant Sciences, v. 175, p. 123164.Google Scholar
DiMichele, W.A., and Aronson, R.B., 1992, The Pennsylvanian–Permian vegetational transition: a terrestrial analogue to the onshore–offshore hypothesis: Evolution, v. 46, p. 807824.CrossRefGoogle Scholar
DiMichele, W.A., and Gastaldo, R.A., 2008, Plant paleoecology in deep time: Annals of the Missouri Botanical Garden, v. 95, p. 144198.Google Scholar
DiMichele, W.A., and Phillips, T.L., 1994, Paleobotanical and paleoecological constraints on models of peat formation in the Late Carboniferous of Euramerica: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 106, p. 3990.Google Scholar
DiMichele, W.A., and Phillips, T.L., 1996, Clades, ecological amplitudes, and ecomorphs: phylogenetic effects and the persistence of primitive plant communities in the Pennsylvanian-age tropics: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 127, p. 83105.Google Scholar
DiMichele, W.A., Chaney, D.S., Dixon, W.H., Nelson, W.J., and Hook, R.W., 2000, An Early Permian coastal flora from the Central Basin Platform of Gaines County, West Texas: Palaios, v. 15, p. 524534.2.0.CO;2>CrossRefGoogle Scholar
DiMichele, W.A., Pfefferkorn, H.W., and Gastaldo, R.A., 2001a, Response of Late Carboniferous and Early Permian plant communities to climate change: Annual Review of Earth and Planetary Sciences, v. 29, p. 461487.Google Scholar
DiMichele, W.A., Mamay, S.H., Chaney, D.S., Hook, R.W., and Nelson, W.J., 2001b, An Early Permian flora with Late Permian and Mesozoic affinities from North-Central Texas: Journal of Paleontology, v. 75, p. 449460.Google Scholar
DiMichele, W.A., Tabor, N.J., Chaney, D.S., and Nelson, W.J., 2006, From wetlands to wetspots: Environmental tracking and the fate of Carboniferous elements in Early Permian tropical floras, in Greb, S.F. and DiMichele, W.A., eds., Wetlands Through Time: Geological Society of America Special Paper 399, p. 223–248.Google Scholar
DiMichele, W.A., Kerp, H., Tabor, N.J., and Looy, C.V., 2008, The so-called “Paleophytic–Mesophytic” transition in equatorial Pangea—Multiple biomes and vegetational tracking of climate through geological time: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 268, p. 152163.Google Scholar
DiMichele, W.A., Montañez, I.P., Poulsen, C.J., and Tabor, N.J., 2009, Climate and vegetational regime shifts in the late Paleozoic ice age earth: Geobiology, v. 7, p. 200226.Google Scholar
DiMichele, W.A., Cecil, C.B., Montañez, I.P., and Falcon-Lang, H.J., 2010a, Cyclic changes in Pennsylvanian paleoclimate and effects on floristic dynamics in tropical Pangaea: International Journal of Coal Geology, v. 83, p. 329344.Google Scholar
DiMichele, W.A., Chaney, D.S., Kerp, H., and Lucas, S.G., 2010b, Late Pennsylvanian floras in western equatorial Pangea, Cañon del Cobre, New Mexico: New Mexico Museum of Natural History and Science Bulletin, v. 49, p. 75113.Google Scholar
DiMichele, W.A., Wagner, R.H., Bashforth, A.R., and Álvarez-Vázquez, C., 2013a, An update on the flora of the Kinney Quarry of central New Mexico (Upper Pennsylvanian), its preservational and environmental significance: New Mexico Museum of Natural History and Science Bulletin, v. 59, p. 289325.Google Scholar
DiMichele, W.A., Chaney, D.S., Lucas, S.G., Kerp, H., and Voigt, S., 2013b, Flora of the Lower Permian Abo Formation red beds, western equatorial Pangea, New Mexico: New Mexico Museum of Natural History and Science Bulletin, v. 59, p. 265287.Google Scholar
Dimitrova, T.K., Cleal, C.J., and Thomas, B.A., 2011, Palynological evidence for Pennsylvanian extra-basinal vegetation in Atlantic Canada: Journal of the Geological Society, London, v. 168, p. 559569.Google Scholar
Dolby, G., Falcon-Lang, H.J., and Gibling, M.R., 2011, A conifer-dominated palynological assemblage from Pennsylvanian (late Moscovian) alluvial drylands in Atlantic Canada: implications for the vegetation of tropical lowlands during glacial phases: Journal of the Geological Society, London, v. 168, p. 571584.Google Scholar
Doubinger, J., Vetter, P., Langiaux, J., Galtier, J., and Broutin, J., 1995, La flore fossile du basin houiller de Saint-Étienne: Mémoires du Muséum national d’Histoire naturelle, v. 164, 357 p.Google Scholar
Douglass, R.C., 1987, Fusulinid biostratigraphy and correlations between the Appalachian and Eastern Interior basins: United States Geological Survey Professional Paper 1451, 95 p., pls. 1–20.Google Scholar
Doweld, A.B., 2001, Prosyllabus Tracheophytorum. Tentamen systematis plantarum vascularium (Tracheophyta): Moscow, GEOS, 110 p.Google Scholar
Driese, S.G., and Ober, E.G., 2005, Paleopedologic and paleohydrologic records of precipitation seasonality from Early Pennsylvanian “underclay” paleosols, U.S.A.: Journal of Sedimentary Research, v. 75, p. 9971010.Google Scholar
Du Mortier, B.-C., 1829, Analyse des Familles des Plantes, avec l’Indication des Principaux Genres qui s’y Rattachent: Tournay, J. Casterman, 104 p.Google Scholar
Eble, C.F., Gillespie, W.H., and Henry, T.W., 1991, Palynology, paleobotany and invertebrate paleontology of Pennsylvanian coal beds and associated strata in the Warrior and Cahaba Coal Fields, in Thomas, W.A., and Osborne, W.E., eds., Mississippian–Pennsylvanian Tectonic History of the Cahaba Synclinorium (Guidebook for the 28th Annual Field Trip of the Alabama Geological Society), Tuscaloosa, Geological Survey of Alabama, p. 119132.Google Scholar
Eble, C.F., Grady, W.C., and Pierce, B.S., 2006, Compositional characteristics and inferred origin of three Late Pennsylvanian coal beds from the northern Appalachian Basin, in Greb, S.F., and DiMichele, W.A., eds., Wetlands Through Time: Geological Society of America Special Paper 399, p. 197222.Google Scholar
Eros, J.M., Montañez, I.P., Osleger, D.A., Davydov, V.I., Nemyrovska, T.I., Poletaev, V.I., and Zhykalyak, M.V., 2012, Sequence stratigraphy and onlap history of the Donets Basin, Ukraine: Insight into Carboniferous icehouse dynamics: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 313–314, p. 125.Google Scholar
Falcon-Lang, H.J., 2003a, Response of Late Carboniferous tropical vegetation to transgressive-regressive rhythms at Joggins, Nova Scotia: Journal of the Geological Society, London, v. 160, p. 643647.Google Scholar
Falcon-Lang, H.J., 2003b, Late Carboniferous tropical dryland vegetation in an alluvial-plain setting, Joggins, Nova Scotia, Canada: Palaios, v. 18, p. 197211.Google Scholar
