Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-18T16:50:11.973Z Has data issue: false hasContentIssue false

Does change in temperament predict change in schizoid personality disorder? A methodological framework and illustration from the Longitudinal Study of Personality Disorders

Published online by Cambridge University Press:  14 October 2009

Mark F. Lenzenweger*
Affiliation:
State University of New York at Binghamton
John B. Willett
Affiliation:
Harvard University
*
Address correspondence and reprint requests to: Mark F. Lenzenweger, Department of Psychology, State University of New York at Binghamton, Science IV, Binghamton, NY 13902-6000; E-mail: mlenzen@binghamton.edu.

Abstract

Personality disorders (PDs) have been thought historically to be enduring, inflexible, and set in psychological stone relatively firmly; however, empirical findings from recent prospective multiwave longitudinal studies establish otherwise. Nearly all modern longitudinal studies of personality disorder have documented considerable change in PDs over time, suggesting considerable flexibility and plasticity in this realm of psychopathology. The factors and mechanisms of change in the PDs remain essentially opaque, and this area of PD research is just beginning to be probed using candidate predictors of change, such as personality systems. In this report, we investigate whether change in temperament dimensions (emotionality, activity, and sociability) predicts change in schizoid personality disorder. We present a latent growth framework for addressing this question and provide an illustration of the approach using data from the Longitudinal Study of Personality Disorders. Schizoid personality disorder was assessed using two different methodologies (structured psychiatric interview and self-report) and temperament was assessed using a well-known psychometric measure of temperament. All constructs were measured at three time points over a 4-year time period. To analyze these panel data, we fitted a covariance structure model that hypothesized simultaneous relationships between initial levels and rates of change in temperament and initial levels and rates of change in schizoid personality disorder. We found that rates of change in the core temperament dimensions studied do not predict rates of change in schizoid personality over time. We discuss the methodological advantages of the latent growth approach and the substantive meaning of the findings for change in schizoid personality disorder.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association. (1980). Diagnostic and statistical manual of mental disorders (3rd ed).Washington, DC: Author.Google Scholar
American Psychiatric Association. (1987). Diagnostic and statistical manual of mental disorders (3rd ed. rev.). Washington, DC: Author.Google Scholar
American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: Author.Google Scholar
Bernstein, D. P., Arntz, A., & Travaglini, L. (2009). Schizoid and avoidant personality disorders. In Blaney, P. H. & Millon, T. (Eds.), Oxford textbook of psychopathology (2nd ed., pp. 586601). New York: Oxford University Press.Google Scholar
Blonigen, D. M., Carslon, M. D., Hicks, B. M., Krueger, R. F., & Iacono, W. G. (2007). Stability and change in personality traits from late adolescence to early adulthood: A longitudinal-twin study. Journal of Personality, 76, 229266.CrossRefGoogle Scholar
Buss, A. H., & Plomin, R. (1984). Temperament: Early developing personality traits. Hillsdale, NJ: Erlbaum.Google Scholar
Choca, J. P., & Van Denburg, E. (1997). Interpretive guide to the Millon Clinical Multiaxial Inventory (2nd ed.). Washington, DC: American Psychological Association.Google Scholar
Cloninger, C. R., Svrakic, D., & Przybeck, T. (1993). A psychobiological model of temperament and character. Archives of General Psychiatry, 50, 975990.CrossRefGoogle ScholarPubMed
Coid, J., Yang, M., Tyrer, P., Roberts, A., & Ullrich, S. (2006). Prevalence and correlates of personality disorder among adults aged 16 to 74 in Great Britain. British Journal of Psychiatry, 188, 423431.Google Scholar
Connell, A. M., & Frye, A. A. (2006). Growth mixture modeling in developmental psychology: overview and demonstration of heterogeneity in developmental trajectories of adolescent antisocial behavior. Infant and Child Development, 15, 609621.CrossRefGoogle Scholar
