Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T10:35:44.940Z Has data issue: false hasContentIssue false

18 - Odor Coding at the Periphery of the Olfactory System

Published online by Cambridge University Press:  21 September 2009

Gilles Sicard
Affiliation:
Laboratoire de Neurosciences et Systèmes Sensoriels, Université Claude Bernard, Lyon 1/CNRS, 69366 Lyon, France
Catherine Rouby
Affiliation:
Université Lyon I
Benoist Schaal
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
Danièle Dubois
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
Rémi Gervais
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
A. Holley
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
Get access

Summary

During the past decade, scientists have identified a large number of genes coding for olfactory receptor proteins in vertebrates, including humans, and in insects and nematodes (Buck and Axel, 1991; Selbie et al., 1992; Sengupta, Colbert, and Bargmann, 1994; Gao and Chess, 1999; Clyne et al., 1999). Much earlier, such entities had been hypothesized to exist, probably on the intuition that the nature of an odor was not “ethereal” but rather a material part of the odor source (Lucretius, De rerum natura, IV) and thus could interact directly with the detecting organism. During the twentieth century, that concept was commonly used by physiologists to discuss the coding of odors (Zwaardemaker, 1925; Guillot, 1948) and by pioneer chemists who postulated receptive sites for odor molecules (Amoore, 1967; Beets, 1982). Its recent implementation in identifying receptor proteins has emitted a “strong scent of success” (Lancet, 1991). However, when the data from molecular biology and the physiological properties of the olfactory system are compared, it becomes clear that the final word has not yet been spoken on olfactory coding.

When olfactory signals are detected and differentiated, they gain behavioral significance when recognized as representing particular odor sources. In terms of neurophysiology, such processes require highly organized neuronal circuitry, and an important finding in recent studies of receptor proteins is that the receptors themselves are involved in determining the neural space devoted to representation of the chemical environment.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

, Adrian E D (1942). Olfactory Reactions in the Brain of the Hedgehog. Journal of Physiology (London) 100:459–73CrossRefGoogle Scholar
, Amoore J E (1967). Specific Anosmia: A Clue to the Olfactory Code. Nature 214:1095–8CrossRefGoogle Scholar
Arctander S (1969). Perfume and Flavor Chemicals. Montclair, NJ: Arctander
Beets M G J (1982). Odorants and Stimulant Structure. In: Fragrance Chemistry, ed. E T Theimer, pp. 77–122. New York: Plenum Press
, Bozza T C & , Kauer J S (1998). Odorant Response Properties of Convergent Olfactory Receptor Neurons. Journal of Neuroscience 18:4560–9CrossRefGoogle Scholar
, Buck L B & , Axel R (1991). A Novel Multigene Family May Encode Odorant Receptors: A Molecular Basis for Odor Recognition. Cell 65:175–87CrossRefGoogle Scholar
, Buonviso N, , Amat C, , Fumanal G, , Bertrand B, , Farget V, & , Vigouroux M (2001). Oscillations and Coherent Activities in the Rat OB. Chemical Senses 26:816Google Scholar
, Buonviso N & , Chaput M A (1990). Response Similarity to Odors in Olfactory Bulb Output Cells Presumed to Be Connected to the Same Glomerulus: Electrophysiological Study Using Simultaneous Single-Unit Recordings. Journal of Neurophysiology 63:447–54CrossRefGoogle Scholar
