Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T16:30:58.519Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  08 December 2017

Martin Bichler
Affiliation:
Technische Universität München
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Market Design
A Linear Programming Approach to Auctions and Matching
, pp. 268 - 280
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdulkadiroglu, A., T., Sönmez. 2003. School choice: a mechanism design approach. American Economic Review 93(3) 729–747.CrossRefGoogle Scholar
Abdulkadiroglu, A., P., Pathak, A., Roth. 2009. Strategy-proofness versus efficiency in matching with indifferences: redesigning the NYC high school match. American Economic Review 99(5) 1954–1978.CrossRefGoogle Scholar
Adomavicius, G., A., Gupta. 2005. Toward comprehensive real-time bidder support in iterative combinatorial auctions. Information Systems Research (ISR) 16 169–185.Google Scholar
Adomavicius, G., S., Curley, A., Gupta, P., Sanyal. 2013. Impact of information feedback in continuous combinatorial auctions: an experimental study of economic performance. MIS Quarterly 37 55–76.CrossRefGoogle Scholar
Afriat, S. N. 1967. The construction of utility functions from expenditure data. International Economic Review 8(1) 67–77.CrossRefGoogle Scholar
Alcalde-Unzu, J., E., Molis. 2011. Exchange of indivisible goods and indifferences: the top trading absorbing sets mechanisms. Games and Economic Behavior 73(1) 1–16.CrossRefGoogle Scholar
Allais, M. 1953. Le comportement de l'homme rationnel devant le risque: critique des postulats et axiomes de l'école américaine. Econometrica 21 503–546.CrossRefGoogle Scholar
Alt, F. 1936. Ueber die Messbarkeit des Nutzens. Zeitschrift fuer Nationaloekonomie 7 161– 169.Google Scholar
Anderson, R. 1978. An elementary core equivalence theorem. Econometrica 46(6) 1483–1487.CrossRefGoogle Scholar
Anton, J., D. A., Yao. 1992. Coordination in split award auctions. Quarterly Journal of Economics 107 681–707.CrossRefGoogle Scholar
Ariely, D. 2008. Predictably Irrational. HarperCollins New York.Google Scholar
Arrow, K. J. 1950. A difficulty in the concept of social welfare. Journal of Political Economy 58 328–346.CrossRefGoogle Scholar
Arrow, K. J., H. D., Block, L., Hurwicz. 1959. On the stability of the competitive equilibrium, ii. Econometrica 27 82–109.CrossRefGoogle Scholar
Arrow, K. J., A., Sen, K., Suzumura. 2010. Handbook of Social Choice & Welfare, vol. 2 Elsevier.Google Scholar
Ashlagi, I., D., Monderer, M., Tennenholtz. 2008. On the value of correlation. Journal of Artificial Intelligence Research (JAIR) 33 575–613.Google Scholar
Athey, S., I., Segal. 2013. An efficient dynamic mechanism. Econometrica 81(6) 2463–2485.Google Scholar
Aumann, R. J. 1987. Correlated equilibrium as an expression of Bayesian rationality. Econometrica 55(1) 1–18.CrossRefGoogle Scholar
Ausubel, L. 2004. An efficient ascending-bid auction for multiple objects. American Economic Review 94 1452–1457.CrossRefGoogle Scholar
Ausubel, L., O., Baranov. 2014. Market design and the evolution of the combinatorial clock auction. American Economic Review: Papers & Proceedings 104(5) 446–451.CrossRefGoogle Scholar
Ausubel, L., P., Milgrom. 2002. Ascending auctions with package bidding. Frontiers of Theoretical Economics 1 1–42.CrossRefGoogle Scholar
Ausubel, L., P., Milgrom. 2006a. Ascending proxy auctions. In P., Cramton, Y., Shoham, R., Steinberg, eds., Combinatorial Auctions, chapter 3. MIT Press, 79–98.Google Scholar
Ausubel, L., P., Milgrom. 2006b. The lovely but lonely Vickrey auction. In P., Cramton, Y., Shoham, R., Steinberg, eds., Combinatorial Auctions, chapter 1. MIT Press, 17–40.Google Scholar
Ausubel, L. M., P., Cramton, R. P., McAfee, J., McMillan. 1997. Synergies in wireless telephony: evidence from the broadband pcs auctions. Journal of Economics and Management Strategy 6(3) 497–527.CrossRefGoogle Scholar
Ausubel, L., P., Cramton, P., Milgrom. 2006. The clock-proxy auction: a practical combinatorial auction design. In P., Cramton, Y., Shoham, R., Steinberg, eds., Combinatorial Auctions. MIT Press. Google Scholar
Ausubel, L., P., Cramton, M., Pycia, M., Rostek, M., Weretka. 2014. Demand reduction and inefficiency in multi-unit auctions. Review of Economic Studies 81(4) 1366–1400.CrossRefGoogle Scholar
Azevedo, E., E., Budish. 2015. Strategy-proofness in the large. Chicago Booth Research Paper 13–35.
