Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T16:37:26.835Z Has data issue: false hasContentIssue false

HPA-axis multilocus genetic profile score moderates the association between maternal prenatal perceived stress and offspring depression in early adulthood

Published online by Cambridge University Press:  21 January 2020

Brooke G. McKenna*
Affiliation:
Department of Psychology, Emory University, Atlanta, GA, USA
Constance Hammen
Affiliation:
Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
Patricia A. Brennan
Affiliation:
Department of Psychology, Emory University, Atlanta, GA, USA
*
Author for Correspondence: Brooke McKenna, Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA30322; E-mail: bgmcken@emory.edu.

Abstract

Maternal stress during pregnancy can cause alterations to the fetal hypothalamus–pituitary–adrenal (HPA) axis, a phenomenon known as fetal programming that may have lasting effects on offspring outcomes, including depression. Evidence suggests that these effects may vary with respect to the offspring's genetic risk. Nonetheless, few studies have examined these effects into adulthood, when risk for depression onset is highest. The present study builds upon the extant literature by examining the interaction of maternal prenatal perceived stress (MPPS) and offspring HPA-axis polygenic risk to predict offspring depression in early adulthood. A total of 381 mother–child dyads participated in a prospective, longitudinal study that spanned from pregnancy until offspring were 20 years of age. Polygenic risk was defined by a multilocus genetic profile score (MGPS) that reflected the additive risk of three HPA-axis candidate genes. The results indicated that the interaction of MPPS and HPA-axis MGPS confers risk for offspring depression at age 20, in line with the differential susceptibility model. This interaction may be specific to prenatal stress, as maternal stress during early childhood did not interact with genetic risk to predict depression. These findings provide the first evidence that genetic variants that are associated with the HPA axis may act in a polygenic, additive fashion to moderate the association between fetal programming and adult depression.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, P. W., Gumusoglu, S. B., Bittle, J., Beversdorf, D. Q., & Stevens, H. E. (2018). Prenatal stress and genetic risk: How prenatal stress interacts with genetics to alter risk for psychiatric illness. Psychoneuroendocrinology, 90, 921.CrossRefGoogle ScholarPubMed
Amiel-Tison, C., Cabrol, D., Denver, R., Jarreau, P. H., Papiernik, E., & Piazza, P. V. (2004). Fetal adaptation to stress: Part I: Acceleration of fetal maturation and earlier birth triggered by placental insufficiency in humans. Early Human Development, 78, 1527.CrossRefGoogle ScholarPubMed
Andersen, S. L., Tomada, A., Vincow, E. S., Valente, E., Polcari, A., & Teicher, M. H. (2008) Preliminary evidence for sensitive periods in the effect of childhood sexual abuse on regional brain development. The Journal of Neuropsychiatry and Clinical Neurosciences, 20, 292301.CrossRefGoogle ScholarPubMed
Appel, K., Schwahn, C., Mahler, J., Schulz, A., Spitzer, C., Fenske, K., … Grabe, H. J. (2011). Moderation of adult depression by a polymorphism in the FKBP5 gene and childhood physical abuse in the general population. Neuropsychopharmacology, 36, 19821991.CrossRefGoogle ScholarPubMed
