Je vais traiter ici des inférences dont la validité tient au rôle qu'y jouent les cinq connecteurs « ⊃ », « ∼ », « & », « V » et « ≡ », les deux quantificateurs « ∀ » et « ∃ », et le signe d'identité « = ». Qu'on me permette de rappeler que les deux conjectures présentéd dans ma première étude se sont avéré'es justes. En premier lieu, toute règle de structure et toute règie d'élimination ou d'introduction pour « & » ou « V » qui vaut pour la logique classique des connecteurs vaut également pour la logique intuitionniste des connecteurs. En second lieu, tout énoncé du genre A1, A2, …, An ⊢ B qui vaut pour la logique classique des connecteurs peut s'obtenir exclusivement à l'aide des règles de structure R, P, E, S, et des règles d'elimination et d'introduction pour ceux des connecteurs « ⊃ », « ∼ », « & », « V » et « ≡ » qui figurent dans A1, A2, …, An, et B.