Azevedo, E., E., Weyl, A., White. 2013. Walrasian equilibrium in large, quasilinear markets. Theoretical Economics 8(2) 281–290.CrossRefGoogle Scholar
Aziz, H., B., de Keijzer. 2012. Housing markets with indifferences: a tale of two mechanisms. In Proc. 26th AAAI Conference on Artificial Intelligence, 1249–1255.Google Scholar
Aziz, H., F., Brandt, M., Brill. 2013. The computational complexity of random serial dictatorship. Economics Letters 121(3) 341–345.CrossRefGoogle Scholar
Baisa, B. 2016. Efficient multi-unit auction design for normal goods. University of Michigan Working Paper.
Banks, J., J., Ledyard, D., Porter. 1989. Allocating uncertain and unresponsive resources: an experimental approach. RAND Journal of Economics 20 1–25.CrossRefGoogle Scholar
Banks, J., M., Olson, D.|Porter, S., Rassenti, V., Smith. 2003. Theory, experiment and the fcc spectrum auctions. Journal of Economic Behavior & Organization 51 303–350.CrossRefGoogle Scholar
Bergemann, D., S., Morris. 2005. Robust mechanism design. Econometrica 73(6) 1771–1813.CrossRefGoogle Scholar
Bergemann, D., M., Said. 2011. Dynamic auctions. In Encyclopedia of Operations Research and Management Science. Wiley. Google Scholar
Bergemann, D., J., Välimäki. 2010. The dynamic pivot mechanism. Econometrica 78 771–790.Google Scholar
Bergson, A. 1938. A reformulation of certain aspects of welfare economics. Quarterly Journal of Economics 52 310–334.CrossRefGoogle Scholar
Bernheim, B. D., M. D., Whinston. 1986. Menu auctions, resource allocation, and economic influence. The Quarterly Journal of Economics 101(1) 1–31.CrossRefGoogle Scholar
Bertsimas, D., J., Tsitsiklis. 1997. Introduction to Linear Optimization, vol. 6 Athena Scientific. Google Scholar
Bhattacharya, S., V., Conitzer, K., Munagala, L., Xia. 2010. Incentive compatible budget elicitation in multi-unit auctions. In Proc. 21st Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, 554–572.Google Scholar
Bichler, M. 2010. Combinatorial auctions: complexity and algorithms. In J., Cochran, L., Cox, P. Keskinocak, Kharoufeh, J., Smith, eds., Encyclopedia of Operations Research and Management Science. Wiley. Google Scholar
Bichler, M., A., Davenport, G., Hohner, J., Kalagnanam. 2006. Industrial procurement auctions. In P., Cramton, Y., Shoham, R., Steinberg, eds., Combinatorial Auctions. MIT Press. Google Scholar
Bichler, M., J., Goeree. 2017. The Handbook of Spectrum Auction Design. Cambridge University Press. CrossRefGoogle Scholar
Bichler, M., J., Kalagnanam. 2005. Configurable offers and winner determination in multi-attribute auctions. European Journal of Operational Research 160(2) 380–394.CrossRefGoogle Scholar
Bichler, M., P., Paulsen. 2017. A principal–agent model of bidding firms in multi-unit auctions. Social Science Research Network (2775170).
