Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-18T08:39:02.244Z Has data issue: false hasContentIssue false

Invasive studies of intracellular acid–base parameters: quantitative analyses during environmental and functional stress

Published online by Cambridge University Press:  22 August 2009

S. Egginton
Affiliation:
University of Birmingham
Edwin W. Taylor
Affiliation:
University of Birmingham
J. A. Raven
Affiliation:
University of Dundee
Get access

Summary

Introduction

In recent years, studies of the effects of environmental variables on the physiology and biochemistry of different animal species have increasingly included an analysis of acid–base status and regulation. pH values in different body compartments are widely accepted to play a key role in the maintenance of physiological function or its limitation under functional or environmental stress. pH affects protein function in metabolism and O2 transport. Also, acid–base and metabolic regulation are interdependent processes such that changes in pH may affect metabolic rate, the mode of catabolism and energetic parameters. Ideally, these analyses should not only describe correlated changes in the different processes under investigation, but should also provide a quantitative picture of the changes involved and the processes responsible for them (Heisler, 1989b).

However, acid–base regulation not only means adjustment or defence of pH, which is traditionally seen as being the key acid–base parameter determining regulatory processes, but it may, under certain conditions and with the help of the respective membrane carriers (see below), also give priority to the regulation of the levels of base (carbonate, bicarbonate) or acid (carbonic acid, proportional to PCO2) in the respective body fluids. In that sense, pH would become a dependent variable. Also, for some treatments it is not pH which is of interest but rather the activity of protons (pH = –log aH+), when protons contribute to some biochemical reactions in a concentration-dependent manner (see equation 1, p. 73, as an example).

Type
Chapter
Information
Regulation of Tissue pH in Plants and Animals
A Reappraisal of Current Techniques
, pp. 69 - 98
Publisher: Cambridge University Press
Print publication year: 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×