Skip to main content Accessibility help
×
Home

Assessment of net postprandial protein utilization of 15N-labelled milk nitrogen in human subjects

  • Cécile Bos (a1), Sylvain Mahé (a1), Claire Gaudichon (a1), Robert Benamouzig (a2), Nicolas Gausserès (a1), Catherine Luengo (a1), Françoise Ferrière (a3), Jacques Rautureau (a2) and Daniel Tomé (a1)...

Abstract

The nutritional quality of milk proteins, evaluated both in terms of digestibility and postprandial oxidation and retention in human subjects, was investigated in this study. Five healthy adult volunteers were given 480 ml 15N-labelled milk (i.e. 190 mmol N). 15N was subsequently determined at the ileal level, using a naso-intestinal intubation technique, as well as at the faecal level. Plasma and urine were sampled for 8 h after meal ingestion. Dietary exogenous N recovered at the terminal ileum after 8 h reached 8·6 (se 0·8) mmol while the amount collected in the faeces was 6·5 (se 0·7) mmol after 5 d. The true ileal and faecal digestibilities were 95·5 (se 0·4)% and 96·6 (se 0·4)% respectively. The appearance of [15N]amino acids in the plasma was rapid and prolonged. The measurement of 15N in the body urea pool and in the N excreted in the urine allowed us to calculate the deamination occurring after [15N]milk protein absorption. The net postprandial protein utilization (i.e. NPPU = (Nabsorbed - Ndeaminated)/Ningested), calculated as an index of protein quality 8 h after milk ingestion, was 81·0 (se 1·9)%. Our data confirm that milk protein has a high oro-ileal digestibility in man and demonstrate that milk protein has a high NPPU, an index corresponding to a period in which the dietary protein retention is maximal.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Assessment of net postprandial protein utilization of 15N-labelled milk nitrogen in human subjects
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Assessment of net postprandial protein utilization of 15N-labelled milk nitrogen in human subjects
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Assessment of net postprandial protein utilization of 15N-labelled milk nitrogen in human subjects
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Sylvain Mahé, fax +33 1 44 08 18 25, email mahe@inapg.inra.fr

