Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T19:20:53.540Z Has data issue: false hasContentIssue false

15 - Self similarity and long-range dependence

Published online by Cambridge University Press:  05 June 2012

John A. Gubner
Affiliation:
University of Wisconsin, Madison
Get access

Summary

Prior to the 1990s, network analysis and design was carried out using long-established Markovian models such as the Poisson process. As self similarity was observed in the traffic of local-area networks, wide-area networks, and in World Wide Web traffic, a great research effort began to examine the impact of self similarity on network analysis and design. This research has yielded some surprising insights into questions about buffer size versus bandwidth, multiple-time-scale congestion control, connection duration prediction, and other issues.

The purpose of this chapter is to introduce the notion of self similarity and related concepts so that the student can be conversant with the kinds of stochastic processes being used to model network traffic. For more information, the student may consult the text by Beran, which includes numerous physical models and a historical overview of self similarity and long-range dependence.

Section 15.1 introduces the Hurst parameter and the notion of distributional self similarity for continuous-time processes. The concept of stationary increments is also presented. As an example of such processes, fractional Brownian motion is developed using the Wiener integral. In Section 15.2, we show that if one samples the increments of a continuous-time self-similar process with stationary increments, then the samples have a covariance function with a specific formula. It is shown that this formula is equivalent to specifying the variance of the sample mean for all values of n.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×