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2015). The hidden efficacy of interventions: Gene × environment experiments from a differential susceptibility perspective. Annual Review of Psychology, 66, 381409.CrossRefGoogle Scholar
Barker, D. J. (2002). Fetal programming of coronary heart disease. Trends in Endocrinology & Metabolism, 13, 364368.CrossRefGoogle ScholarPubMed
Barker, D. J. (2007). The origins of the developmental origins theory. Journal of Internal Medicine, 261, 412417.CrossRefGoogle ScholarPubMed
Beck, A. T., Steer, R. A., & Brown, G. K. (1997). Beck Depression Inventory: Second Edition. San Antonio: The Psychological Corporation.Google Scholar
Beck, A. T., Steer, R. A., & Carbin, M. G. (1988). Psychometric properties of the Beck Depression Inventory: Twenty-five years of evaluation. Clinical Psychology Review, 8, 77100.CrossRefGoogle Scholar
Bedford, A., & Foulds, G. Delusions-Symptoms-States Inventory of Anxiety and Depression. Windsor, England: NFER.CrossRefGoogle Scholar
Beesdo, K., Lau, J. Y., Guyer, A. E., McClure-Tone, E. B., Monk, C. S., Nelson, E. E., … Ernst, M. (2009). Common and distinct amygdala-function perturbations in depressed vs anxious adolescents. Archives of General Psychiatry, 66, 275285.CrossRefGoogle ScholarPubMed
Belsky, J., Hsieh, K., & Crnic, K. (1998). Infant positive and negative emotionality: One dimension or two? In Hertzig, M. & Farber, E. (Eds.), Annual progress in child psychiatry and child development (pp. 29–44). Philadelphia, PA: Brunner/Mazel.Google Scholar
Bet, P. M., Penninx, B., Bochdanovits, Z., Uitterlinden, A. G., Beekman, A., van Schoor, N. M., … Hoogendijk, W. (2009). Glucocorticoid receptor gene polymorphisms and childhood adversity are associated with depression: New evidence for a gene–environment interaction. Neuropsychiatric Genetics, 150 B, 660669.CrossRefGoogle Scholar
Binder, E. B., Bradley, R. G., Liu, W., Epstein, M., Deveau, T., Mercer, K., … Nemeroff, C. B. (2008). Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. Journal of the American Medical Association, 299, 12911305.CrossRefGoogle ScholarPubMed
Bradley, R. G., Binder, E. B., Epstein, M. P., Tang, Y., Nair, H. P., Liu, W., … Ressler, K. J. (2008). Influence of child abuse on adult depression: Moderation by the corticotropin-releasing hormone receptor gene. Archives of General Psychiatry, 65, 190200.CrossRefGoogle ScholarPubMed
Buuren, S. V., & Groothuis-Oudshoorn, K. (2010). MICE: Multivariate imputation by chained equations in R. Journal of Statistical Software, 45, 168.Google Scholar
Carson, D. K., & Bittner, M. T. (1994). Temperament and school-aged children's coping abilities and responses to stress. The Journal of Genetic Psychology, 155, 289302.CrossRefGoogle ScholarPubMed
Cole, D. A., Martin, J. M., Peake, L. G., Seroczynski, A. D., & Hoffman, K. (1998). Are cognitive errors of underestimation predictive or reflective of depressive symptoms in children: A longitudinal study. Journal of Abnormal Psychology, 107, 481496.CrossRefGoogle ScholarPubMed
Comasco, E., Gustafsson, P. A., Sydsjö, G., Agnafors, S., Aho, N., & Svedin, C. G. (2015). Psychiatric symptoms in adolescents: FKBP5 genotype—early life adversity interaction effects. European Child & Adolescent Psychiatry, 24, 14731483.CrossRefGoogle ScholarPubMed
Conway, C. C., Hammen, C., Brennan, P. A., Lind, P. A., & Najman, J. M. (2010). Interaction of chronic stress with serotonin transporter and catechol-O-methyltransferase polymorphisms in predicting youth depression. Depression and Anxiety, 27, 737745.CrossRefGoogle ScholarPubMed