References

Hide All
Alm, L (1981) The effect of fermentation on the biological value of milk proteins evaluated using rats. A study on Swedish fermented milk products. Journal of the Science of Food and Agriculture 31, 12471253.
Bender, AE & Miller, DS (1953) A new brief method of estimating net protein value. Biochemical Journal 53, vii.
Block, RJ & Mitchell, HH (1946) The correlation of the amino acid composition of proteins with their nutritive value. Nutrition Abstracts and Reviews 16, 249278.
Boirie, Y, Dangin, M, Gachon, P, Vasson, MP, Maubois, JL & Beaufrère, B (1997) Slow and fast dietary proteins differently modulate postprandial protein accretion. Proceedings of the National Academy of Sciences, USA 94, 1493014935.
Braude, R, Mitchell, KG, Newport, MJ & Porter, JW (1970) Artificial rearing of pigs. 1. Effect of frequency and level of feeding on performance and digestion of milk protein. British Journal of Nutrition 24, 501516.
Davidson, S, Passmore, R, Brock, JF & Truswell, AS (1979) Proteins. In Human Nutrition and Dietetics, 7th ed., pp. 3345. Edinburgh: Churchill Livingstone.
Dillon, J-C (1991) Les méthodes d'évaluation de la valeur nutritive des protéines en alimentation humaine. Evolution des concepts et des méthodes (Methodology of protein nutritional value assessment in human nutrition. Evolution of concepts and methods). Cahiers de Nutrition et Diététique 26, 224229.
Food and Agriculture Organization/World Health Organization (1973) Energy and Protein Requirements: Report of Joint FAO/WHO Ad Hoc Expert Committee. WHO Technical Report Series no. 522. Geneva: WHO.
Food and Agriculture Organization/World Health Organization (1990) Report of the Joint FAO/WHO Expert Consultation on Protein Quality Evaluation. Rome: FAO.
Gaudichon, C, Mahé, S, Roos, N, Benamouzig, R, Luengo, C, Huneau, J-F, Sick, H, Bouley, C, Rautureau, J & Tomé, D (1995) Exogenous and endogenous nitrogen flow rates and level of protein hydrolysis in the human jejunum after [15N]milk and [15N]yoghurt ingestion. British Journal of Nutrition 74, 251260.
Gausserès, N, Mahé, S, Benamouzig, R, Luengo, C, Drouet, H, Rautureau, J & Tomé, D (1996) The gastro-ileal digestion of 15N-labelled pea nitrogen in adult humans. British Journal of Nutrition 76, 7585.
Gausserès, N, Mahé, S, Benamouzig, R, Luengo, C, Ferrière, F, Rautureau, J & Tomé, D (1997) [15N]-labeled pea flour protein nitrogen exhibits good ileal digestibility and postprandial retention in humans. Journal of Nutrition 127, 11601165.
Kies, C (1981) Bioavailability: a factor in protein quality. Journal of Agricultural and Food Chemistry 29, 435440.
Lee, H, Friend, BA & Shahani, KM (1988) Factors affecting the protein quality of yogurt and acidophilus milk. Journal of Dairy Science 71, 32033213.
Mahé, S, Huneau, J-F, Marteau, P, Thuillier, F & Tomé, D (1992) Gastro-ileal nitrogen and electrolyte movements after bovine milk ingestion in humans. American Journal of Clinical Nutrition 56, 410416.
Mahé, S, Roos, N, Benamouzig, R, Davin, L, Luengo, C, Gagnon, L, Gausserès, N, Rautureau, J & Tomé, D (1996) Gastrojejunal kinetics and the digestion of [15N]?β-lactoglobuline and casein in humans: the influence of the nature and quantity of the protein. American Journal of Clinical Nutrition 63, 546552.
Mahé, S, Roos, N, Benamouzig, R, Sick, H, Baglieri, A, Huneau, J-F & Tomé, D (1994) True exogenous and endogenous nitrogen fractions in the human jejunum after ingestion of small amounts of [15N]-labeled casein. Journal of Nutrition 124, 548555.
Marchini, JS, Cortiella, J, Hiramatsu, T, Chapman, TE & Young, VR (1993) Requirements for indispensable amino acids in adult humans: longer-term amino acid kinetic study with support for the adequacy of the MIT amino acid requirement pattern. American Journal of Clinical Nutrition 58, 670683.
Millward, DJ & Pacy, PJ (1995) Postprandial protein utilization and protein quality assessment in man. Clinical Science 88, 597606.
Modigliani, R, Rambaud, JC & Bernier, JJ (1973) The method of intraluminal perfusion of the human small intestine. I. Principle and technique. Digestion 9, 176192.
Munro, HN (1969) General aspects of the regulation of protein metabolism by diets and by hormones. In Mammalian Protein Metabolism, vol. 3, pp. 381481 [Munro, HN, editor]. New York, NY: Academic Press.
Preston, T & McMillan, DC (1988) Rapid sample throughput for biochemical stable isotope studies. Biomedical and Environmental Mass Spectrometry 16, 229235.
Rennie, MJ, Smith, K & Watt, PW (1994) Measurement of tissue protein synthesis rates in vivo: an optimal approach. American Journal of Physiology 266, E298E307.
Scheld, HP (1966) Use of polyethylene glycol and phenol red as unabsorbed indicators for intestinal absorption studies in man. Gut 7, 159163.
Watson, PE, Watson, ID & Batt, RD (1980) Total body water volumes for adult males and females estimated from simple anthropometric measurements. American Journal of Clinical Nutrition 33, 2739.
Young, VR & Pellet, PR (1988) How to evaluate dietary protein. In Milk Proteins, pp. 736 [Barth, CA and Shlimme, E, editors]. New York, NY: Steinkopff Verlag Darmstadt, Springer-Verlag.

Keywords

Assessment of net postprandial protein utilization of 15N-labelled milk nitrogen in human subjects

  • Cécile Bos (a1), Sylvain Mahé (a1), Claire Gaudichon (a1), Robert Benamouzig (a2), Nicolas Gausserès (a1), Catherine Luengo (a1), Françoise Ferrière (a3), Jacques Rautureau (a2) and Daniel Tomé (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed