No CrossRef data available.
Article contents
Abelian Quadratic Forms
Published online by Cambridge University Press: 20 November 2018
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Hermite [4] in the course of his investigations on the transformation theory of abelian functions, introduced the notion of abelian quadratic forms. They are quadratic forms whose matrices of orders 2n, satisfy
where k ≠ 0 is a real number, and is the unit matrix of order n. Laguerre [7] and, more systematically, Cotty [3] developed an arithmetical theory of abelian forms in four variables.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1952
References
3.
Cotty, G., Les fonctions abéliennes et la théorie des nombres, Ann. Fac. Sci. Toulouse, ser. 3, vol. 3 (1911), 209–376.Google Scholar
4.
Hermite, C., Sur la théorie de la transformation des fonctions abéliennes, Oeuvres, vol. 1 (Paris, 1905), 444–478.Google Scholar
5.
Humbert, P., Réduction de formes quadratiques dans un corps algébrique fini, Comment. Math. Helv., vol. 23 (1949), 50–63.Google Scholar
6.
Klein, F. and Fricke, R., Vorlesungen Über die Theorie der Modul-Funktionen, vol. 1 (Leipzig, 1890), 243–269.Google Scholar
7.
Laguerre, E., Sur le calcul des systèmes linéaires, Oeuvres, vol. 1 (Paris, 1898), 221–267.Google Scholar
8.
Ramanathan, K. G., The theory of units of quadratic and hermitian forms, Amer. J. Math., vol. 73 (1951), 233–255.Google Scholar
9.
Siegel, C. L., Einheiten quadratischer Formen, Abh. Sem. Hansischen Univ., vol. 13 (1939), 209–239.Google Scholar
11.
Siegel, C. L.
Some remarks on discontinuous groups, Ann. Math., vol. 46 (1945), 708–718.Google Scholar
You have
Access