, Chabaud P, , Ravel N, , Wilson D A, , Mouly A M, , Vigouroux M, , Farget V, & , Gervais R (2000). Exposure to Behaviourally Relevant Odour Reveals Differential Characteristics in Central Rat Olfactory Pathways as Studied through Oscillatory Activities. Chemical Senses 25:561–73CrossRefGoogle Scholar
, Chaput M A & , Holley A (1985). Responses of Olfactory Bulb Neurons to Repeated Odor Stimulations in Awake Freely-breathing Rabbits. Physiology and Behavior 34:249–58CrossRefGoogle Scholar
, Chess A, , Simon I, , Cedar H, & , Axel R (1994). Allelic Inactivation Regulates Olfactory Receptor Gene Expression. Cell 78:823–84CrossRefGoogle Scholar
, Clyne P J, , Warr C G, , Freeman M R, , Lessing D, , Kim J, & , Carlson J R (1999). A Novel Family of Divergent Seven-Transmembrane Proteins: Candidate Odorant Receptors in Drosophila. Neuron 22:327–38CrossRefGoogle Scholar
, Costanzo R M (2000). Rewiring of the Olfactory Bulb: Changes in Odor Maps following Recovery from Nerve Section. Chemical Senses 25:199–205CrossRefGoogle Scholar
, Daval G, , Leveteau J, & , MacLeod P (1970). Electro-olfactogramme local et discrimination olfactive chez la grenouille. Journal de Physiologie (Paris) 62:477–88Google Scholar
, Delaney K R, , Gelperin A, , Fee M S, , Flores J A, , Gervais R, , Tank D W, & , Kleinfeld D (1994). Waves and Stimulus-modulated Dynamics in an Oscillating Olfactory Network. Proceedings of the National Academy of Sciences USA 91:669–73CrossRefGoogle Scholar
, Duchamp A (1982). Electrophysiological Responses of Olfactory Bulb Neurons to Odor Stimuli in the Frog. Chemical Senses 7:191–209CrossRefGoogle Scholar
, Duchamp A, , Revial M F, , Holley A, & , MacLeod P (1974). Odor Discrimination by Frog Olfactory Receptors. Chemical Senses 1:213–33CrossRefGoogle Scholar
, Duchamp A & , Sicard G (1984a). Odor Discrimination by Olfactory Bulb Neurons: Statistical Analysis of Electrophysiological Responses and Comparison with Odor Discrimination by Receptor Cells. Chemical Senses 9:1–14CrossRefGoogle Scholar
, Duchamp A & , Sicard G (1984b). Influence of Stimulus Intensity on Odor Discrimination by Olfactory Bulb Neurons as Compared with Receptor Cells. Chemical Senses 8:355–66CrossRefGoogle Scholar
, Duchamp-Viret P, , Duchamp A, & , Sicard G (1990). Olfactory Discrimination over a Wide Concentration Range. Comparison of Receptor Cell and Bulb Neuron Abilities. Brain Research 517:256–62CrossRefGoogle Scholar
, Duchamp-Viret P, , Chaput M A, & , Duchamp A (1999). Odor Response Properties of Rat Olfactory Receptor Neurons. Science 284:2171–4CrossRefGoogle Scholar
, Freeman W J (1978). Spatial Properties of an EEG Event in the Olfactory Bulb and Cortex. Electroencephalography and Clinical Neurophysiology 44:586–605CrossRefGoogle Scholar
, Freeman W J & , Schneider W (1982) Changes in Spatial Patterns of Rabbit Olfactory EEG with Conditioning to Odors. Psychophysiology 19:44–56CrossRefGoogle Scholar
, Freitag J, , Ludwig G, , Andreini I, , Rossler P, & , Breer H (1998). Olfactory Receptors in Aquatic and Terrestrial Vertebrates. Journal of Comparative Physiology [A] 183:635–50CrossRefGoogle Scholar
, Gao Q & , Chess A (1999). Identification of Candidate Drosophila Olfactory Receptors from Genomic DNA Sequence. Genomics 60:31–9CrossRefGoogle Scholar