Conway, C. C., Hammen, C., Espejo, E. P., Wray, N. R., Najman, J. M., & Brennan, P. A. (2012). Appraisals of stressful life events as a genetically-linked mechanism in the stress–depression relationship. Cognitive Therapy and Research, 36, 338347.CrossRefGoogle Scholar
Daskalakis, N. P., Bagot, R. C., Parker, K. J., Vinkers, C. H., & de Kloet, E. R. (2013). The three-hit concept of vulnerability and resilience: Toward understanding adaptation to early-life adversity outcome. Psychoneuroendocrinology, 38, 18581873.CrossRefGoogle ScholarPubMed
Davis, E. P., Glynn, L. M., Schetter, C. D., Hobel, C., Chicz-Demet, A., & Sandman, C. A. (2007). Prenatal exposure to maternal depression and cortisol influences infant temperament. Journal of the American Academy of Child and Adolescent Psychiatry, 46, 737746.CrossRefGoogle ScholarPubMed
Davis, E. P., Glynn, L. M., Waffarn, F., & Sandman, C. A. (2011). Prenatal maternal stress programs infant stress regulation. Journal of Child Psychology and Psychiatry, 52, 119129.CrossRefGoogle ScholarPubMed
de Bruijn, A. T., van Bakel, H. J., Wijnen, H., Pop, V. J., & van Baar, A. L. (2009) Prenatal maternal emotional complaints are associated with cortisol responses in toddler and preschool aged girls. Developmental Psychobiology, 51, 553563.CrossRefGoogle ScholarPubMed
De Los Reyes, A., & Prinstein, M. J. (2004). Applying depression distortion hypotheses to the assessment of peer victimization in adolescents. Journal of Clinical Child and Adolescent Psychology, 33, 325335.CrossRefGoogle ScholarPubMed
Demirkan, A., Penninx, B. W., Hek, K., Wray, N. R., Amin, N., Aulchenko, Y. S., … Hottenga, J. J. (2011). Genetic risk profiles for depression and anxiety in adult and elderly cohorts. Molecular Psychiatry, 16, 773783.CrossRefGoogle ScholarPubMed
DeRijk, R. H., Schaaf, M., & de Kloet, E. R. (2002) Glucocorticoid receptor variants: Clinical implications. The Journal of Steroid Biochemistry and Molecular Biology, 81, 103122.CrossRefGoogle ScholarPubMed
de Weerth, C., van Hees, Y., & Buitelaar, J. K. (2003). Prenatal maternal cortisol levels and infant behavior during the first 5 months. Early Human Development, 74, 139151.CrossRefGoogle ScholarPubMed
Dickerson, P. A., Lally, B. E., Gunnel, E., Birkle, D. L., & Salm, A. K. (2005). Early emergence of increased fearful behavior in prenatally stressed rats. Physiology & Behavior, 86, 586593.CrossRefGoogle ScholarPubMed
di Iorio, C. R., Carey, C. E., Michalski, L. J., Corral-Frias, N. S., Conley, E. D., Hariri, A. R., & Bogdan, R. (2017). Hypothalamic–pituitary–adrenal axis genetic variation and early stress moderates amygdala function. Psychoneuroendocrinology, 80, 170178.CrossRefGoogle ScholarPubMed
Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & Van IJzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary–neurodevelopmental theory. Development and Psychopathology, 23, 728.CrossRefGoogle Scholar
Ellman, L. M., Schetter, C. D., Hobel, C. J., Chicz-DeMet, A., Glynn, L. M., & Sandman, C. A. (2008). Timing of fetal exposure to stress hormones: Effects on newborn physical and neuromuscular maturation. Developmental Psychobiology, 50, 232241.CrossRefGoogle ScholarPubMed
Espejo, E. P., Hammen, C., & Brennan, P. A. (2012). Elevated appraisals of the negative impact of naturally occurring life events: A risk factor for depressive and anxiety disorders. Journal of Abnormal Child Psychology, 40, 303315.CrossRefGoogle ScholarPubMed
