Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-18T18:48:27.315Z Has data issue: false hasContentIssue false

Passive Ankle Stiffness in Young and Elderly Men*

Published online by Cambridge University Press:  29 November 2010

Anthony A. Vandervoort
Affiliation:
Assistant Professor, Department of Physical Therapy, Faculty of Applied Health Sciences, University of Western Ontario.
Bert M. Chesworth
Affiliation:
PT Clinical Associate, University Hospital/University of Western Ontario Physical Therapy Clinic, University of Western Ontario.
Nancy S. Mick Jones
Affiliation:
Lecturer, Department of Physical Therapy, Faculty of Applied Health Sciences, University of Western Ontario.

Abstract

The purpose of the study was to compare passive joint stiffness in ankles of young and elderly men (21–39, and 64–87 years, respectively). A torque motor system was used to record angular displacement and resistive torque during a slow 6 degree/second ankle rotation from 10 degrees of plantarflexion to 10 degrees of dorsiflexion (DF). Passive torque (Nm) and passive elastic stiffness (Nm/degree) were measured at neutral, 5 and 10 degrees of DF. Passive torque increased nonlinearly as the ankle was rotated into DF. The elderly men had significantly lower passive torque values (p < .05), but there was no age-related difference in passive elastic stiffness. Variability of the two measures was greater in the older group. We concluded that within the range of motion tested, there was no evidence of increased stiffness in the elderly ankle joints.

Résumé

L'objet de la présente étude était de comparer l'élasticité articulatoire passive des chevilles chez les hommes de 21 à 39 ans par rapport aux hommes du troisième âge (64–87 ans). A cet effet, on a utilisé un système de torsion mécanique pour mesurer le déplacement angulaire et le degré de résistance pendant une lente rotation de la cheville (6 degrés/seconde) allant de 10 degrés de flexion plantaire à 10 degrés de flexion dorsale (FD). La torsion passive(Nm) et l'élasticité passive (Nm/degré) ont été mesurées au point mort, à 5 et à 10 degrés de FD. On a constaté que la torsion passive augmentait de façon non-linéaire à mesure que la cheville avançait vers FD. Les valeurs de torsion passive se sont avérées beaucoup plus basses dans le groupe âgé (p < .05), mais on n'a relevé aucune différence entre les deux groupes dans les mesures d'élasticité passive. Les deux variables ont donné lieu à des variations de plus grande amplitude dans le groupe âgé. Nous avons conclu que, dans la limite des mouvements testés, il n'y a aucune preuve que l'élasticité articulatoire des chevilles diminue avec l'âge.