Crawford, T. N., Cohen, P., Johnson, J. G., Kasen, S., First, M. B., Gordon, K., et al. (2005). Self-reported personality disorder in the Children in the Community Sample: Convergent and prospective validity in late adolescence and adulthood. Journal of Personality Disorders, 19, 3052.CrossRefGoogle ScholarPubMed
Depue, R. A., & Lenzenweger, M. F. (2001). A neurobehavioral dimensional model of personality disorders In Livesley, W. J. (Ed.), The handbook of personality disorders (pp. 136176). New York: Guilford Press.Google Scholar
Depue, R. A., & Lenzenweger, M. F. (2005). A neurobehavioral model of personality disturbance. In Lenzenweger, M. F. & Clarkin, J. F. (Eds.), Major theories of personality disorder (2nd ed., pp. 391453). New York: Guilford Press.Google Scholar
Depue, R. A., & Lenzenweger, M. F. (2006). A multidimensional neurobehavioral model of personality disturbance. In Krueger, R. F. & Tackett, J. L. (Eds.), Personality and psychopathology (pp. 210261). New York: Guilford Press.Google Scholar
Derryberry, D., & Rothbart, M. K. (1988). Arousal, affect, and attention as components of temperament. Journal of Personality and Social Psychology, 55, 958966.Google Scholar
Durbin, E. C., & Klein, D. N. (2006). Ten-year stability of personality disorders among outpatients with mood disorders. Journal of Abnormal Psychology, 115, 7584.CrossRefGoogle ScholarPubMed
James, W. (1950). Principles of psychology (Vol. 1). New York: Dover Publications. (Original work published 1890)Google Scholar
Johnson, J. G., Cohen, P., Kasen, S., Skodol, A. E., Hamagan, F., & Brook, J. S. (2000). Age-related change in personality disorder trait levels between early adolescence and adulthood: A community-based longitudinal investigation. Acta Psychiatra Scandinavica, 102, 265275.CrossRefGoogle ScholarPubMed
Jöreskog, K. G., & Sörbom, D. (2004). LISREL 8.7 [Computer Software]. Lincolnwood, IL: Scientific Software International.Google Scholar
Kagan, J., Reznick, J. S., & Snidman, N. (1988). Biological bases of childhood shyness. Science, 240, 167171.CrossRefGoogle ScholarPubMed
Kessler, R. C., Chiu, W. T., Demler, O., & Walters, E. E. (2005). Prevalence, severity, and comorbidity of the 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62, 617627.Google Scholar
Kessler, R. C., McGonagle, K. A., Zhao, S., Nelson, C. B., Hughes, M., Eshleman, S., et al. (1994). Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States: Results from the National Comorbidity Survey. Archives of General Psychiatry, 51, 819.CrossRefGoogle ScholarPubMed
Lenzenweger, M. F. (1998). Schizotypy and schizotypic psychopathology: Mapping an alternative expression of schizophrenia liability. In Lenzenweger, M. F. & Dworkin, R. H. (Eds.), Origins and development of schizophrenia: Advances in experimental psychopathology (pp. 93121). Washington, DC: American Psychological Association.Google Scholar
Lenzenweger, M. F. (1999). Stability and change in personality disorder features: The Longitudinal Study of Personality Disorders. Archives of General Psychiatry, 56, 10091015.CrossRefGoogle ScholarPubMed
Lenzenweger, M. F. (2006). The Longitudinal Study of Personality Disorders: History, design considerations, and initial findings. Journal of Personality Disorders, 20, 645670.CrossRefGoogle ScholarPubMed
Lenzenweger, M. F. (2008). Epidemiology of personality disorders. Psychiatric Clinics of North America, 31, 395403.Google Scholar
Lenzenweger, M. F. (2009). Schizotypic psychopathology: Theory, evidence, and future directions. In Blaney, P. H. & Millon, T. (Eds.), Oxford textbook of psychopathology (2nd ed., pp. 692722). New York: Oxford University Press.Google Scholar
Lenzenweger, M. F., & Castro, D. D. (2005). Predicting change in borderline personality: Using neurobehavioral systems indicators within an individual growth curve framework. Development and Psychopathology, 17, 12071237.CrossRefGoogle ScholarPubMed
Lenzenweger, M. F., Clarkin, J. F., Fertuck, E. A., & Kernberg, O. F. (2004). Executive neurocognitive functioning and neurobehavioral systems indicators in borderline personality disorder: A preliminary study. Journal of Personality Disorders, 18, 421438.CrossRefGoogle ScholarPubMed