Feurer, C., McGeary, J. E., Knopik, V. S., Brick, L. A., Palmer, R. H., & Gibb, B. E. (2017). HPA axis multilocus genetic profile score moderates the impact of interpersonal stress on prospective increases in depressive symptoms for offspring of depressed mothers. Journal of Abnormal Psychology, 126, 10171028.CrossRefGoogle ScholarPubMed
First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (1995). Structured Clinical Interview for DSM-IV Axis I Disorders. Washington, D.C.: American Psychiatric Press.Google Scholar
Gene [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004–[cited 2018-03-16]. Available from: https://www.ncbi.nlm.nih.gov/gene/Google Scholar
Gitau, R., Cameron, A., Fisk, N., & Glover, V. (1998). Fetal exposure to maternal cortisol. Developmental Psychobiology, 50, 232251.Google Scholar
Glover, V., O'Connor, T. G., & O'Donnell, K. (2010). Prenatal stress and the programming of the HPA axis. Neuroscience and Biobehavioral Reviews, 35, 1722.CrossRefGoogle ScholarPubMed
Gluckman, P., & Hanson, M. (2005). The fetal matrix: Evolution, development, and disease. Cambridge, UK: Cambridge University Press.Google Scholar
Gluckman, P. D., Hanson, M. A., Bateson, P., Beedle, A. S., Law, C. M., Bhutta, Z. A., … West-Eberhard, M. J. (2009). Towards a new developmental synthesis: Adaptive developmental plasticity and human disease. Lancet, 373, 16541657.CrossRefGoogle ScholarPubMed
Goodman, S. H., & Gotlib, I. H. (1999). Risk for psychopathology in the children of depressed mothers: A developmental model for understanding mechanisms of transmission. Psychological Review, 106, 458490.CrossRefGoogle ScholarPubMed
Grabe, H. J., Schwahn, C., Appel, K., Mahler, J., Schulz, A., Spitzer, C., … John, U. (2010). Childhood maltreatment, the corticotropin-releasing hormone receptor gene and adult depression in the general population. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 153, 14831493.CrossRefGoogle Scholar
Graignic-Philippe, R., Dayan, J., Chokron, S., Jacquet, A. Y., & Tordjman, S. (2014). Effects of prenatal stress on fetal and child development: A critical literature review. Neuroscience & Biobehavioral Reviews, 43, 137162.CrossRefGoogle ScholarPubMed
Gunnar, M. R., Brodersen, L., Krueger, K., & Rigatuso, J. (1996). Dampening of adrenocortical responses during infancy: Normative changes and individual differences. Child Development, 67, 877889.CrossRefGoogle ScholarPubMed
Gunnar, M. R., Frenn, K., Wewerka, S. S., & Van Ryzin, M. J. (2009). Moderate versus severe early life stress: Associations with stress reactivity and regulation in 10–12-year-old children. Psychoneuroendocrinology, 34, 6275.CrossRefGoogle ScholarPubMed
Gutteling, B. M., de Weerth, C., & Buitelaar, J. K. (2005). Prenatal stress and children's cortisol reaction to the first day of school. Psychoneuroendocrinology, 30, 541549.CrossRefGoogle Scholar
Halligan, S. L., Murray, L., Martins, C., & Cooper, P. J. (2007). Maternal depression and psychiatric outcomes in adolescent offspring: A 13-year longitudinal study. Journal of Affective Disorders, 97, 145154.CrossRefGoogle ScholarPubMed
Hammen, C. (2005). Stress and depression. Annual Review of Clinical Psychology, 1, 293319.CrossRefGoogle ScholarPubMed
Hammen, C., & Brennan, P. (2001). Depressed adolescents of depressed and nondepressed mothers: Tests of an interpersonal impairment hypothesis. Journal of Consulting and Clinical Psychology, 69, 284294.CrossRefGoogle ScholarPubMed