Bichler, M., P., Shabalin, A., Pikovsky. 2009. A computational analysis of linear-price iterative combinatorial auctions. Information Systems Research 20(1) 33–59.CrossRefGoogle Scholar
Bichler, M., A., Gupta, W., Ketter. 2010. Designing smart markets. Information Systems Research 21(4) 688–699.CrossRefGoogle Scholar
Bichler, M., S., Schneider, K., Guler, M., Sayal. 2011a. Compact bidding languages and supplier selection for markets with economies of scale and scope. European Journal of Operational Research 214 67–77.CrossRefGoogle Scholar
Bichler, M., P., Shabalin, J., Wolf. 2011b. Efficiency, auctioneer revenue, and bidding behavior in the combinatorial clock auction. In Proc. 2nd Conference on Auctions, Market Mechanisms and Their Applications. New York. Google Scholar
Bichler, M., P., Shabalin, J., Wolf. 2013a. Do core-selecting combinatorial clock auctions always lead to high efficiency? An experimental analysis of spectrum auction designs. Experimental Economics 16(4) 1–35.CrossRefGoogle Scholar
Bichler, M., P., Shabalin, G., Ziegler. 2013b. Efficiency with linear prices? A game-theoretical and computational analysis of the combinatorial clock auction. Information Systems Research 24(2) 394–417.CrossRefGoogle Scholar
Bichler, M., J., Goeree, S., Mayer, P., Shabalin. 2014a. Simple auctions for complex sales: bid languages and spectrum auction design. Telecommunications Policy 38 613–622.CrossRefGoogle Scholar
Bichler, M., K., Guler, S., Mayer. 2014b. Split-award procurement auctions: can Bayesian equilibrium strategies predict human bidding behavior in multi-object auctions? Production and Operations Management 24 1012–1027.Google Scholar
Bichler, M., V., Gretschko, M., Janssen. 2017a. Bargaining in spectrum auctions: a review of the German auction in 2015. Telecommunications Policy, to appear.
Bichler, M., Z., Hao, G., Adomavicius. 2017b. Coordination vs. free-riding: coalition-based pricing in ascending combinatorial auctions. Information Systems Research 28(1) 159–179.CrossRefGoogle Scholar
Bikhchandani, S., J. W., Mamer. 1997. Competitive equilibrium in an exchange economy with indivisibilities. Journal of Economic Theory 74 385–413.CrossRefGoogle Scholar
Bikhchandani, S., J. M., Ostroy. 2002. The package assignment model. Journal of Economic Theory 107(2) 377–406.CrossRefGoogle Scholar
Bikhchandani, S., S., de Vries, J., Schummer, R., Vohra. 2011. An ascending Vickrey auction for selling bases of a matroid. Operations Research 59(2) 400–413.CrossRefGoogle Scholar
Birkhoff, G. 1946. Three observations on linear algebra. Rev. Univ. Nac. Tucumán. Revista A 5 147–151.Google Scholar
Black, D. 1948. On the rationale of group decision-making. Journal of Political Economy 56(1) 23–34.CrossRefGoogle Scholar
Boergers, T., C., Dustmann. 2003. Rationalizing the umts spectrum bids: the case of the UK auction. In G., Illing, U., Kuehl, eds., Spectrum Auctions and Competition in Telecommunications. CESifo Seminar Series.Google Scholar
Bogomolnaia, A., H., Moulin. 2001. A new solution to the random assignment problem. Journal of Economic Theory 100(2) 295–328.CrossRefGoogle Scholar
Borgers, T., D., Krahmer, R., Strausz. 2015. An Introduction to the Theory of Mechanism Design. Oxford University Press. CrossRefGoogle Scholar
Boutilier, C., H. H., Hoos. 2001. Bidding languages for combinatorial auctions. In Proc. 17th International Joint Conference on Artificial Intelligence 2001, 1211–1217.
Brandl, F., F., Brandt, H., Seedig. 2016. Consistent probabilistic social choice. Econometrica 84(5) 1839–1880.CrossRefGoogle Scholar
Brandt, F., T., Sandholm, Y., Shoham. 2007. Spiteful bidding in sealed-bid auctions. In Proc. 20th International Joint Conference on Artificial Intelligence, 1207–1214.Google Scholar
Brandt, F., V., Conitzer, U., Endriss. 2012. Computational social choice. In G., Weiss, Multiagent Systems. MIT Press, 213–283.Google Scholar
Brandt, F., M., Brill, P., Harrenstein. 2015. Computational social choice. In F., Brandt, V., Conitzer, U., Endriss, J., Lang, A., Procaccia, eds., Handbook of Computational Social Choice, chapter 3. Cambridge University Press. Google Scholar
Braun, S., N., Dwenger, D., Kübler. 2010. Telling the truth may not pay off: an empirical study of centralized university admissions in Germany. BE Journal of Economic Analysis & Policy 10(1) 1935–1982.Google Scholar