Falcon-Lang, H.J., 2003c, Anatomically preserved cordaitalean trees from a dryland alluvial plain setting, Joggins, Nova Scotia: Atlantic Geology, v. 39, p. 259265.Google Scholar
Falcon-Lang, H.J., 2004, Pennsylvanian tropical rain forests responded to glacial–interglacial rhythms: Geology, v. 32, p. 689692.Google Scholar
Falcon-Lang, H.J., 2006, Vegetation ecology of Early Pennsylvanian alluvial fan and piedmont environments in southern New Brunswick, Canada: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 233, p. 3450.Google Scholar
Falcon-Lang, H.J., and Bashforth, A.R., 2004, Pennsylvanian uplands were forested by giant cordaitalean trees: Geology, v. 32, p. 417420.Google Scholar
Falcon-Lang, H.J., and Bashforth, A.R., 2005, Morphology, anatomy, and upland ecology of large cordaitalean trees from the Middle Pennsylvanian of Newfoundland: Review of Palaeobotany and Palynology, v. 135, p. 223243.Google Scholar
Falcon-Lang, H.J., and DiMichele, W.A., 2010, What happened to the Coal Forests during Pennsylvanian glacial phases?: Palaios, v. 25, p. 611617.Google Scholar
Falcon-Lang, H.J., Rygel, M.C., Gibling, M.R., and Calder, J.H., 2004, An early Pennsylvanian waterhole deposit and its fossil biota in a dryland alluvial plain setting, Joggins, Nova Scotia: Journal of the Geological Society, London, v. 161, p. 209222.Google Scholar
Falcon-Lang, H.J., Benton, M.J., Braddy, S.J., and Davies, S.J., 2006, The Pennsylvanian tropical biome reconstructed from the Joggins Formation of Nova Scotia, Canada: Journal of the Geological Society, London, v. 163, p. 561576.Google Scholar
Falcon-Lang, H.J., Nelson, J., Looy, C., Ames, P., Elrick, S., and DiMichele, W.A., 2009, Incised channel-fills containing conifers imply that seasonally-dry vegetation dominated Pennsylvanian tropical lowlands: Geology, v. 37, p. 923926.Google Scholar
Falcon-Lang, H.J., Heckel, P.H., DiMichele, W.A., Blake, B.M., Easterday, C.R., Eble, C.F., Elrick, S., Gastaldo, R.A., Greb, S.F., Martino, R.L., Nelson, W.J., Pfefferkorn, H.W., Phillips, T.L., and Rosscoe, S.J., 2011a, No major stratigraphic gap exists near the Middle-Upper Pennsylvanian (Desmoinesian-Missourian) boundary in North America: Palaios, v. 26, p. 125139.Google Scholar
Falcon-Lang, H.J., Jud, N.A., Nelson, W.J., DiMichele, W.A., Chaney, D.S., and Lucas, S.G., 2011b, Pennsylvanian coniferopsid forests in sabkha facies reveal the nature of seasonal tropical biome: Geology, v. 39, p. 371374.Google Scholar
Falcon-Lang, H.J., Cleal, C.J., Pendleton, J.L., and Wellman, C.H., 2012, Pennsylvanian (mid/late Bolsovian-Asturian) permineralised plant assemblages of the Pennant Sandstone Formation of southern Britain: systematics and palaeoecology: Review of Palaeobotany and Palynology, v. 173, p. 2345.Google Scholar
Feldman, H.R., Franseen, E.K., Joeckel, R.M., and Heckel, P.H., 2005, Impact of longer-term modest climate shifts on architecture of high-frequency sequences (cyclothems), Pennsylvanian of midcontinent U.S.A: Journal of Sedimentary Research, v. 75, p. 350368.Google Scholar
Ferguson, D.K., 1985, The origin of leaf assemblages—new light on an old problem: Review of Palaeobotany and Palynology, v. 46, p. 117188.Google Scholar
Ferguson, D.K., 2005, Plant taphonomy: ruminations on the past, the present, and the future: Palaios, v. 20, p. 418428.Google Scholar
Florin, R., 1934, Zur Kenntnis der paläozoischen Pflanzengattungen Lesleya Lesquereux und Megalopteris Dawson: Arkiv för Botanik (Kungliga Svenska Vetenskapsakademien), v. 25A(4), no. 19, p. 123.Google Scholar
Fontaine, W.F., and White, I.C., 1880, The Permian or Upper Carboniferous flora of West Virginia and S. W. Pennsylvania: Second Geological Survey of Pennsylvania, Report of Progress PP, 143 p., pls. 1–38.Google Scholar
Gao, Z., and Thomas, B.A., 1987, A re-evaluation of the plants Tingia and Tingiostachya from the Permian of Taiyuan, China: Palaeontology, 30, p. 815–828, pls. 89, 90.Google Scholar
Gastaldo, R.A., 1977, A Middle Pennsylvanian nodule flora from Carterville, Illinois, in Romans, R.C., ed., Geobotany: New York, Plenum Press, p. 133156.Google Scholar
Gastaldo, R.A., 1994, The genesis and sedimentation of phytoclasts with examples from coastal environments, in Traverse, A., ed., Sedimentation of Organic Particles: Cambridge, Cambridge University Press, p. 103127.Google Scholar
Gastaldo, R.A., 1996, Flöznah and Flözfern assemblages: potential predictors of Late Carboniferous biome replacement, in Leary, R.L., ed., Patterns in Paleobotany: Proceedings of a Czech–U.S. Carboniferous Paleobotany Workshop: Illinois State Museum, Scientific Papers, v. 26, p. 19–32.Google Scholar
Gastaldo, R.A., and Demko, T.M., 2010, The relationship between continental landscape evolution and the plant-fossil record: long term hydrologic controls on preservation, in Allison, P.A., and Bottjer, D.J., eds., Taphonomy. Process and Bias Through Time: Topics in Geobiology, v. 32, p. 249286.Google Scholar
Gastaldo, R.A., and Staub, J.R., 1999, A mechanism to explain the preservation of leaf litter lenses in coals derived from raised mires: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 149, p. 114.Google Scholar
Gastaldo, R.A., Demko, T.M., and Liu, Y., 1993, Application of sequence and genetic stratigraphic concepts to Carboniferous coal-bearing strata: an example from the Black Warrior basin, USA: Geologische Rundschau, v. 82, p. 212226.Google Scholar
Germar, E.F., 1839, in Kurtze, G.A., Commentatio de petrefactis quae in schisto bituminoso Mansfeldensi repriuntur: Halle, Eduard Anton, 36 p.Google Scholar
Gibling, M.R., and Bird, D.J., 1994, Late Carboniferous cyclothems and alluvial paleovalleys in the Sydney Basin, Nova Scotia: Geological Society of America Bulletin, v. 106, p. 105117.Google Scholar
Gibling, M.R., Saunders, K.I., Tibert, N.E., and White, J.A., 2004, Sequence sets, high-accommodation events and the coal window in the Carboniferous Sydney Basin, Atlantic Canada, in Pashin, J.C., and Gastaldo, R.A., eds., Sequence Stratigraphy, Paleoclimate, and Tectonics of Coal-bearing Strata: American Association of Petroleum Geology, Studies in Geology, v. 51, p. 169197.Google Scholar
Gillespie, W.H., and Pfefferkorn, H.W., 1979, Distribution of commonly occurring plant megafossils in the proposed Pennsylvanian System stratotype, in Englund, K.J., Arndt, H.H., and Henry, T.W., eds., Proposed Pennsylvanian System Stratotype, Virginia and West Virginia, American Geological Institute Selected Guidebook Series, v. 1, p. 8796.Google Scholar
Gillespie, W.H., and Pfefferkorn, H.W., 1986, Taeniopterid lamina on Phasmatocycas megasporophylls (Cycadales) from the Lower Permian of Texas, U.S.A: Review of Palaeobotany and Palynology, v. 49, p. 99116.Google Scholar
Göppert, H.R., 1852, Fossile flora des Übergangsgebirges: Verhandlungen der Kaiserlichen Leopoldinisch-Carolinischen Akademie der Naturforscher, v. 22 (supplement), 299 p., pls. 1–44.Google Scholar
Göppert, H.R., 1864-65, Die fossile Flora der Permischen Formation: Palaeontographica, Beiträge zur Naturgeschichte der Vorwelt, v. 12, 314 p., pls. 1–64.Google Scholar
Grand’Eury, F.C., 1877, Mémoire sur la flore carbonifère du département de la Loire et du centre de la France, étudiée aux trois points de vue botanique, stratigraphique et géognostique: Mémoires presentés par divers savants à l’Académie des Sciences de l’Institut de France, Sciences Mathématiques et Physiques, v. 24, pt. 1, 624 p., pls. 1–34, A–D.Google Scholar
Greb, S.F., Andrews, W.M., Eble, C.F., DiMichele, W.A., Cecil, C.B., and Hower, J.C., 2003, Desmoinesian coal beds of the Eastern Interior and surrounding basins: The largest tropical peat mires in earth history, in Chan, M.A., and Archer, A.W., eds., Extreme Depositional Environments: Mega-end Members in Geologic Time: Geological Society of America Special Paper, v. 370, p. 127150.Google Scholar
Greb, S.F., DiMichele, W.A., and Gastaldo, R.A., 2006, Evolution and importance of wetlands in earth history, in Greb, S.F., and DiMichele, W.A., eds., Wetlands Through Time: Geological Society of America Special Paper 399, p. 140.Google Scholar
Green, W.A., 2010, The function of the aerenchyma in arborescent lycopsids: evidence of an unfamiliar metabolic strategy: Proceedings of the Royal Society B: Biological Sciences, v. 277, p. 22572267.Google Scholar
Gutbier, A., von., 1835, Abdrücke und Versteinerungen des Zwickauer Schwarzkohlengebirges und seiner Umgebungen: Zwickau, G. Richter’sche Buchhandlung, 80 p., pls. 1–11.Google Scholar
Gutbier, A., von., 1837, Pflanzenabdrucke des Rothliegenden und der Kohlenformation der gegend von Zwickau: Isis, encyclopädische Zeitschrift vorzüglich für Naturgeschichte, vergleichender Anatomie und Physiologie, v. 5–7, p. 435436.Google Scholar
Gutbier, A., von., 1849, Die Versteinerungen des Rothliegenden in Sachsen, in Geinitz, H.B., and Gutbier, A., eds., Die Versteinerungen des Zechsteingebirges und Rothliegenden Oder des Permischen Systemes in Sachsen: Dresden, Arnold, v. 2, p. 139.Google Scholar
Halle, T.G., 1925, Tingia, a new genus of fossil plants from the Permian of China: Bulletin of the Geological Survey of China, v. 7, p. 112.Google Scholar
Halle, T.G., 1927a, Palæozoic plants from Central Shansi: Palæontologia Sinica, Series A, v. 2, pt. 1, 309 p., pls. 1–64.Google Scholar
Halle, T.G., 1927b, Fossil plants from south-western China: Palæontologia Sinica, Series A, v. 1, pt. 2, 26 p., pls. 1–5.Google Scholar
Harms, V.L., and Leisman, G.A., 1961, The anatomy and morphology of certain Cordaites leaves: Journal of Paleontology, v. 35, p. 10411064.Google Scholar
Harris, T.M., 1926, The Rhaetic flora of Scoresby Sound, East Greenland: Meddelelser om Grønland, v. 68, p. 46147, pls. 1–13.Google Scholar
Havlena, V., 1961, Die flöznahe und flözfremde Flora des oberschlesischen Namurs A und B: Palaeontographica Abteilung B (Palaeophytologie), v. 108, p. 2238.Google Scholar
Havlena, V., 1971, Die zeitgleichen Floren des europäischen Oberkarbons und die mesophile Floras des Ostrau-Karwiner Steinkohlenreviers: Review of Palaeobotany and Palynology, v. 12, p. 245270.Google Scholar
Heckel, P.H., 1977, Origin of phosphatic black shale facies in Pennsylvanian cyclothems of Mid-Continent North America: American Association of Petroleum Geologists Bulletin, v. 61, p. 10451068.Google Scholar
Heckel, P.H., 1980, Paleogeography of eustatic model for deposition of Midcontinent Upper Pennsylvanian cyclothems, in Fouch, T.D., and Magathan, E.R., eds., Paleozoic Paleogeography of West-Central United States: Society of Economic Paleontologists and Mineralogists, Rocky Mountain Section, Paleogeography Symposium, v. 1, p. 197215.Google Scholar
Heckel, P.H., 1986, Sea-level curve for Pennsylvanian eustatic marine transgressive-regressive depositional cycles along midcontinent outcrop belt, North America: Geology, v. 14, p. 330334.Google Scholar
Heckel, P.H., 1995, Glacial-eustatic base-level—Climatic model for late Middle to Late Pennsylvanian coal-bed formation in the Appalachian Basin: Journal of Sedimentary Research, Section B: Stratigraphy and Global Studies, v. 65B, p. 348356.Google Scholar
Heer, O., 1865, Die Urwelt der Schweiz: Zürich, F. Schulthess, 622 p., pls. 1–17.Google Scholar
Hembree, D.I., and Nadon, G.C., 2011, A paleopedologic and ichnologic perspective of the terrestrial Pennsylvanian landscape in the distal Appalachian Basin, U.S.A.: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 312, p. 138166.CrossRefGoogle Scholar
Horton, D.E., Poulsen, C.J., Montañez, I.P., and DiMichele, W.A., 2012, Eccentricity-paced late Paleozoic climate change: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 331–332, p. 150161.Google Scholar
Hutchison, H.C., 1976, Geology of the Catlin-Mansfield area, Parke and Putnam counties, Indiana: Indiana Geological Survey Bulletin, v. 54, 57 p.Google Scholar
Ielpi, A., Gibling, M.R., Bashforth, A.R., Lally, C., Rygel, M.C., and Al-Silwadi, S., 2014, Role of vegetation in shaping Early Pennsylvanian braided rivers: Architecture of the Boss Point Formation, Atlantic Canada: Sedimentology, v. 61, p. 16591700.Google Scholar
Janssen, R.E., 1979, Leaves and stems from fossil forests: Illinois State Museum Popular Science Series, v. 1, 190 p.Google Scholar
Jerrett, R.M., Flint, S.S., Davies, R.C., and Hodgson, D.M., 2011, Sequence stratigraphic interpretation of a Pennsylvanian (Upper Carboniferous) coal from the central Appalachian Basin, USA: Sedimentology, v. 58, p. 11801207.Google Scholar
Kerp, H., 1996, Post-Variscan late Palaeozoic Northern Hemisphere gymnosperms: the onset to the Mesozoic: Review of Palaeobotany and Palynology, v. 90, p. 263285.Google Scholar
Kerp, H., and Fichter, J., 1985, Die Makrofloren des saarpfälzischen Rotliegenden (?Ober-Karbon–Unter-Perm; SW-Deutschland): Mainzer Geowissenschaftliche Mitteilungen, v. 14, p. 159286.Google Scholar
Kerp, J.H.F., 1984, Aspects of Permian palaeobotany and palynology. V. On the nature of Asterophyllites dumasii Zeiller, its correlation with Calamites gigas Brongniart and the problem concerning its sterile foliage: Review of Palaeobotany and Palynology, v. 41, p. 301317.Google Scholar
Kosanke, R.M., 1950, Pennsylvanian spores of Illinois and their use in correlation: Illinois State Geological Survey Bulletin, v. 74, 128 p.Google Scholar
Kvale, E.P., Mastalerz, M., Furer, L.C., Engelhardt, D.W., Rexroad, C.B., and Eble, C.F., 2004, Atokan and early Desmoinesian coal-bearing parasequences in Indiana, U.S.A., in Pashin, J.C., and Gastaldo, R.A., eds., Sequence Stratigraphy, Paleoclimate, and Tectonics of Coal-bearing Strata: American Association of Petroleum Geology Studies in Geology, v. 51, p. 7188.Google Scholar
Labandeira, C.C., and Allen, E.G., 2007, Minimal insect herbivory for the Lower Permian Coprolite Bone Bed site of north-central Texas, USA, and comparison to other Late Paleozoic floras: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 247, p. 197219.Google Scholar
Langenheim, R.L., and Nelson, W.J., 1992, The cyclothemic concept in the Illinois Basin: a review, in Dott, R.H., ed., Eustasy: The Historical Ups and Downs of a Major Geological Concept: Geological Society of America Memoir, v. 180, p. 5572.Google Scholar
Laveine, J.-P., 1970, Quelques Pécoptéridinées houillères a la lumière de la palynologie (II). Implications paléobotaniques et stratigraphiques: Pollen et Spores, v. 12, p. 235297.Google Scholar
Laveine, J.-P., 1989, Guide Paléobotanique dans le Terrain Houiller Sarro-Lorrain: Documents des Houillères du Bassin de Lorraine, 154 p., pls. 1–164.Google Scholar
Leary, R.L., 1974a, Reconstruction of coal age uplands: Explorer, v. 16, p. 2729.Google Scholar
Leary, R.L., 1974b, Stratigraphy and floral characteristics of the basal Pennsylvanian strata in west central Illinois: Compte Rendu Septième Congrès Internationale de Stratigraphie et Géologie du Carbonifère (Krefeld 1971), v. 3, p. 341350.Google Scholar
Leary, R.L., 1980, Reclassification of Megalopteris sp.? Arber (1904) from the Culm Measures of northwest Devon as Lesleya sp: Review of Palaeobotany and Palynology, v. 30, p. 2732.Google Scholar
Leary, R.L., 1981, Early Pennsylvanian geology and paleobotany of the Rock Island County, Illinois, area. Part 1: Geology: Illinois State Museum Reports of Investigations, v. 37, 88 p.Google Scholar
Leary, R.L., 1990, Possible Early Pennsylvanian ancestor of the cycadales: Science, v. 249, p. 11521154.Google Scholar
Leary, R.L., 1993, Comparison of the Early Pennsylvanian Euramerican fossil plant Lesleya with the Permian Glossopteris of South America: Compte Rendu Douzième Congrès Internationale de Stratigraphie et Géologie du Carbonifère (Buenos Aires), v. 2, p. 107116.Google Scholar
Leary, R.L., 1996, Early Pennsylvanian compression/impression floras of the U.S. midcontinent, in Leary, R.L., ed., Patterns in Paleobotany: Proceedings of a Czech–U.S. Carboniferous Paleobotany Workshop: Illinois State Museum, Scientific Papers, v. 26, p. 3341.Google Scholar
Leary, R.L., 1998, Venation patterns in some early Glossopteris : The Palaeobotanist, v. 47, p. 1619.Google Scholar
Leary, R.L., and Pfefferkorn, H.W., 1977, An early Pennsylvanian flora with Megalopteris and Noeggerathiales from west-central Illinois: Illinois State Geological Survey Circular, v. 500, 77 p.Google Scholar
Leighton, M.W., Kolata, D.R., Oltz, D.F., and Eidel, J.J., eds., 1991, Interior Cratonic Basins: American Association of Petroleum Geologists Memoir, v. 51, 819 p.Google Scholar
Lesnikowska, A.D., and Willard, D.A., 1997, Two new species of Scolecopteris (Marattiales), sources of Torispora securis Balme and Thymospora thiessenii (Kosanke) Wilson et Venkatachala: Review of Palaeobotany and Palynology, v. 95, p. 211225.Google Scholar
Lesquereux, L., 1876, Species of fossil marine plants from the Carboniferous Measures, in Cox, E.T., ed., Seventh Annual Report of the Geological Survey of Indiana, made during the year 1875, p. 134145, pls. 1, 2.Google Scholar
Lesquereux, L., 1878, On the Cordaites and their related generic divisions, in the Carboniferous formation of the United States: Proceedings of the American Philosophical Society, 17 p. 315335.Google Scholar
Lesquereux, L., 1879-1884, Description of the coal flora of the Carboniferous formations in Pennsylvania and throughout the United States: Second Geological Survey of Pennsylvania, Report of Progress P, v. 1, p. 1354 (1880), v. 2, p. 355–694 (1880), v. 3, p. 695–922 (1884), pls. 1–85 (1879), pls. 88–111 (1884).Google Scholar
Lindley, J., and Hutton, W., 1833, The Fossil Flora of Great Britain, or Figures and Descriptions of the Vegetable Remains Found in a Fossil State in this Country: London, James Ridgway and Sons, v. 1, p. 167218.Google Scholar
Link, J.H.F., 1833, Hortus Regius Botanicus Berolinensis, Tomus 2: Berlin, G. Reimer, 376 p.Google Scholar
Linnæus, C., 1753, Species plantarum, exhibentes plantas rite cognitas ad genera relatas, cum differentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas: Stockholm, L. Salvius, 1200 p.Google Scholar
Looy, C.V., and Hotton, C.L., 2014, Spatiotemporal relationships among Late Pennsylvanian plant assemblages: Palynological evidence from the Markley Formation, West Texas, U.S.A.: Review of Palaeobotany and Palynology, v. 211, p. 1027.Google Scholar
Looy, C.V., Stevensen, R.A., Van Hoof, T.B., and Mander, L., 2014a, Evidence for coal forest refugia in the seasonally dry Pennsylvanian tropical lowlands of the Illinois Basin, USA: PeerJ, 2:e630 https://doi.org/10.7717/peerj.630.Google Scholar
Looy, C.V., Kerp, H., Duijnstee, I.A.P., and DiMichele, W.A., 2014b, The late Paleozoic ecological-evolutionary laboratory, a land-plant fossil record perspective: The Sedimentary Record, v. 12, no. 4, p. 410.Google Scholar
Lyons, P.C., and Darrah, W.C., 1989, Earliest conifers in North America: upland and/or paleoecological indicators?: Palaios, v. 4, p. 480486.Google Scholar
Mamay, S.H., 1968, Russellites, new genus, a problematical plant from the Lower Permian of Texas: United States Geological Survey Professional Paper, v. 593, 15 p.Google Scholar
