Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T15:13:07.329Z Has data issue: false hasContentIssue false

Single-walled carbon nanotube-derived novel structural material

Published online by Cambridge University Press:  01 June 2006

Go Yamamoto*
Affiliation:
Fracture and Reliability Research Institute, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8579, Japan
Yoshinori Sato
Affiliation:
Graduate School of Environmental Studies, Tohoku University, Aramaki, Aoba-ku, Sendai 980-857, Japan
Toru Takahashi
Affiliation:
Fracture and Reliability Research Institute, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8579, Japan
Mamoru Omori
Affiliation:
Fracture and Reliability Research Institute, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8579, Japan
Toshiyuki Hashida
Affiliation:
Fracture and Reliability Research Institute, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8579, Japan
Akira Okubo
Affiliation:
Institute of Materials Research, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
Kazuyuki Tohji
Affiliation:
Graduate School of Environmental Studies, Tohoku University, Aramaki, Aoba-ku, Sendai 980-857, Japan
*
a) Address all correspondence to this author. e-mail: gyamamoto@rift.mech.tohoku.ac.jp
Get access

Abstract

Binder-free macroscopic single-walled carbon nanotube (SWCNT) solids were prepared by spark plasma sintering (SPS) of purified SWCNTs. The effects of processing temperatures and pressures on the mechanical properties of the SWCNT solids and structural change of SWCNTs in the SWCNT solids were investigated. Transmission electron microscope observation of the SWCNT solids revealed thatthe high-temperature treatment has transformed some part of the SWCNTs into amorphous-like structure and the rest of the SWCNTs remained buried into the above structure. The mechanical properties of the SWCNT solids increased with the increasing processing temperature, probably reflecting the improvement of interfacial strength between SWCNTs and disordered structure of carbon due to the spark plasma generated in the SPS process.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Baughman, R.H., Zakhidov, A.A., de Heer, W.A.: Carbon nanotubes—the route toward applications. Science 297, 787 (2002).CrossRefGoogle ScholarPubMed
2.Ma, R.Z., Wu, J., Wei, B.Q., Liang, J., Wu, D.H.: Processing and properties of carbon nanotubes-nano-SiC ceramic. J. Mater. Sci. 33, 5243 (1998).Google Scholar
3.Ajayan, P.M., Schadler, L.S., Giannaris, C., Rudio, A.: Single-walled carbon nanotube-polymer composites: Strength and weakness. Adv. Mater. 12, 750 (2000).3.0.CO;2-6>CrossRefGoogle Scholar
4.Flahaut, E., Peigney, A., Laurent, Ch., Marliere, Ch., Chastel, F., Rousset, A.: Carbon nanotube-metal-oxide nanocomposites: Microstructure, electrical conductivity and mechanical properties. Acta Mater. 48, 3803 (2000).CrossRefGoogle Scholar
5.Vigolo, B., Penicaud, A., Coulon, C., Sauder, C., Pailler, R., Journet, C., Bernier, P., Poulin, P.: Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290, 1331 (2000).CrossRefGoogle ScholarPubMed
6.Zhan, G-D., Kuntz, J.D., Wan, J., Mukherjee, A.K.: Single-walled carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat. Mater. 2, 38 (2003).CrossRefGoogle Scholar
7.Min, B.G., Sreekumar, T.V., Uchida, T., Kumar, S.: Oxidative stabilization of PAN/SWNT composite fiber. Carbon 43, 599 (2005).CrossRefGoogle Scholar