Hammen, C., Brennan, P. A., & Le Brocque, R. (2011). Youth depression and early childrearing: Stress generation and intergenerational transmission of depression. Journal of Consulting and Clinical Psychology, 79, 353363.CrossRefGoogle ScholarPubMed
Harkness, K. L., & Monroe, S. M. (2016). The assessment and measurement of adult life stress: Basic premises, operational principles, and design requirements. Journal of Abnormal Psychology, 125, 727745.CrossRefGoogle ScholarPubMed
Hastings, R. S., Parsey, R. V., Oquendo, M. A., Arango, V., & Mann, J. J. (2004). Volumetric analysis of the prefrontal cortex, amygdala, and hippocampus in major depression. Neuropsychopharmacology, 29, 952959.CrossRefGoogle ScholarPubMed
Hayes, A. F. (2017). Introduction to mediation, moderation, and conditional process analysis second edition: A regression-based approach. New York: Guilford Press.Google Scholar
Heim, C., & Binder, E. B. (2012). Current research trends in early life stress and depression: Review of human studies on sensitive periods, gene–environment interactions, and epigenetics. Experimental Neurology, 233, 102111.CrossRefGoogle ScholarPubMed
Heim, C., Bradley, B., Mletzko, T., Deveau, T. C., Musselmann, D. L., Nemeroff, C. B., … Binder, E. B. (2009). Effect of childhood trauma on adult depression and neuroendocrine function: Sex-specific moderation by CRH receptor 1 gene. Frontiers in Behavioral Neuroscience, 3, Article 41.CrossRefGoogle ScholarPubMed
Heim, C., & Nemeroff, C. B. (1999). The impact of early adverse experiences on brain systems involved in the pathophysiology of anxiety and affective disorders. Biological Psychiatry, 46, 15091522.CrossRefGoogle ScholarPubMed
Hewitt, P. L., Flett, G. L., & Mosher, S. W. (1992). The Perceived Stress Scale: Factor structure and relation to depression symptoms in a psychiatric sample. Journal of Psychopathology and Behavioral Assessment, 14, 247257.CrossRefGoogle Scholar
Igosheva, N., Taylor, P. D., Poston, L., & Glover, V. (2007). Prenatal stress in the rat results in increased blood pressure responsiveness to stress and enhanced arterial reactivity to neuropeptide Y in adulthood. Journal of Physiology, 582, 665674.CrossRefGoogle ScholarPubMed
Ising, M., Depping, A. M., Siebertz, A., Lucae, S., Unschuld, P. G., Kloiber, S., … Holsboer, F. (2008). Polymorphisms in the FKBP5 gene region modulate recovery from psychosocial stress in healthy controls. The European Journal of Neuroscience, 28, 389398.CrossRefGoogle ScholarPubMed
Kajantie, E. (2006). Fetal origins of stress-related adult disease. Annals of the New York Academy of Sciences, 1083, 11Y27.CrossRefGoogle ScholarPubMed
Keeping, J. D., Najman, J. M., Morrison, J., Western, J. S., Andersen, M. J., & Williams, G. M. (1989). A prospective longitudinal study of social, psychological, and obstetrical factors in pregnancy: Response rates and demographic characteristics of the 8,556 respondents. British Journal of Obstetrics and Gynecology, 96, 289297.CrossRefGoogle Scholar
Kessler, R. C. (1997). The effects of stressful life events on depression. Annual Review of Psychology, 48, 191214.CrossRefGoogle ScholarPubMed
Kessler, R. C., Chiu, W. T., Demler, O., & Walters, E. E. (2005). Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62, 617627.CrossRefGoogle ScholarPubMed
King, S., Dancause, K., Turcotte-Tremblay, A. M., Veru, F., & Laplante, D. P. (2012). Using natural disasters to study the effects of prenatal maternal stress on child health and development. Birth Defects Research Part C: Embryo Today: Reviews, 96, 273288.CrossRefGoogle Scholar