Mamay, S.H., 1976, Paleozoic origin of the cycads: United States Geological Survey Professional Paper, v. 934, 48 p.Google Scholar
Mamay, S.H., 1990, Charliea manzanitana, n. gen., n. sp., and other enigmatic parallel-veined foliar forms from the Upper Pennsylvanian of New Mexico and Texas: American Journal of Botany, v. 77, p. 858866.Google Scholar
Mamay, S.H., and Mapes, G., 1992, Early Virgilian plant megafossils from the Kinney Brick Company Quarry, Manzanita Mountains, New Mexico: New Mexico Bureau of Mines and Mineral Resources Bulletin, v. 138, p. 6185.Google Scholar
Mander, L., Kürschner, W.M., and McElwain, J.C., 2010, An explanation for conflicting records of Triassic–Jurassic plant diversity: Proceedings of the National Academy of Sciences of the United States of America, v. 107, p. 1535115356.Google Scholar
Mastalerz, M., Padgett, P.L., and Eble, C.F., 2000, Block coals from Indiana: inferences on changing depositional environment: International Journal of Coal Geology, v. 43, p. 211226.Google Scholar
Mastalerz, M., Ames, P.R., and Padgett, P.L., 2003, Coals of the Brazil Formation (Pennsylvanian) in Indiana: observations of correlation inconsistencies and their implications: International Journal of Coal Geology, v. 54, p. 209222.Google Scholar
McComas, M.A., 1988, Upper Pennsylvanian compression floras of the 7-11 Mine, Columbiana County, Northeastern Ohio: Ohio Journal of Science, v. 88, p. 4852.Google Scholar
Meyen, S.V., 1984, Basic features of gymnosperm systematics and phylogeny as evidenced by the fossil record: The Botanical Review, v. 50, p. 1111.Google Scholar
Miall, A., 2014, The emptiness of the stratigraphic record: a preliminary evaluation of missing time in the Mesa Verde Group, Book Cliffs, Utah, U.S.A.: Journal of Sedimentary Research, v. 84, p. 457469.Google Scholar
Miquel, F.A.W., 1851, Over de Rangschikking der fossiele Cycadeæ: Tijdschrift voor de Wis- en Natuurkundige Wetenschappen, v. 4, p. 205227.Google Scholar
Moore, L.C., Wittry, J., and DiMichele, W.A., 2014, The Okmulgee, Oklahoma fossil flora, a Mazon Creek equivalent: Spatial conservatism in the composition of Middle Pennsylvanian wetland vegetation over 1100 km: Review of Palaeobotany and Palynology, v. 200, p. 2452.Google Scholar
Moore, R.C., Elias, M.K., and Newell, N.D., 1936, A “Permian” flora from the Pennsylvanian rocks of Kansas: Journal of Geology, v. 44, p. 131.Google Scholar
Morey, E.D., and Morey, P.R., 1977, Paralycopodites minutissimum gen. et sp. n. from the Carbondale Formation of Illinois: Palaeontographica Abteilung B (Palaeophytologie), v. 162, p. 6469.Google Scholar
Nelson, W.J., Trask, C.B., Jacobson, R.J., Damberger, H.H., Williamson, A.D., and Williams, D.A., 1991, Absaroka Sequence, Pennsylvanian and Permian Systems, in Leighton, M.W., Kolata, D.R., Oltz, D.F., and Eidel, J.J., eds., Interior Cratonic Basins: American Association of Petroleum Geologists Memoir 51, p. 143194.Google Scholar
Nelson, W.J., Greb, S.F., and Weibel, C.P., 2013, Pennsylvanian Subsystem in the Illinois Basin: Stratigraphy, v. 10, p. 4154.Google Scholar
Němejc, F., 1928, A revision of the carboniferous and permian flora of the coal-districts of Central Bohemia: Palaeontographica Bohemiæ, v. 12, p. 4182.Google Scholar
Němejc, F., 1968, Paleobotanika III. Systematická Čast: Rostliny Nahosemenné: Prague, Nakladatelství Československé Akademie Věd, 478 p.Google Scholar
Noé, A.C., 1925, Pennsylvanian flora of northern Illinois: Illinois State Geological Survey Bulletin, v. 52, 113 p.Google Scholar
Oleksyshyn, J., 1982, Fossil plants from the anthracite coal fields of eastern Pennsylvania: Pennsylvania Geological Survey, General Geology Report, v. 72, 157 p.Google Scholar
Olszewski, T.D., and Patzkowsky, M.E., 2003, From cyclothems to sequences: the record of eustasy and climate on an icehouse epeiric platform (Pennsylvanian-Permian, North American Midcontinent): Journal of Sedimentary Research, v. 73, p. 1530.Google Scholar
Opluštil, S., Šimůnek, Z., Zajíc, J., and Mencl, V., 2013, Climatic and biotic changes around the Carboniferous/Permian boundary recorded in the continental basins of the Czech Republic: International Journal of Coal Geology, v. 119, p. 114151.Google Scholar
Pashin, J.C., and Gastaldo, R.A., 2009, Carboniferous of the Black Warrior Basin, in Greb, S.F., and Chestnut, D.R., eds., Carboniferous of the Appalachian and Black Warrior Basins: Kentucky Geological Survey Special Publication, v. 10, p. 1021.Google Scholar
Peppers, R.A., 1964, Spores in strata of Late Pennsylvanian cyclothems in the Illinois Basin: Illinois State Geological Survey Bulletin, v. 90, 89 p.Google Scholar
Peppers, R.A., 1996, Palynological correlation of major Pennsylvanian (Middle and Upper Carboniferous) chronostratigraphic boundaries in the Illinois and other coal basins: Geological Society of America Memoir, v. 188, 112 p.Google Scholar
Pfefferkorn, H.W., 1980, A note on the term “upland” flora: Review of Palaeobotany and Palynology, v. 30, p. 157158.Google Scholar
Pfefferkorn, H.W., Mustafa, H., and Hass, H., 1975, Quantitative Charakterisierung oberkarboner Abdruckfloren: Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 150, p. 253269.Google Scholar
Pott, C., and Launis, A., 2015, Taeniopteris novomundensis sp. nov. – “cycadophyte” foliage from the Carnian of Switzerland and Svalbard reconsidered: how to use Taeniopteris?: Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 275, p. 1931.Google Scholar
Pott, C., and McLoughlin, S., 2009, Bennettitalean foliage in the Rhaetian–Bajocian (latest Triassic–Middle Jurassic) floras of Scania, southern Sweden: Review of Palaeobotany and Palynology, v. 158, p. 117166.Google Scholar
Pott, C., van Konijnenburg-van Cittert, J.H.A., Kerp, H., and Krings, M., 2007, Revision of the Pterophyllum species (Cycadophytina: Bennettitales) in the Carnian (Late Triassic) flora from Lunz, Lower Austria: Review of Palaeobotany and Palynology, v. 147, p. 327.Google Scholar
Pott, C., McLoughlin, S., and Lindström, A., 2010, Late Palaeozoic foliage from China displays affinities to Cycadales rather than to Bennettitales necessitating a re-evaluation of the Palaeozoic Pterophyllum species: Acta Palaeontologica Polonica, v. 55, p. 157168.Google Scholar
Poulsen, C.J., Pollard, D., Montañez, I.P., and Rowley, D., 2007, Late Paleozoic tropical climate response to Gondwanan deglaciation: Geology, v. 35, p. 771774.Google Scholar
Presl, C.B., 1838, in Sternberg, K.M., Versuch einer geognostisch-botanischen Darstellung der Flora der Vorwelt: Prague, Gotlieb Hässe Söhne, v. II, pt. 7/8, p. 81220, pls. 1–68, A–B.Google Scholar
Pšenička, J., Bek, J., Cleal, C.J., Wittry, J., and Zodrow, E.L., 2009, Description of synangia and spores of the holotype of the Carboniferous fern Lobatopteris miltoni, with taxonomic comments: Review of Palaeobotany and Palynology, v. 155, p. 133144.Google Scholar
Radforth, N.W., 1938, An analysis and comparison of the structural features of Dactylotheca plumosa Artis sp. and Senftenbergia ophiodermatica Goeppert sp.: Transactions of the Royal Society of Edinburgh, v. 59, p. 385396.Google Scholar
Raymond, A., Lambert, L., Costanza, S., Slone, E.J., and Cutlip, P.C., 2010, Cordaiteans in paleotropical wetlands: an ecological re-evaluation: International Journal of Coal Geology, v. 83, p. 248265.Google Scholar
Raymond, A., Slone, E.D.J., and Wehner, M., 2013, A new permineralized Alethopteris from the Kalo Formation and a simple method for distinguishing permineralized Alethopteris species: New Mexico Museum of Natural History and Science Bulletin, v. 60, p. 338342.Google Scholar
Raymond, A., Wehner, M., and Costanza, S.H., 2014, Permineralized Alethopteris ambigua (Lesquereux) White: a medullosan with relatively long-lived leaves, adapted for sunny habitats in mires and floodplains: Review of Palaeobotany and Palynology, v. 200, p. 8296.Google Scholar
Read, C.B., and Mamay, S.H., 1964, Upper Paleozoic floral zones and floral provinces of the United States: United States Geological Survey Professional Paper 454K, 35 p., pls. 1–19.Google Scholar
Remy, W., and Remy, R., 1975a, Lesleya weilerbachensis n. sp. aus dem hoheren Westfal C des Saarkarbons: Argumenta Palaeobotanica, v. 4, p. 111, pl. 1.Google Scholar
Remy, W., and Remy, R., 1975b, Beiträge zur Kenntnis des Morpho-Genus Taeniopteris Brongniart: Argumenta Palaeobotanica, v. 4, p. 3137, pls. 4, 5.Google Scholar
Remy, W., and Remy, R., 1977, Die Floren des Erdaltertums: Einführung in Morphologie, Anatomie, Geobotanik und Biostratigraphie der Pflanzen des Paläophytikums: Essen, Verlag Glückauf, 468 p.Google Scholar
Remy, W., and Remy, R., 1978, Beiträge zur Flora des Stefans und Autuns: Argumenta Palaeobotanica, v. 5, p. 195204, pl. 16.Google Scholar
Renault, B., 1893-96, Bassin houiller et permien d’Autun et d’Epinac. IV. Flore fossile. Part 2. Études des Gîtes Minéraux de la France: Paris, Ministère des Travaux Publics, 578 p. (1896), pls. 28–89 (1893).Google Scholar
Rexroad, C.B., Brown, L.M., Devera, J.A., and Suman, R.J., 1998, Conodont biostratigraphy and paleoecology of the Perth Limestone Member, Staunton Formation (Pennsylvanian) of the Illinois basin, U.S.A.: Palaeontologia Polonica, v. 58, p. 247259.Google Scholar
Roscher, M., and Schneider, J.W., 2006, Permo-Carboniferous climate: Early Pennsylvanian to Late Permian climate development of central Europe in a regional and global context, in Lucas, S.G., Cassinis, G., and Schneider, J.W., eds., Non-Marine Permian Biostratigraphy and Biochronology: Geological Society of London, Special Publications, v. 265, p. 95136.Google Scholar
Rosenau, N.A., Tabor, N.J., Elrick, S.E., and Nelson, W.J., 2013a, Polygenetic history of paleosols in middle–upper Pennsylvanian cyclothems of the Illinois basin, U.S.A.: Part I. Characterization of paleosol types and interpretation of pedogenic processes: Journal of Sedimentary Research, v. 83, p. 606636.Google Scholar
Rosenau, N.A., Tabor, N.J., Elrick, S.E., and Nelson, W.J., 2013b, Polygenetic history of paleosols in middle–upper Pennsylvanian cyclothems of the Illinois basin, U.S.A.: Part II. Integrating geomorphology, climate, and glacioeustasy: Journal of Sedimentary Research, v. 83, p. 637668.Google Scholar
Rothwell, G.W., 1988, Cordaitales, in Beck, C.B., ed., Origin and Evolution of Gymnosperms: New York, Columbia University Press, p. 273297.Google Scholar
Rothwell, G.W., and Warner, S., 1984, Cordaixylon dumusum n. sp. (Cordaitales). I. Vegetative structures: Botanical Gazette, v. 145, p. 275291.Google Scholar
Sandberger, F., 1864, Die Flora der oberen Steinkohlenformation im badischen Schwarzwalde: Verhandlungen des Naturwissenschaftlichen Vereins zu Karlsruhe, v. 1, p. 3036, pls. 2–4.Google Scholar
Schachat, S. R, Labandeira, C.C., Gordon, J., Chaney, D., Levi, S., Halthore, M.N., and Alvarez, J., 2014, Plant–insect interactions from the Early Permian (Kungurian) Colwell Creek Pond, north-central Texas: the early spread of herbivory in riparian environments: International Journal of Plant Sciences, v. 175, p. 855890.Google Scholar
Schimper, W.P., 1869, Traité de paléontologie végétale, ou, La flore du monde primitif dans ses rapports avec les formations géologiques et la flore du monde actuel, Tome 1: Paris, J. B. Baillière et Fils, 733 p.Google Scholar
Schindler, T., and Heidtke, U.H.J., 2007, Kohlesümpfe, Seen und Halbwüsten: Dokumente einer rund 300 Millionen Jahre alten Lebewelt zwischen Saarbrücken und Mainz: Pollichia Sonderveröffentlichung, v. 10, 316 p.Google Scholar
Scott, A.C., 2010, Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 291, p. 1139.Google Scholar
Scott, A.C., and Stephens, R.S., 2014, British Pennsylvanian (Carboniferous) coal-bearing sequences: where is the time?, in Smith, D.G., Bailey, R.J., Burgess, P.M., and Fraser, A.J., eds., Strata and Time: Probing the Gaps in Our Understanding: Geological Society of London, Special Publications, v. 404, p. 283302.Google Scholar
Seilacher, A., 1955, Spuren und Fazies im Unterkambrium, in Schindewolf, O.H., and Seilacher, A., eds., Beiträge zur Kenntnis des Kambriums in der Salt Range (Pakistan): Akademie der Wissenschaften und der Literatur zu Mainz, Abhandlungen der mathematisch-naturwissenschaftliche Klasse, v. 10, p. 261446.Google Scholar
Sellards, E.H., 1901, Permian plants—Taeniopteris of the Permian of Kansas: The Kansas University Quarterly, Series A (Science and Mathematics), v. 10, p. 112. , pls. I–IV.Google Scholar
Sellards, E.H., 1908, Fossil plants of the Upper Paleozoic of Kansas: The University Geological Survey of Kansas, v. 9 (Special Report on Oil and Gas), p. 386–480, pls. 44–49.Google Scholar
