Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T18:15:25.962Z Has data issue: false hasContentIssue false

3 - An introduction to particle filters

Published online by Cambridge University Press:  06 January 2010

Simon Maskell
Affiliation:
Department of Engineering, University of Cambridge
Andrew Harvey
Affiliation:
University of Cambridge
Siem Jan Koopman
Affiliation:
Vrije Universiteit, Amsterdam
Neil Shephard
Affiliation:
University of Oxford
Get access

Summary

Abstract

This paper introduces particle filtering to an audience who are more familiar with the Kalman filtering methodology. An example is used to draw comparisons and discuss differences between the two approaches and to motivate some avenues of current research.

Introduction

This paper introduces particle filtering to an audience that is unfamiliar with the literature. It compliments other introductions (Doucet, de Freitas and Gordon 2001) and tutorials (Arulampalam, Maskell, Gordon and Clapp 2002) with a contribution that appeals to intuition and documents an understanding that demystifies what can appear to be a much more complex subject than it truly is.

Particle filtering is a new statistical technique for sequentially updating estimates about a time evolving system as measurements are received. The approach has been developed in parallel by a number of different researchers and so is also known as: the CONDENSATION algorithm (Blake and Isard 1998), the bootstrap filter (Gordon, Salmond and Smith 1993), interacting particle approximations (Dan, Moral and Lyons 1999) and survival of the fittest (Kitagawa 1996). The approach opens the door to the analysis of time series using nonlinear non-Gaussian state space models. While linear Gaussian models can cope with a large variety of systems (e.g. Harvey (1989) and West and Harrison 1997)), nonlinear non-Gaussian models offer an even richer vocabulary with which to describe the evolution of a system and observations of this system.

Particle filtering is based on the idea that uncertainty over the value of a continuous random variable x can be represented using a probability density function, a pdf, p(x).

Type
Chapter
Information
State Space and Unobserved Component Models
Theory and Applications
, pp. 40 - 72
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×