Krackow, E., & Rudolph, K. D. (2008). Life stress and the accuracy of cognitive appraisals in depressed youth. Journal of Clinical Child & Adolescent Psychology, 37, 376385.CrossRefGoogle ScholarPubMed
Kumsta, R., Moser, D., Streit, F., Koper, J. W., Meyer, J., & Wüst, S. (2008). Characterization of a glucocorticoid receptor gene (GR, NR3C1) promoter polymorphism reveals functionality and extends a haplotype with putative clinical relevance. American Journal of Medical Genetics, 150 B, 476482.Google Scholar
Lahti, J., Ala-Mikkula, H., Kajantie, E., Haljas, K., Eriksson, J. G., & Räikkönen, K. (2016). Associations between self-reported and objectively recorded early life stress, FKBP5 polymorphisms, and depressive symptoms in midlife. Biological Psychiatry, 80, 869877.CrossRefGoogle ScholarPubMed
Leighton, C., Botto, A., Silva, J. R.; Jiménez, J. P., & Luyten, P. (2017). Vulnerability or sensitivity to the environment? Methodological issues trends, and recommendations in gene–environment interactions research in human behavior. Frontiers in Psychiatry, 8, Article 106.CrossRefGoogle ScholarPubMed
Leung, E., Tasker, S. L., Atkinson, L., Vaillancourt, T., Schulkin, J., & Schmidt, L. A. (2010). Perceived maternal stress during pregnancy and its relation to infant stress reactivity at 2 days and 10 months of postnatal life. Clinical Pediatrics, 49, 158165.CrossRefGoogle ScholarPubMed
Lewis, M., & Ramsay, D. S. (1995). Developmental change in infants’ responses to stress. Child Development, 66, 657670.CrossRefGoogle ScholarPubMed
Luijk, M. P. C. M., Velders, F. P., Tharner, A., van IJzendoorn, M. H., Bakermans-Kranenburg, M. J., Jaddoe, V. W. V., … Tiemeier, H. (2010). FKBP5 and resistant attachment predict cortisol reactivity in infants: Gene–environment interaction. Psychoneuroendocrinology, 35, 14541461.CrossRefGoogle ScholarPubMed
Lundy, B. L., Jones, N. A., Field, T., Nearing, G., Davalos, M., Pietro, P. A., … Kuhn, C. (1990). Prenatal depression effects on neonates. Infant Behavior and Development, 22, 119129.CrossRefGoogle Scholar
Mahon, P. B., Zandi, P. P., Potash, J. B., Nestadt, G., & Wand, G. S. (2013). Genetic association of FKBP5 and CRHR1 with cortisol response to acute psychosocial stress in healthy adults. Psychpharmacology (Berl), 227, 231241.CrossRefGoogle ScholarPubMed
Monroe, S. M., & Simons, A. D. (1991). Diathesis-stress theories in the context of life stress research: Implications for the depressive disorders. Psychological Bulletin, 110, 406425.CrossRefGoogle ScholarPubMed
Nikolova, Y. S., Ferrell, R. E., Manuck, S. B., & Hariri, A. R. (2011). Multilocus genetic profile for dopamine signaling predicts ventral striatum reactivity. Neuropsychopharmacology, 36, 19401947.CrossRefGoogle ScholarPubMed
Nugent, N. R., Tyrka, A. R., Carpenter, L. L., & Price, L. H. (2011). Gene–environment interactions: Early life stress and risk for depressive and anxiety disorders. Psychopharmacology, 214, 175196.CrossRefGoogle ScholarPubMed
Oberlander, T. F., Weinberg, J., Papsdorf, M., Grunau, R., Misri, S., & Devlin, A. M. (2008) Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress response. Epigenetics, 3, 97106.CrossRefGoogle Scholar
O'Connor, T. G., Bergman, K., Sarkar, P., & Glover, V. (2013). Prenatal cortisol exposure predicts infant cortisol response to acute stress. Developmental Psychobiology, 55, 145155.CrossRefGoogle ScholarPubMed