Seward, A.C., 1910, Fossil Plants. A Text-book for Students of Botany and Geology. Volume II: Cambridge, Cambridge University Press, 624 p.Google Scholar
Seward, A.C., 1919, Fossil Plants. A Text-book for Students of Botany and Geology. Volume IV. Ginkgoales, Coniferales, Gnetales: Cambridge, Cambridge University Press, 543 p.Google Scholar
Shaver, R.H., 1984, Atokan series concepts with special reference to the Illinois Basin and Iowa: Oklahoma Geological Survey Bulletin, v. 136, p. 101113.Google Scholar
Shute, C.H., and Cleal, C.J., 1989, The holotype of the Carboniferous marattialean fern Lobatopteris miltoni (Artis): Bulletin of the British Museum (Natural History), Geology Series, v. 45, p. 7176.Google Scholar
Šimůnek, Z., 1996, Leaves and cuticles of the genus Lesleya Lesquereux from the Czech Republic and from Illinois (U.S.A.), in Leary, R.L., ed., Patterns in Paleobotany: Proceedings of a Czech–U.S. Carboniferous Paleobotany Workshop: Illinois State Museum, Scientific Papers, v. 26, p. 4356.Google Scholar
Šimůnek, Z., 2006, New classification of the genus Cordaites from the Carboniferous and Permian of the Bohemian Massif, based on cuticle micromorphology: Sborník Národního muzea v Praze, Řada B, Přírodní vědy, v. 62, p. 97210.Google Scholar
Šimůnek, Z., and Bek, J., 2003, Noeggerathiaceae from the Carboniferous basins of the Bohemian Massif: Review of Palaeobotany and Palynology, v. 125, p. 249284.Google Scholar
Šimůnek, Z., Opluštil, S., and Drábková, J., 2009, Cordaites borassifolius (Sternberg) Unger (Cordaitales) from the Radnice Basin (Bolsovian, Czech Republic): Bulletin of Geosciences, v. 84, p. 301336.Google Scholar
Smith, A.H.V., and Butterworth, M.A., 1967, Miospores in the coal seams of the Carboniferous of Great Britain: Palaeontological Association, Special Papers in Palaeontology, v. 1, 324 p.Google Scholar
Soreghan, G.S., 1994, The impact of glacioclimatic change on Pennsylvanian cyclostratigraphy, in Embry, A.F., Beauchamp, B., and Glass, D.J., eds., Pangea: Global Environments and Resources: Canadian Society of Petroleum Geologists Memoir, v. 17, p. 523543.Google Scholar
Spicer, R.A., 1989, The formation and interpretation of plant fossil assemblages: Advances in Botanical Research, v. 16, p. 95191.Google Scholar
Sternberg, K.M., 1820, Versuch einer geognostisch-botanischen Darstellung der Flora der Vorwelt: Leipzig, F. Fleischer, v. 1, pt. 1, 24 p., pls. 1–13.Google Scholar
Sternberg, K.M., 1821, Versuch einer geognostisch-botanischen Darstellung der Flora der Vorwelt: Leipzig, F. Fleischer, v. 1, pt. 2, 33 p., pls. 14–26.Google Scholar
Sternberg, K.M., 1825, Versuch einer geognostisch-botanischen Darstellung der Flora der Vorwelt: Regensburg, Ernst Brenck’s Wittwe, v. 1, pt. 4, 48 p., pls. 40–59, A–E.Google Scholar
Sterzel, J.T., 1876, Taeniopterideen aus dem Rothliegenden von Chemnitz-Hilbersdorf: Neues Jahrbuch für Mineralogie, Geologie und Palaeontologie, v. 4, p. 369385, pls. 5, 6.Google Scholar
Stull, G.W., DiMichele, W.A., Falcon-Lang, H.J., Nelson, W.J., and Elrick, S., 2012, Palaeoecology of Macroneuropteris scheuchzeri, and its implications for resolving the paradox of ‘xeromorphic’ plants in Pennsylvanian wetlands: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 331–332, p. 162176.Google Scholar
Sze, H.-C., 1953, Notes on some fossil remains from the Shihchienfeng Series in northwestern Shensi: Acta Palaeontologica Sinica, v. 1, p. 1122.Google Scholar
Tabor, N.J., Romanchock, C.M., Looy, C.V., Hotton, C.L., DiMichele, W.A., and Chaney, D.S., 2013, Conservatism of Late Pennsylvanian vegetational patterns during short-term cyclic and long-term directional environmental change, western equatorial Pangea, in Gąsiewicz, A., and Słowokiewicz, M., eds., Palaeozoic Climate Cycles: Their Evolutionary and Sedimentological Impact: Geological Society of London, Special Publications, v. 376, p. 201234.Google Scholar
Tandon, S.K., and Gibling, M.R., 1994, Calcrete and coal in late Carboniferous cyclothems of Nova Scotia, Canada: climate and sea-level changes linked: Geology, v. 22, p. 755758.Google Scholar
Taylor, T.N., Taylor, E.L., and Krings, M., 2009, Paleobotany: The Biology and Evolution of Fossil Plants, second edition: New York, Academic Press, 1252 p.Google Scholar
The Tri-State Committee on Correlation of the Pennsylvanian System in the Illinois Basin, 2001, Toward a more uniform stratigraphic nomenclature for rock units (formations and groups) of the Pennsylvanian System in the Illinois Basin: Illinois Basin Consortium Study, v. 5, 26 p.Google Scholar
Tidwell, W.D., and Ash, S.R., 2003, Revision and description of two new species of Charliea Mamay from Pennsylvanian strata in New Mexico and Utah, USA: Review of Palaeobotany and Palynology, v. 124, p. 297306.Google Scholar
Unger, F., 1840, Abhandlung über die Struktur der Calamiten und ihre Rangordnung im Gewächsreiche: Flora, v. 2, p. 654662.Google Scholar
Unger, F., 1842, in Endlicher, S.L., Genera Plantarum Secundum Ordines Naturales Disposita, Supplementum Secundum: Vienna, F. Beck, 114 p.Google Scholar
Unger, F., 1850, Genera et Species Plantarum Fossilium: Vienna, Wilhelmum Braumüller, 627 p.Google Scholar
Van Hoof, T.B., Falcon-Lang, H.J., Hartkopf-Fröder, C., and Kerp, H., 2013, Conifer-dominated palynofloras in the Middle Pennsylvanian strata of the De Lutte-6 borehole, The Netherlands: implications for evolution, palaeoecology and biostratigraphy: Review of Palaeobotany and Palynology, v. 188, p. 1837.Google Scholar
Van Loon, A.J., 1971, The stratigraphy of the Westphalian C around Prioro (prov. León, Spain) (with palaeontological notes by G.E. de Groot, H.W.J. van Amerom & R.H. Wagner): Trabajos de Geología, v. 3, p. 231265.Google Scholar
Voigt, S., and Rößler, R., 2004, Taeniopterid-type leaf fragments – the first record of macrophytic remains from the Eisenach Formation (Rotliegend, Permian, Thuringian Forest): Hallesches Jahrbuch für Geowissenschaften, v. 18, p. 2738.Google Scholar
Wagner, R.H., 1958, Some Stephanian pecopterids from NW. Spain: Mededelingen van de Geologische Stichting, Nieuwe Serie, v. 12, p. 523.Google Scholar
Wagner, R.H., 1971, The Westphalian D floras of the Olloniego and Esperanza formations in the Central Astrurian Coalfield: Trabajos de Geología, v. 4, p. 461505.Google Scholar