, Gesteland R C, , Lettvin J Y, , Pitts W H, & , Rojas A (1963). Chemical Transmission in the Nose of the Frog. Journal of Physiology (London) 181:525–59Google Scholar
, Gibson A D & , Garbers D L (2000). Guanylyl Cyclases as a Family of Putative Odorant Receptors. Annual Review of Neurosciences 23:417–39CrossRefGoogle Scholar
, Guillot M (1948). Anosmie partielle et odeurs fondamentales. Comptes Rendus de l'Académie des Sciences, Paris 226:1307–9Google Scholar
, Hatt H, , Gisselmann G, & , Wetzel C H (1999). Cloning, Functional Expression and Characterisation of a Human Olfactory Receptor. Cell and Molecular Biology 45:285–91Google Scholar
, Hudson R & , Distel H (1987). Regional Autonomy in the Peripheral Processing of Odor Signals in Newborn Rabbits. Brain Research 421:85–94CrossRefGoogle Scholar
Hudson R, Distel H, & Zippel H P (1990). Perceptual Performance in Peripherally Reduced Olfactory Systems. In: Chemosensory Information Processing, ed. D Schild, pp. 259–69. Berlin: Springer-VerlagCrossRef
, Johnson B A, , Woo C C, , Hingco E E, , Pham K L, & , Leon M (1999). Multidimensional Chemotopic Responses to n-Aliphatic Acid Odorants in the Rat Olfactory Bulb. Journal of Comparative Neurology 409:529–483.0.CO;2-N>CrossRefGoogle Scholar
, Kashiwadani H, , Sasaki Y F, , Uchida N, & , Mori K (1999). Synchronized Oscillatory Discharges of Mitral/Tufted Cells with Different Molecular Receptive Ranges in the Rabbit Olfactory Bulb. Journal of Neurophysiology 82:1786–92CrossRefGoogle Scholar
, Kay L M & , Freeman W J (1998). Bidirectional Processing in the Olfactory-Limbic Axis during Olfactory Behavior. Behavioral Neuroscience 112:541–53CrossRefGoogle Scholar
, Kay L M & , Laurent G (1999). Odor and Context-dependent Modulation of Mitral Cell Activity in Behaving Rats. Nature Neuroscience 2:1003–9CrossRefGoogle Scholar
, Krautwurtz D, , Yau K W, & , Reed R R (1998). Identification of Ligands for Olfactory Receptors by Functional Expression of a Receptor Library. Cell 95:917–26CrossRefGoogle Scholar
, Lam Y W, , Cohen L B, , Wachowiak M, & , Zochowski M R (2000). Odors Elicit Three Different Oscillations in the Turtle Olfactory Bulb. Journal of Neuroscience 15:749–62Google Scholar
, Lancet D (1991). The Strong Scent of Success. Nature 351:275–6CrossRefGoogle Scholar
, Laurent G, , Wehr M, , Macleod K, , Stopfer M, , Leitch B, & , Davidowitz H (1996). Dynamic Encoding of Odors with Oscillating Neuronal Assemblies in the Locust Brain. Biological Bulletin 191:70–5CrossRefGoogle Scholar
, Leibovici M, , Lapointe F, , Aletta P, & , Ayer-Le Lièvre C (1996). Avian Olfactory Receptors: Differentiation of Olfactory Neurons under Normal and Experimental Conditions. Developmental Biology 175:118–31CrossRefGoogle Scholar
, Leveteau J & , MacLeod P (1966). La discrimination des odeurs par les glomérules olfactifs du lapin (Etude électrophysiologique). Journal de Physiologie (Paris) 58:717–29Google Scholar
, Lu X C M & , Slotnick B M (1998). Olfaction in Rats with Extensive Lesions of the Olfactory Bulbs: Implications for Odor Coding. Neuroscience 84:849–66CrossRefGoogle Scholar
, Mackay-Sim A & , Kesteven S (1994). Topographic Patterns of Responsiveness to Odorants in the Rat Olfactory Epithelium. Journal of Neurophysiology 71:150–60CrossRefGoogle Scholar
, Malnic B, , Hirono J, , Sato T, & , Buck L B (1999). Combinatorial Receptor Codes for Odors. Cell 96:713–23CrossRefGoogle Scholar