Pagliaccio, D., Luby, J. L., Bogdan, R., Agrawal, A., Gaffrey, M. S., Belden, A. C., … Barch, D. M. (2015). Amygdala functional connectivity, HPA axis genetic variation, and life stress in children and relations to anxiety and emotion regulation. Journal of Abnormal Psychology, 124, 817833.CrossRefGoogle ScholarPubMed
Palma-Gudiel, H., Córdova-Palomera, A., Leza, J-C., & Fañanás, L. (2015). Glucocorticoid receptor gene (NR3C1) methylation processes as mediators of early adversity in stress-related disorders causality: A critical review. Neuroscience & Behavioral Reviews, 55, 520535.CrossRefGoogle ScholarPubMed
Pariante, C. M., and Lightman, S. L. (2008). The HPA axis in major depression: Classical theories and new developments. Trends in Neurosciences, 31, 464468.CrossRefGoogle ScholarPubMed
Peyrot, W. J., Van der Auwera, S., Milaneschi, Y., Dolan, C. V., Madden, P. A., Sullivan, P. F., … Mullins, N. (2018). Does childhood trauma moderate polygenic risk for depression? A meta-analysis of 5,765 subjects from the psychiatric genomics consortium. Biological Psychiatry, 84, 138147.CrossRefGoogle Scholar
Polanczyk, G., Caspi, A., Williams, B., Price, T. S., Danese, A., Sugden, K., … Moffitt, T. E. (2009). Protective effect of CRHR1 gene variants on the development of adult depression following childhood maltreatment: Replication and extension. Archives of General Psychiatry, 66, 978985.CrossRefGoogle Scholar
Reeder, L. G., Schrama, P. G. M., & Dirken, J. M. (1973). Stress and cardiovascular health: an international cooperative study—I. Social Science & Medicine (1967), 7, 573584.CrossRefGoogle ScholarPubMed
Rice, D., & Barone, S. Jr. (2000) Critical periods of vulnerability for the developing nervous system: Evidence from humans and animal models. Environmental Health Perspectives, 108, 511–33.Google ScholarPubMed
Ripke, S., Wray, N. R., Lewis, C. M., Hamilton, S. P., Weissman, M. M., Breen, G., … Heath, A. C. (2013). A mega-analysis of genome-wide association studies for major depressive disorder. Molecular psychiatry, 18, 497511.Google ScholarPubMed
Roisman, G. I., Newman, D. A., Fraley, R. C., Haltigan, J. D., Groh, A. M., & Haydon, K. C. (2012). Distinguishing differential susceptibility from diathesis–stress: Recommendations for evaluating interaction effects. Development and Psychopathology, 24, 389409.CrossRefGoogle ScholarPubMed
Roy, A., Gorodetsky, E., Yuan, Q., Goldman, D., Enoch., M-A. (2010). Interaction of FKBP5, a stress-related gene, with childhood trauma increases risk for attempting suicide. Neuropsychopharmacology, 35, 16741683.CrossRefGoogle ScholarPubMed
Sandman, C. A., Glynn, L. M., & Davis, E. P. (2013). Is there a viability-vulnerability tradeoff? Sex differences in fetal programming. Journal of Psychosomatic Research, 75, 327335.CrossRefGoogle Scholar
Schechter, J. C., Brennan, P. A., Smith, A. K., Stowe, Z. N., Newport, D. J., & Johnson, K. C. (2017). Maternal prenatal psychological distress and preschool cognitive functioning: The protective role of positive parental engagement. Journal of Abnormal Child Psychology, 45, 249–60.CrossRefGoogle ScholarPubMed
Sheikh, H. I., Kryski, K. R., Smith, H. J., Hayden, E. P., & Singh, S. M. (2013). Corticotropin-releasing hormone system polymorphisms are associated with children's cortisol reactivity. Neuroscience, 229, 111.CrossRefGoogle ScholarPubMed
Silberg, J. L., Maes, H., & Eaves, L. J. (2010). Genetic and environmental influences on the transmission of parental depression to children's depression and conduct disturbance: An extended children of twins study. Journal of Child Psychology and Psychiatry, 51, 734744.CrossRefGoogle ScholarPubMed