Lenzenweger, M. F., Clarkin, J. F., Yeomans, F. E., Kernberg, O. F., & Levy, K. N. (2008). Refining the borderline personality disorder phenotype through finite mixture modeling: Implications for classification. Journal of Personality Disorders, 22, 313331.Google Scholar
Lenzenweger, M. F., Johnson, M. D., & Willett, J. B. (2004). Individual growth curve analysis illuminates stability and change in personality disorder features: The Longitudinal Study of Personality Disorders. Archives of General Psychiatry, 61, 10151024.CrossRefGoogle ScholarPubMed
Lenzenweger, M. F., Lane, M., Loranger, A. W., & Kessler, R. C. (2007). DSM-IV personality disorders in the National Comorbidity Survey Replication (NCS-R). Biological Psychiatry, 62, 553564.Google Scholar
Lenzenweger, M. F., Loranger, A. W., Korfine, L., & Neff, C. (1997). Detecting personality disorders in a non-clinical population: Application of a 2-stage procedure for case identification. Archives of General Psychiatry, 54, 345351.CrossRefGoogle Scholar
Lenzenweger, M. F., McLachlan, G., & Rubin, D. B. (2007). Resolving the latent structure of schizophrenia endophenotypes using expectation–maximization-based finite mixture modeling. Journal of Abnormal Psychology, 116, 1629.Google Scholar
Lenzenweger, M. F., & Moldin, S. O. (1990). Discerning the latent structure of hypothetical psychosis proneness through admixture analysis. Psychiatry Research, 33, 243257.CrossRefGoogle ScholarPubMed
Lenzenweger, M. F., & Willett, J. B. (2007). Modeling individual change in personality disorder features as a function of simultaneous individual change in personality dimensions linked to neurobehavioral systems: The Longitudinal Study of Personality Disorders. Journal of Abnormal Psychology, 116, 684700.Google Scholar
Loranger, A. W. (1999). International Personality Disorder Examination: DSM-IV and ICD-10 interviews. Odessa, FL: Psychological Assessment Resources.Google Scholar
Loranger, A. W., Lenzenweger, M. F., Gartner, A., Susman, V., Herzig, J., Zammit, G. K., et al. (1991). Trait–state artifacts and the diagnosis of personality disorders. Archives of General Psychiatry, 48, 720728.Google Scholar
Loranger, A. W., Sartorius, N., Andreoli, A., Berger, P., Buchheim, P., Channabasavanna, S. M., et al. (1994). The International Personality Disorder Examination (IPDE). The World Health Organization/Alcohol, Drug Abuse, and Mental Health Administration International Pilot Study of Personality Disorders. Archives of General Psychiatry, 51, 215224.CrossRefGoogle ScholarPubMed
Loranger, A. W., Sartorius, N., & Janca, A. (Eds). (1996). Assessment and diagnosis of personality disorders: The International Personality Disorder Examination (IPDE). New York: Cambridge University Press.Google Scholar
Mathieson, K. S., & Tambs, K. (1999). The EAS Temperament Questionnaire—Factor structure, age trends, reliability, and stability in a Norwegian sample. Journal of Child Psychology and Psychiatry, 40, 431439.CrossRefGoogle Scholar
Millon, T. (1987). Millon Clinical Multiaxial Inventory—II manual. Minneapolis, MN: National Computer Systems.Google Scholar
Muthén, B. (2004). Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data. In Kaplan, D. (Ed.), Handbook of quantitative methodology for the social sciences (pp. 345368). Newbury Park, CA: Sage.Google Scholar
Muthén, B. (2006). The potential of growth mixture modeling. Infant and Child Development, 15, 623625.Google Scholar
Nærde, A., Røysamb, E., & Tambs, K. (2004). Temperament in adults—Reliability, stability, and factor structure of the EAS Temperament Survey. Journal of Personality Assessment, 82, 7179.CrossRefGoogle ScholarPubMed
Nagin, D. S. (1999). Analyzing developmental trajectories: A semiparametric group-based approach. Psychological Methods, 4, 139157.Google Scholar
Nagin, D. A. (2005). Group-based modeling of development. Cambridge, MA: Harvard University Press.Google Scholar
Nagin, D. S. & Tremblay, R. E. (2001). Analyzing developmental trajectories of distinct but related behaviors: A group-based method. Psychological Methods, 6, 1834.CrossRefGoogle ScholarPubMed
Putnam, S. P., Rothbart, M. K., & Gartstein, M. A. (2008). Homotypic and heterotypic continuity of fine-grained temperament during infancy, toddlerhood, and early childhood. Infant and Child Development, 17, 387405.CrossRefGoogle Scholar