, Matsuzaki O, , Bakin R E, , Cai X, , Menco B P, & , Ronnett G V (1999). Localization of the Olfactory Cyclic Nucleotide-gated Channel Subunit 1 in Normal, Embryonic and Regenerating Olfactory Epithelium. Neuroscience 94:131–40CrossRefGoogle Scholar
, Mombaerts P (1999). Odorant Receptor Genes in Humans. Current Opinion in Genetics and Development 9:315–20CrossRefGoogle Scholar
, Mombaerts P, , Wang F, , Dulac C, , Chao S K, , Nemes A, , Mendelsohn M, , Edmondson J, & , Axel R (1996). Visualizing an Olfactory Sensory Map. Cell 87:675–86CrossRefGoogle Scholar
, Mori K, , Kishi K, & , Ojima H J (1983). Distribution of Dendrites of Mitral, Displaced Mitral, Tufted and Granule Cells in the Rabbit Olfactory Bulb. Journal of Comparative Neurology 219:339–55CrossRefGoogle Scholar
, Mori K & , Shepherd G M (1994). Emerging Principles of Molecular Signal Processing by Mitral/Tufted Cells in the Olfactory Bulb. Cell Biology 5:65–74Google Scholar
, Motokizawa F (1996). Odor Representation and Discrimination in Mitral/Tufted Cells of the Rat Olfactory Bulb. Experimental Brain Research 112:24–34Google Scholar
, Nef P, , Hermans-Borgmeyer I, Artieres-, Pin H, , Beasley L, , Dionne V E, & , Heinemann S F (1992). Spatial Pattern of Receptor Expression in the Olfactory Epithelium. Proceedings of the National Academy of Sciences USA 89:8948–52CrossRefGoogle Scholar
, Ngai J, , Dowling M M, , Buck L B, , Axel R, & , Chess A (1993). The Family of Genes Encoding Odorant Receptors in the Channel Catfish. Cell 72:657–66CrossRefGoogle Scholar
, O'Leary D M D, , Yates P A, & , McLaughlin T (1999). Molecular Development of Sensory Maps: Representing Sights and Smells in the Brain. Cell 96:255–69CrossRefGoogle Scholar
, Raming K, , Krieger J, , Strotmann J, , Boekhoff I, , Kubick S, , Baumstark C, & , Breer H (1993). Cloning and Expression of Odorant Receptors. Nature 361:353–6CrossRefGoogle Scholar
, Rawson N E, , Eberwine J, , Dotson R, , Jackson J, , Ulrich P, & , Restrepo D (2000). Expression of mRNAs Encoding for Two Different Olfactory Receptors in a Subset of Olfactory Neurons. Journal of Neurochemistry 75:185–95Google Scholar
, Ressler K, , Sullivan S, & , Buck L B (1993). A Zonal Organization of Odorant Receptor Gene Expression in the Olfactory Epithelium. Cell 73:597–609CrossRefGoogle Scholar
, Ressler K J, , Sullivan S L, & , Buck L B (1994). Information Coding in the Olfactory System. Evidence for a Stereotyped and Highly Organized Epitope Map in the Olfactory Bulb. Cell 79:1245–55CrossRefGoogle Scholar
, Revial M F, , Sicard G, , Duchamp A, & , Holley A (1982). New Studies on Odor Discrimination in the Frog's Olfactory Receptor Cells. I. An Experimental Study. Chemical Senses 7:175–90CrossRefGoogle Scholar
, Rouquier S, , Friedman C, , Delettre C, , Engh G, , Blancher A, , Crouau-Roy B, , Trask B J, & , Giorgi D (1998). A Gene Recently Inactivated in Human Defines a New Olfactory Receptor Family in Mammals. Human Molecular Genetics 7:1337–45CrossRefGoogle Scholar
, Royet J P, , Sicard G, , Souchier C, & , Jourdan F (1987). Specificity of Spatial Patterns of Glomerular Activation in the Mouse Olfactory Bulb: Computer-assisted Image Analysis of 2-DG Autoradiograms. Brain Research 417:1–11CrossRefGoogle Scholar
, Rubin B D & , Katz L C (1999). Optical Imaging of Odorant Representations in the Mammalian Olfactory Bulb. Neuron 23:499–511CrossRefGoogle Scholar
, Sato T, , Hirono J, , Tonoike M, & , Takebayashi M (1994). Tuning Specificities to Aliphatic Odorants in Mouse Olfactory Receptor Neurons and Their Local Distribution. Journal of Neurophysiology 72:2980–9CrossRefGoogle Scholar
, Selbie L A, , Townsend-Nicholson A, , Iismaa T I, & , Shine J (1992). Novel G Protein-coupled Receptors: A Gene Family of Putative Human Olfactory Receptor Sequences. Molecular Brain Research 13:159–63CrossRefGoogle Scholar
, Semke E, , Distel H, & , Hudson R (1995). Specific Enhancement of Olfactory Receptor Sensitivity Associated with Foetal Learning of Food Odors in the Rabbit. Naturwissenschaften 82:148–9CrossRefGoogle Scholar
, Sengupta P, , Colbert H A, & , Bargmann C I (1994). The C. elegans Gene odr-7 Encodes an Olfactory-specific Member of the Nuclear Receptor Superfamily. Cell 79:971–80CrossRefGoogle Scholar
, Sharon D, , Glusman G, , Pilpel Y, , Khen M, , Gruetzner F, , Haaf T, & , Lancet D (1999). Primate Evolution of an Olfactory Receptor Cluster: Diversification by Gene Conversion and Recent Emergence of Pseudogenes. Genomics 61:24–36CrossRefGoogle Scholar
, Sicard G (1986). Electrophysiological Recordings from Olfactory Receptor Cells in Adult Mice. Brain Research 397:405–8CrossRefGoogle Scholar
, Sicard G & , Holley A (1984). Receptor Cell Responses to Odorants: Similarities and Differences among Odorants. Brain Research 292:283–96CrossRefGoogle Scholar
, Sicard G, , Royet J P, & , Jourdan F (1989). A Comparative Study of 2-Deoxyglucose Patterns of Glomerular Activation in the Olfactory Bulbs of C57BL/6J and AKR/J Mice. Brain Research 481:325–34CrossRefGoogle Scholar
, Slotnick B M, , Graham S, , Laing D G, & , Bell G A (1987). Detection of Propionic Acid Vapor by Rats with Lesions of Olfactory Bulb Areas Associated with High 2-DG Uptake. Brain Research 417:343–6CrossRefGoogle Scholar
, Stopfer M, , Bhagavan S, , Smith B H, & , Laurent G (1997) Impaired Odor Discrimination on Desynchronization of Odor-encoding Neural Assemblies. Nature 390:70–4CrossRefGoogle Scholar
, Stopfer M & , Laurent G (1999). Short-Term Memory in Olfactory Network Dynamics. Nature 402:664–8CrossRefGoogle Scholar
, Strotmann J, , Hope R, , Conzelmann S, , Feinstein P, , Mombaerts P, & , Breer H (1999). Small Subfamily of Olfactory Receptor Genes: Structural Features, Expression Pattern and Genomic Organization. Gene 236:281–91CrossRefGoogle Scholar
, Strotmann J, , Wanner I, , Helfrich T, , Beck A, , Meinken C, , Kubick S, & , Breer H (1994). Olfactory Neurons Expressing Distinct Odorant Receptor Subtypes Are Spatially Segregated in the Nasal Neuroepithelium. Cell and Tissue Research 276:429–38CrossRefGoogle Scholar
, Strotmann J, , Wanner I, , Krieger J, , Raming K, & , Breer H (1992). Expression of Odorant Receptors in Spatially Restricted Subsets of Chemosensory Neurons. NeuroReport 3:1053–6CrossRefGoogle Scholar
, Touhara K, , Sengoku S, , Inaki K, , Tsuboi A, , Hirono J, , Sato T, , Sakano H, & , Haga T (1999). Functional Identification and Reconstitution of an Odorant Receptor in Single Olfactory Neurons. Proceedings of the National Academy of Sciences USA 96:4040–5CrossRefGoogle Scholar
, Drongelen W, , Holley A, & , Doving K B (1978). Convergence in the Olfactory System: Quantitative Aspects of Odor Sensitivity. Journal of Theoretical Biology 71:39–49CrossRefGoogle Scholar
, Vassar R, , Chao S K, , Sitcheran R, , Nunez J M, , Vosshall L B, & , Axel R (1994). Topographic Organization of Sensory Projections to the Olfactory Bulb. Cell 79:981–91CrossRefGoogle Scholar