Starr, L. R., Hammen, C., Conway, C. C., Raposa, E., & Brennan, P. A. (2014). Sensitizing effect of early adversity on depressive reactions to later proximal stress: Moderation by 5-HTTLPR and CRHR1 in a 20-year longitudinal study. Developmental Psychopathology, 26, 12411254.CrossRefGoogle Scholar
Szczepankiewicz, A., Leszczyńska-Rodziewicz, J., Pawlak, J., & Rajewska, A. (2011). Glucocorticoid receptor polymorphism is associated with major depression and predominance of depression in the course of bipolar disorder. Journal of Affective Disorders, 134, 138144.CrossRefGoogle ScholarPubMed
Thompson, R. J., Parker, K. J., Hallmayer, J. F., Waugh, C. E., & Gotlib, I. H. (2010). Oxytocin receptor gene polymorphism (rs2254298) interacts with familial risk for psychopathology to predict symptoms of depression and anxiety in adolescent girls. Psychoneuroendocrinology, 36, 144147.CrossRefGoogle ScholarPubMed
Tyrka, A. R., Price, L. H., Gelernter, J., Schepker, C., Anderson, G. M., & Carpenter, L. L. (2009). Interaction of childhood maltreatment with the corticotropin-releasing hormone receptor gene: Effects on hypothalamic–pituitary–adrenal axis reactivity. Biological Psychiatry, 66, 681685.CrossRefGoogle ScholarPubMed
van IJzendoorn, M. H., & Bakermans-Kranenburg, M. J. (2015). Genetic differential susceptibility on trial: Meta-analytic support from randomized controlled experiments. Development and Psychopathology, 27, 151162.CrossRefGoogle ScholarPubMed
van Rossum, E. F., Roks, P. H., de Jong, F. H., Brinkman, A., Pols, H., Koper, J. & Lamberts, S. (2004). Characterization of a promoter polymorphism in the glucocorticoid receptor gene and its relationship to three other polymorphisms. Clinical Endocrinololgy (Oxford), 61, 573581.CrossRefGoogle ScholarPubMed
Voegtline, K. M., Costigan, K. A., Kivlighan, K. T., Laudenslager, M. L., Henderson, J. L., & DiPietro, J. A. (2013). Concurrent levels of maternal salivary cortisol are unrelated to self-reported psychological measures in low- risk pregnant women. Archives of Women's Mental Health, 16, 101108.CrossRefGoogle ScholarPubMed
Vrshek-Schallhorn, S., Stroud, C. B., Mineka, S., Zinbarg, R. E., Adam, E. K., Redei, E. E., … Craske, M. G. (2015). Additive genetic risk from five serotonin system polymorphisms interacts with interpersonal stress to predict depression. Journal of Abnormal Psychology, 124, 776790.CrossRefGoogle ScholarPubMed
Wang, J., Zamar, R., Marazzi, A., Yohai, V., Salibian-Barrera, M., Maronna, R., … Konis, K. (2017) robust. R package version 0.4-18.1. Vienna, Austria: R Core Team.Google Scholar
Weinstock, M. (2008). The long-term behavioural consequences of prenatal stress. Neuroscience & Biobehavioral Reviews, 32, 10731086.CrossRefGoogle ScholarPubMed
Weissman, M. M., Wickramaratne, P., Gameroff, M. J., Warner, V., Pilowsky, D., Kohad, R. G., … Talati, A. (2016). Offspring of depressed parents: 30 years later. American Journal of Psychiatry, 173, 10241032.CrossRefGoogle ScholarPubMed
Zannas, A. S., & Binder, E. B. (2014). Gene-environment interactions at the FKBP5 locus: Sensitive periods, mechanisms and pleiotropism. Genes Brain & Behavior, 13, 2537.CrossRefGoogle ScholarPubMed
Zimmerman, P., Brückl, T., Nocon, A., Pfiser, H., Binder, E. B., Manfred, U., … Ising, M. (2011). Interaction of FKBP5 gene variants and adverse life events in predicting depression onset: Results from a 10-year prospective community study. American Journal of Psychiatry, 168, 11071116.CrossRefGoogle Scholar