8.Ma, R.Z., Xu, C.L., Wei, B.Q., Liang, J., Wu, D.H., Li, D.J.: Electrical conductivity and field-emission characteristics of hot-pressed sintered carbon nanotubes. Mater. Res. Bull. 34, 741 (1999).CrossRefGoogle Scholar
9.Li, Y-H., Xu, C., Wei, B., Zhang, X., Zhang, M., Wu, D., Ajayan, P.M.: Self-organized ribbons of aligned carbon nanotubes. Chem. Mater. 14, 483 (2002).Google Scholar
10.Sreekumar, T.V., Liu, T., Kumar, S.: Single-wall carbon nanotube films. Chem. Mater. 15, 175 (2003).CrossRefGoogle Scholar
11.Ericson, L.S., Ericson, L.M., Fan, H., Peng, H., Davis, V.A., Zhou, W., Sulpizio, J., Wang, Y., Booker, R., Vavro, J., Guthy, C., Parra-Vasquez, A.N.G., Kim, M.J., Ramesh, S., Saini, R.K., Kittrell, C., Lavin, G., Schmidt, H., Adams, W.W., Billups, W.E., Pasquali, M., Hwang, W-F., Hauge, R.H., Fischer, J.E., Smalley, R.E.: Macroscopic, neat, single-walled carbon nanotube fibers. Science 305, 1447 (2004).CrossRefGoogle ScholarPubMed
12.Yamamoto, G., Sato, Y., Takahashi, T., Omori, M., Hashida, T., Okubo, A., Watanabe, S., Tohji, K.: Preparation of single-walled carbon nanotube solids and their mechanical properties. J. Mater. Res. 20, 2609 (2005).CrossRefGoogle Scholar
13.Terrones, M., Terrones, H., Banhart, F., Charlier, J-C., Ajayan, P.M.: Coalescence of single-walled carbon nanotubes. Science 288, 1226 (2000).Google Scholar
14.Kis, A., Csanyi, G., Salvetat, J-P., Lee, T-N., Couteau, E., Kulik, A.J., Benoit, W., Brugger, J., Forro, L.: Reinforcement of single-walled carbon nanotube bundles by intertube bridging. Nat. Mater. 3, 153 (2004).CrossRefGoogle ScholarPubMed
15.Omori, M.: Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater. Sci. Eng. A 287, 183 (2000).CrossRefGoogle Scholar
16.Yamamoto, G., Sato, Y., Takahashi, T., Omori, M., Okubo, A., Tohji, K., Hashida, T.: Mechanical properties of binder-free single-walled carbon nanotube solids. Scripta Mater. 54, 299 (2006).CrossRefGoogle Scholar
17.Bachilo, S.M., Strano, M.S., Kittrell, C., Hauge, R.H., Smalley, R.E., Weisman, R.B.: Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361 (2002).Google Scholar
18.Kataura, H., Kumazawa, Y., Maniwa, Y., Ohtsuka, Y., Sen, R., Suzuki, S., Achiba, Y.: Diameter control of single-walled carbon nanotubes. Carbon 38, 1691 (2000).CrossRefGoogle Scholar
19.Sato, Y., Jeyadevan, B., Hatakeyama, R., Kasuya, A., Tohji, K.: Electronic properties of radial single-walled carbon nanotubes. Chem. Phys. Lett. 385, 323 (2004).CrossRefGoogle Scholar
20.Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E., Smalley, R.E.: Crystalline ropes of metallic carbon nanotubes. Science 273, 483 (1996).CrossRefGoogle ScholarPubMed
21.Saito, Y., Bandou, S.: Introduction to Carbon Nanotubes (Corona Publishing, Tokyo, Japan, 1998), p. 35.Google Scholar
22.Li, F., Cheng, H.M., Bai, S., Su, G.: Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. Appl. Phys. Lett. 77, 3161 (2000).Google Scholar
23.Yu, M-F., Files, B.S., Arepalli, S., Ruoff, R.S.: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552 (2000).CrossRefGoogle ScholarPubMed
24.Sato, Y., Ohtsubo, M., Jeyadevan, B., Tohji, K., Motomiya, K., Hatakeyama, R., Yamamoto, G., Omori, M., Hashida, T., Tamura, K., Akasaka, T., Uo, M., Yokoyama, A., and Watari, F.: Biocompatibility of carbon nanotube disk, in Proceedings of SPIE, Vol. 5593, edited by Islam, M.S. and Dutta, A.K. (SPIE, Bellingham, WA, 2004), p. 623.Google Scholar