Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-18T12:31:37.011Z Has data issue: false hasContentIssue false

10 - Relativistic covariant statistical mechanics of many particles

Published online by Cambridge University Press:  05 August 2015

William C. Schieve
Affiliation:
University of Texas, Austin
Lawrence P. Horwitz
Affiliation:
Tel-Aviv University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balescu, R. (1964). Cargese Summer School (New York, Gordon and Breach).Google Scholar
Balescu, R. and Kotera, T. (1967). Physica 33, 558.CrossRef
Bethe, H. A. and Saltpeter, E. E. (1957). The Quantum Mechanics of One and Two Electron Atoms (New York, Academic Press).CrossRefGoogle Scholar
Bogoliubov, N. N. (1946). Problems Dynamical in Statistical Physics, trans. E. K., Gora, in Studies in Statistical Mechanics I, ed. G. E., Uhlenbeck and J., de Boer (Amsterdam, North Holland).Google Scholar
Boltzmann, L. (1872). Lectures on Gas Theory, trans. S. G., Brush (Berkeley, University of California Press).Google Scholar
Burakovski, L. and Horwitz, L. P. (1993). Physica A 201, 666.CrossRef
Burakovski, L. and Horwitz, L. P. (1997). Nucl. Phys. A614, 373.CrossRef
Burakovski, L., Horwitz, L. P. and Schieve, W. C (1996a). Phys. Rev. D 54, 4029.CrossRef
Burakovski, L., Horwitz, L. P. and Schieve, W. C (1996b). Mass-Proper Time Uncertainty Relations in a Manifestly Covariant Relativistic Statistical Mechanics.Preprint.Google Scholar
Cook, J. L. (1972). Aust.J.Phys. 25, 117.CrossRef
de Groot, S. R., van Leeuwen, C K. and van Weert, G. (1980). Relativistic Kinetic Theory (New York, North-Holland).Google Scholar
Ehlers, J. (1974). In Lectures in Statistical Physics 28, ed. W. C, Schieve and J. S., Turner (New York, Springer).CrossRefGoogle Scholar
Fanchi, J. R. (1993). Parametrized Relativistic Quantum Theory (Dordrecht, Kluwer).CrossRefGoogle Scholar
Feynman, R. P. (1949). Phys. Rev. 76, 746.
Goldstein, H. (1980). Classical Mechanics, 2nd edn. (Reading Mass., Addison-Wesley).Google Scholar
Hakim, R. (1967). J. Math. Phys. 8, 1315, 1379.CrossRef
Havas, P. (1965). Statistical Mechanics ofEquilibrium and Non-Equilibrium, ed. Meixner (Amsterdam, North-Holland).Google Scholar
Horwitz, L. P. and Lavie, Y. (1982). Phys. Rev. D 26, 819.CrossRef
Horwitz, L. P. and Piron, C (1973). Helv. Physica Acta 46, 316.
Horwitz, L. P., Schieve, W. C. and Piron, C. (1981). Ann. Phys. (N.Y.) 137, 306.CrossRef
Horwitz, L. P., Shashoua, S. and Schieve, W. C. (1989). Physica A 161, 300.CrossRef
Hudson, R. (1974). Rep. Math. Phys. 6, 249.CrossRef
Jüttner, F. (1911). Ann. Phys. (Leipzig) 34, 856.CrossRef
Kandrup, H. (1984). Ann. Phys. (N.Y.) 153, 44.CrossRef
Liboff, R. L. (1998). Kinetic Theory, 3rd edn. (New York, Springer).Google Scholar
McLennan, J. A. (1989). Introduction to Non-equilibrium Statistical Mechanics (New York, Prentice Hall).Google Scholar
Pauli, W. (1958). Theory of Relativity (New York, Pergamon).Google Scholar
Shuryak, E. V. (1988). The QCD Vacuum, Hadrons and Superdense Matter (Singapore, World Scientific).CrossRefGoogle Scholar
Stueckelberg, E. C. G. (1941). Helv. Phys. Acta 14, 588.
Synge, J. L. (1957). Relativistic Gas Theory (Amsterdam, North-Holland).Google Scholar
Taylor, J. R. (1972). Scattering Theory (New York, Wiley).Google Scholar
Tolman, R. C. (1967). Principles of Statistical Mechanics (London, Oxford University Press), reprinted by Dover.Google Scholar
Trump, M. A. and Schieve, W. C. (1999). Classical Relativistic Many-Body Dynamics (Dordrecht, Kluwer).CrossRefGoogle Scholar
Wigner, E. P. (1932). Phys. Rev. 40, 2127.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×