Wagner, R.H., 1984, Megafloral zones of the Carboniferous: Compte Rendu Neuvième Congrès Internationale de Stratigraphie et Géologie du Carbonifère (Washington and Champaign-Urbana, 1979), v. 2, p. 109134.Google Scholar
Wagner, R.H., and Álvarez-Vázquez, C., 2010, The Carboniferous floras of the Iberian Peninsula: a synthesis with geological connotations: Review of Palaeobotany and Palynology, v. 162, p. 239324.Google Scholar
Wagner, R.H., and Lyons, P.C., 1997, A critical analysis of the higher Pennsylvanian megafloras of the Appalachian region: Review of Palaeobotany and Palynology, v. 95, p. 255283.Google Scholar
Wang, J., and Chaney, D., 2010, A re-examination of the type specimens of Yuania H.C. Sze 1953 and its junior synonym Russellites Mamay 1968 (Noeggerathiales): Taxon, v. 59, p. 517524.Google Scholar
Wang, J., Pfefferkorn, H.W., and Bek, J., 2009, Paratingia wudensis sp. nov., a whole noeggerathialean plant preserved in an earliest Permian air fall tuff in Inner Mongolia, China: American Journal of Botany, v. 96, p. 16761689.Google Scholar
Wanless, H.R., and Shepard, F.P., 1935, Permo-Carboniferous coal series related to Southern Hemisphere glaciation: Science, v. 81, p. 521522.Google Scholar
Wanless, H.R., and Shepard, F.P., 1936, Sea level and climatic changes related to late Paleozoic cycles: Geological Society of America Bulletin, v. 47, p. 11771206.Google Scholar
Watney, W.L., Wong, J.-C., and French, J.A., 1989, Computer simulation of Upper Pennsylvanian (Missourian) carbonate-dominated cycles in western Kansas, in Franseen, E.K., Watney, W.L., Kendall, C.G.S., and Ross, W., eds., Sedimentary Modeling: Computer Simulations and Methods for Improved Parameter Definition: Kansas Geological Survey Bulletin, v. 233, p. 415430.Google Scholar
Weiss, C.E., 1869, Fossile Flora der jüngsten Steinkohlenformation und des Rothliegenden im Saar-Rhein-Gebiete. I. (Geognostische Uebersicht, Literatur, Farne): Bonn, A. Henry, 100 p., pls. 1–12.Google Scholar
White, D., 1899, Fossil Flora of the Lower Coal Measures of Missouri: United States Geological Survey Monographs, v. 37, 467 p., pls. 1–73.Google Scholar
White, D., 1908, Report on field work done in 1907: Illinois State Geological Survey Bulletin, v. 8, p. 268272.Google Scholar
White, D., 1929, Flora of the Hermit shale, Grand Canyon, Arizona: Carnegie Institution of Washington Publication, v. 405, 221 p.Google Scholar
White, D., 1931, Climatic implications of Pennsylvanian flora: Illinois State Geological Survey Bulletin, v. 60, p. 271281.Google Scholar
Wilson, J.P., and Knoll, A.H., 2010, A physiologically explicit morphospace for tracheid-based water transport in modern and extinct seed plants: Paleobiology, v. 36, p. 335355.Google Scholar
Wilson, J.P., Knoll, A.H., Holbrook, N.M., and Marshall, C.R., 2008, Modeling fluid flow in Medullosa, an anatomically unusual Carboniferous plant: Paleobiology, v. 34, p. 472493.Google Scholar
Wilson, L.R., and Venkatachala, B.S., 1963, Thymospora, a new name for Verrucososporites : Oklahoma Geological Survey, Oklahoma Geology Notes, v. 23, p. 7579.Google Scholar
Wing, S.L., and DiMichele, W.A., 1995, Conflict between local and global changes in plant diversity through geological time: Palaios, v. 10, p. 551564.Google Scholar
Winston, R.B., 1983, A Late Pennsylvanian upland flora in Kansas: systematics and environmental implications: Review of Palaeobotany and Palynology, v. 40, p. 531.Google Scholar
Wittry, J., 2006, The Mazon Creek Fossil Flora: Downers Grove, ESCONI Associates, 154 p.Google Scholar
Wittry, J., Glasspool, I.J., Béthoux, O., Koll, R., and Cleal, C.J., 2014, A revision of the Pennsylvanian marattialean fern Lobatopteris vestita auct. and related species: Journal of Systematic Palaeontology, doi:10.1080/14772019.2014.936915.Google Scholar
Witzke, B.J., 1990, Palaeoclimatic constraints for Palaeozoic palaeolatitudes of Laurentia and Euramerica, in McKerrow, W.S., and Scotese, C.R., eds., Palaeozoic Palaeogeography and Biogeography: Geological Society of London Memoir 12, p. 5773.Google Scholar
Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.C., Diemer, M., Flexas, J., Garnier, E., Groom, P.K., Gulias, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J., Navas, M.-L., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Prankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.J., Veneklaas, E.J., and Villar, R., 2004, The worldwide leaf economics spectrum: Nature, v. 428, p. 821827.Google Scholar
Zeiller, R., 1888, Études sur le terrain houiller de Commentry. II. Flore fossile. Part 1: Bulletin de la Société de l’Industrie Minérale, Saint-Étienne (Série 3), Tome 2, pt. 2, 366 p., pls. 1–42.Google Scholar
Zeiller, R., 1890, Bassin houiller et permien d’Autun et d’Épinac. II. Flore fossile. Part 1. Études des Gîtes Minéraux de la France: Paris, Ministère des Travaux Publics, 304 p., pls. 1–27.Google Scholar
Zeiller, R., 1894, Notes sur la flore des couches permiennes de Trienbach (Alsace): Bulletin de la Société Géologique de France (Série 3), v. 22, p. 163182, pls. 8, 9.Google Scholar
Zeiller, R., 1906, Bassin houiller et permien de Blanzy et du Creusot. II. Flore fossile. Études des Gîtes Minéraux de la France: Paris, Ministère des Travaux Publics, 265 p., pls. 1–51.Google Scholar
Zenker, F.C., 1833, Beschreibung von Galium sphenophylloides : Neues Jahrbuch für Mineralogie Geognosie, Geologie und Petrefaktenkunde, v. 4, p. 398400.Google Scholar
Zhang, H., 1987, Palaeobotany, in Institute of Geology Exploration, CCMRI Coal Ministry and Provincial Coalfields Exploration Corporation of Shanxi, eds., Sedimentary Environment of the Coal-bearing Strata in Pinglu-Shuixian Mining Area, China: Xi’an, China, Shaanxi Peoples Education Publishing House, p. 195204. [in Chinese].Google Scholar
Zodrow, E.L., 1986, Succession of paleobotanical events: evidence for mid-Westphalian D floral changes, Morien Group (Late Pennsylvanian, Nova Scotia): Review of Palaeobotany and Palynology, v. 47, p. 293326.Google Scholar
Zodrow, E.L., and McCandlish, K., 1980, Upper Carboniferous Fossil Flora of Nova Scotia in the Collections of the Nova Scotia Museum; with Special Reference to the Sydney Coalfield: Halifax, Nova Scotia Museum, 275 p.Google Scholar
Zodrow, E.L., Šimůnek, Z., and Bashforth, A.R., 2000, New cuticular morphotypes of “Cordaites principalis (Germar) Geinitz” from the Canadian Carboniferous Maritimes Basin: Canadian Journal of Botany, v. 78, p. 135148.Google Scholar