Book contents
- Frontmatter
- Contents
- Preface
- Sensitivity of teleseismic body waves to mineral texture and melt in the mantle beneath a mid-ocean ridge
- Evidence for accumulated melt beneath the slow-spreading Mid-Atlantic Ridge
- An analysis of variations in isentropic melt productivity
- A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges
- Rift-plume interaction in the North Atlantic
- The ultrafast East Pacific Rise: instability of the plate boundary and implications for accretionary processes
- Seafloor eruptions and evolution of hydrothermal fluid chemistry
- Controls on the physics and chemistry of seafloor hydrothermal circulation
- Where are the large hydrothermal sulphide deposits in the oceans?
- Sea water entrainment and fluid evolution within the TAG hydrothermal mound: evidence from analyses of anhydrite
- Thermocline penetration by buoyant plumes
- Crustal accretion and the hot vent ecosystem
- Biocatalytic transformations of hydrothermal fluids
- Index
Controls on the physics and chemistry of seafloor hydrothermal circulation
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- Preface
- Sensitivity of teleseismic body waves to mineral texture and melt in the mantle beneath a mid-ocean ridge
- Evidence for accumulated melt beneath the slow-spreading Mid-Atlantic Ridge
- An analysis of variations in isentropic melt productivity
- A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges
- Rift-plume interaction in the North Atlantic
- The ultrafast East Pacific Rise: instability of the plate boundary and implications for accretionary processes
- Seafloor eruptions and evolution of hydrothermal fluid chemistry
- Controls on the physics and chemistry of seafloor hydrothermal circulation
- Where are the large hydrothermal sulphide deposits in the oceans?
- Sea water entrainment and fluid evolution within the TAG hydrothermal mound: evidence from analyses of anhydrite
- Thermocline penetration by buoyant plumes
- Crustal accretion and the hot vent ecosystem
- Biocatalytic transformations of hydrothermal fluids
- Index
Summary
Low temperature diffuse hydrothermal circulation is a natural consequence of the cooling of the oceanic lithosphere. Diffuse flow is expected to be ubiquitous, and will be present both within mid-ocean ridge crest axial zones of young age (0–1 Ma), and also on the older ridge crest flanks and limbs. If underlying thermal models are correct, hydrothermal circulation should persist for oceanic lithosphere of age 0–65 Ma, and is present over half the total area of the ocean basins. By using numerical models of hydrothermal circulation in cracked permeable media, we show qualitatively how diffuse flow is an intrinsic feature of high temperature axial (0–1 Ma) hydrothermal systems, and is not restricted to older (more than 1 Ma) lithosphere. This is in agreement with our field observations which suggest that in such high temperature vent fields the greatest part of the heat and volume flux is due to lower temperature diffuse flow, rather than high temperature black smoker venting.
By combining direct measurements of the physical properties of diffusely flowing effluent within axial hydrothermal systems with concurrent sampling of the chemical properties of that effluent, and by considering also the chemistry of unmixed black smoker endmember fluids from the same hydrothermal systems, the processes of mineral deposition and dissolution can be studied directly. By referring to the present-day lithology of such areas, it is possible to examine the balance between concurrent mineral deposition and dissolution processes, and the retention rate of specific mineral assemblages integrated over the history of the hydrothermal system. Thus details of the episodicity of hydrothermal venting within the system may be revealed.
- Type
- Chapter
- Information
- Mid-Ocean RidgesDynamics of Processes Associated with the Creation of New Oceanic Crust, pp. 171 - 210Publisher: Cambridge University PressPrint publication year: 1999
- 6
- Cited by