Roberts, B. W., Walton, K. E., & Viechtbauer, W. (2006). Patterns of mean-level change in personality traits across the life course: A meta-analysis of longitudinal studies. Psychological Bulletin, 132, 125.CrossRefGoogle ScholarPubMed
Rogosa, D. (1980). A critique of cross-lagged correlations. Psychological Bulletin, 88, 245258.Google Scholar
Rogosa, D., Brandt, D., & Zimowski, M. (1982). A growth curve approach to the measurement of change. Psychological Bulletin, 92, 726748.CrossRefGoogle Scholar
Rogosa, D. R., & Willett, J. B. (1985). Understanding correlates of change by modeling individual differences in growth. Psychometrika, 50, 203228.Google Scholar
Samuels, J. E., Eaton, W. W., Bienvenu, O. J., Brown, C., Costa, P. T., & Nestadt, G. (2002). Prevalence and correlates of personality disorders in a community sample. British Journal of Psychiatry, 180, 536542.CrossRefGoogle Scholar
Schwartz, C. E., Wright, C. I., Shin, L. M., Kagan, J., & Rauch, S. L. (2003). Inhibited and uninhibited infants “grown up”: Adult amygdalar response to novelty. Science, 300, 19521953.CrossRefGoogle ScholarPubMed
Seivewright, H., Tyrer, P., & Johnson, T. (2002). Change in personality status in neurotic disorders. Lancet, 359, 22532254.Google Scholar
Shea, M., Stout, R., Gunderson, J., Morey, L., Grilo, C., McGlashan, T., et al. (2002). Short-term diagnostic stability of schizotypal, borderline, avoidant, and obsessive–compulsive personality disorders. American Journal of Psychiatry, 159, 20362041.CrossRefGoogle ScholarPubMed
Shiner, R. L. (1998). How shall we speak of children's personalities in middle childhood? A preliminary taxonomy. Psychological Bulletin, 124, 308332.Google Scholar
Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis: Modeling change and event occurrence. New York: Oxford University Press.Google Scholar
Spitzer, R. L., Williams, J. B. W., Gibbon, M., & First, M. (1990). Users guide for the structured clinical interview for DSM-III-R. Washington, DC: American Psychiatric Press.Google Scholar
Srivastava, S., John, O. P., Gosling, S. D., & Potter, J. (2003). Development of personality in early and middle adulthood: Set like plaster or persistent change? Journal of Personality and Social Psychology, 84, 10411053.CrossRefGoogle ScholarPubMed
Thomas, A., & Chess, S. (1977). Temperament and development. New York: Brunner/Mazel.Google Scholar
Torgersen, S., Kringlen, E., & Cramer, V. (2001). The prevalence of personality disorders in a community sample. Archives of General Psychiatry, 58, 590596.CrossRefGoogle Scholar
Waller, N. G., Lilienfeld, S. O., Tellegen, A., & Lykken, D. T. (1991). The Tridimensional Personality Questionnaire: Structural validity and comparison with the Multidimensional Personality Questionnaire. Multivariate Behavioral Research, 26, 123.CrossRefGoogle ScholarPubMed
Willett, J. B., & Bub, K. L. (2005). Structural equation modeling: Latent growth curve analysis. In Everitt, B. S. & Howell, D. C. (Eds.), Encyclopedia of statistics in behavioral science (Vol. 2, pp. 772779). Chichester: Wiley.Google Scholar
Willett, J. B., & Keiley, M. K. (2000). Using covariance structure analysis to model change over time. In Tinsley, H. E. A. & Brown, S. D. (Eds.), Handbook of applied multivariate statistics and mathematical modeling (pp. 665694). San Diego, CA: Academic Press.CrossRefGoogle Scholar
Wolff, S., Townshend, R., McGuire, R. J., & Weeks, D. J. (1991). “Schizoid” personality in childhood and adult life II: Adult adjustment and the continuity with schizotypal personality disorder. British Journal of Psychiatry, 159, 620629.Google Scholar
Zanarini, M. C., Frankenburg, F. R., Hennen, J., Reich, B., & Silk, K. R. (2005). The McLean Study of Adult Development (MSAD): Overview and implications of the first six years of prospective follow-up. Journal of Personality Disorders, 19, 505523.Google Scholar
Zanarini, M. C., Frankenburg, F. R., Hennen, J., & Silk, K. R. (2003). The longitudinal course of borderline psychopathology: 6-year prospective follow-up of the phenomenology of borderline personality disorder. American Journal of Psychiatry, 160, 274283.Google Scholar
Zimmerman, M., Rothschild, L., & Chleminski, I. (2005). The prevalence of DSM-IV personality disorders in psychiatric outpatients. American Journal of Psychiatry, 162, 19111918.Google Scholar