, Vassar R, , Ngai J, & , Axel R (1993). Spatial Segregation of Odorant Receptor Expression in the Mammalian Olfactory Epithelium. Cell 74:309–18CrossRefGoogle Scholar
, Vogt R G, , Lindsay S M, , Byrd C A, & , Sun M (1997). Spatial Patterns of Olfactory Neurons Expressing Specific Odor Receptor Genes in 48-Hour-old Embryos of Zebrafish Danio rerio. Journal of Experimental Biology 200:433–43Google Scholar
, Wang H W, , Wysocki C J, & , Gold G H (1993). Induction of Olfactory Receptor Sensitivity in Mice. Science 260:998–1000CrossRefGoogle Scholar
, Wellis D P, , Scott J W, & , Harrison T A (1989). Discrimination among Odorants by Single Neurons of the Rat Olfactory Bulb. Journal of Neurophysiology 61:1161–77CrossRefGoogle Scholar
, Wysocki C J, , Dorries K M, & , Beauchamp G K (1989). Ability to Perceive Androstenone Can Be Acquired by Ostensibly Anosmic People. Proceedings of the National Academy of Sciences USA 86:7976–8CrossRefGoogle Scholar
, Young T A & , Wilson D A (1999). Frequency-dependent Modulation of Inhibition in the Rat Olfactory Bulb. Neuroscience Letters 276:65–7CrossRefGoogle Scholar
, Zhao H, , Ivic L, , Otaki J M, , Hashimoto M, , Mikoshiba K, & , Firestein S (1998). Functional Expression of a Mammalian Odorant Receptor. Science 279:237–42CrossRefGoogle Scholar
Zwaardemaker H (1925). L'odorat. Paris: Doin

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Odor Coding at the Periphery of the Olfactory System
    • By Gilles Sicard, Laboratoire de Neurosciences et Systèmes Sensoriels, Université Claude Bernard, Lyon 1/CNRS, 69366 Lyon, France
  • Edited by Catherine Rouby, Université Lyon I, Benoist Schaal, Centre National de la Recherche Scientifique (CNRS), Paris, Danièle Dubois, Centre National de la Recherche Scientifique (CNRS), Paris, Rémi Gervais, Centre National de la Recherche Scientifique (CNRS), Paris, A. Holley, Centre National de la Recherche Scientifique (CNRS), Paris
  • Book: Olfaction, Taste, and Cognition
  • Online publication: 21 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546389.026
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Odor Coding at the Periphery of the Olfactory System
    • By Gilles Sicard, Laboratoire de Neurosciences et Systèmes Sensoriels, Université Claude Bernard, Lyon 1/CNRS, 69366 Lyon, France
  • Edited by Catherine Rouby, Université Lyon I, Benoist Schaal, Centre National de la Recherche Scientifique (CNRS), Paris, Danièle Dubois, Centre National de la Recherche Scientifique (CNRS), Paris, Rémi Gervais, Centre National de la Recherche Scientifique (CNRS), Paris, A. Holley, Centre National de la Recherche Scientifique (CNRS), Paris
  • Book: Olfaction, Taste, and Cognition
  • Online publication: 21 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546389.026
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Odor Coding at the Periphery of the Olfactory System
    • By Gilles Sicard, Laboratoire de Neurosciences et Systèmes Sensoriels, Université Claude Bernard, Lyon 1/CNRS, 69366 Lyon, France
  • Edited by Catherine Rouby, Université Lyon I, Benoist Schaal, Centre National de la Recherche Scientifique (CNRS), Paris, Danièle Dubois, Centre National de la Recherche Scientifique (CNRS), Paris, Rémi Gervais, Centre National de la Recherche Scientifique (CNRS), Paris, A. Holley, Centre National de la Recherche Scientifique (CNRS), Paris
  • Book: Olfaction, Taste, and Cognition
  • Online publication: 21 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546389.026
Available formats
×