Type
Articles
Copyright
Copyright © Canadian Association on Gerontology 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnett, C.H., and Cobbold, A.F. (1968). Effects of age on the mobility of human finger joints. Ann Rheum Dis, 27: 175177.Google Scholar
Botelho, S.Y., Cander, L., and Guiti, N. (1954). Passive and active tension-length diagrams of intact skeletal muscle in normal women of different ages. J Appl Physiol, 7: 9398.Google Scholar
Broberg, C., and Grimby, G. (1983). Measurement of torque during passive and active ankle movements in patients with muscle hypertonia. A methodological study. Scand J Rehabil Med Suppl, 9: 108117.Google Scholar
Chapman, E.A., deVries, H.A., and Swezey, R. (1972). Joint stiffness: effects of exercise on young and old men. J of Gerontol, 27: 218221.CrossRefGoogle Scholar
Chesworth, B.M., and Vandervoort, A.A. (1988). Reliability of a torque motor system for measurement of passive ankle joint stiffness in control subjects. Physiother Can, 40: 300303.Google Scholar
Chesworth, B.M., and Vandervoort, A.A. (1989). Age and passive ankle stiffness in healthy women. Phys Ther, 69: 217224.CrossRefGoogle ScholarPubMed
Evans, C.M., Fellows, S.J., Rack, P.M.H., Ross, H.F., and Walters, D.K.W. (1983). Response of the normal human ankle joint to imposed sinusoidal movements. J Physiol, 344: 483502.CrossRefGoogle ScholarPubMed
Gottlieb, G.L., Agarwal, G.C., and Penn, R. (1978). Sinusoidal oscillation of the ankle as a means of evaluating the spastic patient. J Neurol Neurosurg Psychiat, 41: 3239.Google Scholar
Gravel, D., Richards, C.L., Filon, M., and Tradif, D. (1986). Analyse quantitative des courbes de force isocinétique des muscles flechisseurs plantaires. Physiother Can, 38: 354359.Google Scholar
Grieve, D.W., Pheasant, S., and Cavanagh, P.R. (1978). Prediction of gastrocnemius length from knee and ankle joint posture. In Asmussen, E., and Jorgensen, K. (Eds). Biomechanics VI.A. Baltimore, University Park Press, pp 405412.Google Scholar
Halar, E.M., Stolov, W.C., Venkatesh, B., Brozovich, F.V., and Harley, J.D. (1978). Gastrocnemius muscle belly and tendon length in stroke patients and ablebodied persons. Arch Phys Med Rehabil, 59: 476484.Google Scholar
Health and Welfare Canada. (1983). Self-Reported Health Status in Canada Health Survey 1978–79. In: Fact Book on Aging in Canada. Ottawa, Minister of Supply and Services Canada.Google Scholar
Hufschmidt, A., and Mauritz, K-H. (1985). Chronic transformation of muscle in spasticity: a peripheral contribution to increased tone. J Neurol Neurosurg Psychiat, 48: 676685.CrossRefGoogle ScholarPubMed
Inman, V.T. (1976). The Joints of the Ankle. Baltimore, Williams and Wilkins.Google Scholar
Jette, A.M., and Bottomley, J.M. (1987). The graying of America. Opportunities for physical therapy. Phys Ther, 67: 15371542.CrossRefGoogle ScholarPubMed
Long, C., Krysztofiak, B., Zamir, I.Z., Lane, J.F., and Koehler, M.L. (1968). Visco-elastic characteristics of the hand in spasticity: a quantitative study. Arch Phys Med Rehabil, 49: 677691.Google Scholar
Lucy, S.D., and Hayes, K.C. (1985). Postural sway profiles: normal subjects and subjects with cerebellar ataxia. Physiother Can, 37: 140148.Google Scholar
Murray, M.P. (1967). Gait as a total pattern of movement. Including a bibliography on gait. Am J Phys Med, 46: 290333.Google Scholar
Otis, J.C., Root, L., Pamilla, J.R., and Kroll, M.A. (1983). Biomechanical measurement of spastic plantarflexors. Develop Med Child Neurol, 25: 6066.Google Scholar
Sale, D., Quinlan, J., Marsh, E., McComas, A.J., and Belanger, A.Y. (1982). Influence of joint position on ankle plantarflexion in humans. J Appl Physiol: Respirat Environ Exercise Physiol, 52: 16361642.CrossRefGoogle ScholarPubMed
Such, C.H., Unsworth, A., Wright, V., and Dowson, D. (1975). Quantitative study of stiffness in the knee joint. Ann Rheum Dis, 34: 286291.Google Scholar
Tiberio, D. (1987). Evaluation of functional ankle dorsiflexion using subtalar neutral position. A clinical report. Phys Ther, 67: 955957.CrossRefGoogle ScholarPubMed
Vandervoort, A.A., and McComas, A.J. (1986). Contractile changes in opposing muscles of the human ankle joint with aging. J Appl Physiol, 61: 361367.CrossRefGoogle ScholarPubMed
Weiss, P.L., Kearney, R.E., and Hunter, I.W. (1986). Position dependence of ankle joint dynamics I. Passive mechanics. J Biomech, 19: 727735.Google Scholar
Wiegner, A.W., and Watts, R.L. (1986). Elastic properties of muscles measured at the elbow in man: I. Normal controls. J Neurol Neurosurg Psychiat, 49: 11711176.CrossRefGoogle Scholar
Wood, D.W., and Turner, R.J. (1985). The prevalence of physical disability in Southwestern Ontario. Can J Pub Health, 76: 262265.Google ScholarPubMed
Wright, V. (1973). Stiffness: a review of its measurement and physiological importance. Physiother, 59: 107111.Google Scholar
Wright, V., and Johns, R.J. (1960). Physical factors concerned with the stiffness of normal and diseased joints. Bull Johns Hopkins Hosp, 106: 215231.Google Scholar
Wright, V., and Johns, R.J. (1961). Quantitative and qualitative analysis of joint stiffness in normal subjects and in patients with connective tissue diseases. Ann Rheum Dis, 20: 3645.CrossRefGoogle ScholarPubMed