Brunner, C., J. K., Goeree, Ch, Holt, J., Ledyard. 2010. An experimental test of flexible combinatorial spectrum auction formats. American Economic Journal: Micro-Economics 2 39–57.Google Scholar
Brusco, S., G., Lopomo. 2009. Simultaneous ascending auctions with complementarities and known budget constraints. Economic Theory 38 105–124.CrossRefGoogle Scholar
Budish, E. 2011. The combinatorial assignment problem: approximate competititve equilibrium from equal incomes. Journal of Political Economy 119 1061–1103.CrossRefGoogle Scholar
Budish, E., E., Cantillon. 2012. The multi-unit assignment problem: theory and evidence from course allocation at Harvard. American Economic Review 102 2237–2271.CrossRefGoogle Scholar
Bulow, J., P., Klemperer. 1996. Auctions versus negotiations. The American Economic Review 180–194.Google Scholar
Bulow, J. I., J., Levin, P., Milgrom. 2009. Winning play in spectrum auctions. National Bureau of Economic Research Working Paper No. 14765. Google Scholar
Bulow, J. I., D. J., Roberts. 1989. The simple economics of optimal auctions. Journal of Political Economy 97 1060–1090.CrossRefGoogle Scholar
Cantillon, E.,M., Pesendorfer. 2006. Auctioning bus routes: the London experience. In P., Cramton, Y., Shoham, R., Steinberg, eds., Combinatorial Auctions. MIT Press. Google Scholar
Caplice, C., Y., Sheffi. 2006. Combinatorial auctions for truckload transportation. In P., Cramton, Y., Shoham, R., Steinberg, eds., Combinatorial Auctions. MIT Press. Google Scholar
Carr, R., S., Vempala. 2000. Randomized metarounding. In Proc. 32nd Annual ACM Symposium on the Theory of Computing. ACM, 58–62.Google Scholar
Chekuri, Ch., S., Khanna. 2006. A polynomial time approximation scheme for the multiple knapsack problem. SIAM Journal of Computing 35 713–728.Google Scholar
Chen, X., X., Deng. 2006. Settling the complexity of two-player Nash equilibrium. FOCS, 6 261– 272.Google Scholar
Chen, Y., K., Takeuchi. 2010. Multi-object auctions with package bidding: an experimental comparison of Vickrey and iBEA. Games and Economic Behavior 68 557–579.CrossRefGoogle Scholar
Chvatal, V. 1983. Linear Programming. Macmillan.
Clarke, E. H. 1971. Multipart pricing of public goods. Public Choice XI 17–33. Google Scholar
Cook, S. A. 1971. The complexity of theorem-proving procedures. In Proc. 3rd Annual ACM Symposium on the Theory of Computing. ACM, 151–158.Google Scholar
Cox, J., B., Roberson, V. L., Smith. 1982. Theory and behavior of single object auctions. In V. L., Smith, ed., Research in Experimental Economics. JAI Press. Google Scholar
Cox, J., V., Smith, J., Walker. 1988. Theory and individual behavior of first-price auctions. Journal of Risk and Uncertainty 1(1) 61–99.CrossRefGoogle Scholar
Cramton, P., A., Ockenfels. 2016. The German 4G spectrum auction: design and behavior. Economic Journal (to appear).
Cramton, P., Y., Shoham, R., Steinberg, eds. 2006. Combinatorial Auctions. MIT Press. Google Scholar
Crawford, V. P., E. M., Knoer. 1981. Job matching with heterogeneous firms and workers. Econometrica 49(2) 437–450.CrossRefGoogle Scholar
Cremer, J., R., McLean. 1988. Full extraction of the surplus in Bayesian and dominant strategy auctions. Econometrica 56 1247–1257.CrossRefGoogle Scholar
Daniely, A., M., Schapira, G., Shahaf. 2015. Inapproximability of truthful mechanisms via generalizations of the vc dimension. In Proc. 47th Annual ACM Symposium on the Theory of Computing. ACM, 401–408.Google Scholar
Dantzig, G. B. 1998. Linear Programming and Extensions. Princeton University Press. Google Scholar
Dasgupta, P., P., Hammond, E., Maskin. 1979. The implementation of social choice rules: some general results on incentive compatibility. The Review of Economic Studies 46(2) 185– 216.CrossRefGoogle Scholar
Daskalakis, C., P., Goldberg, C., Papadimitriou. 2009. The complexity of computing a Nash equilibrium. SIAM Journal of Computing 39(1) 195–259. d'Aspremont, C., L. Gérard-Varet. 1979. Incentives and incomplete information. Journal of Public Economics 11(1) 25–45.CrossRefGoogle Scholar
Davenport, A., J., Kalagnanam. 2000. Price negotiations for procurement of direct inputs. In Proc. IMA “Hot Topics” Workshop: Mathematics of the Internet: E-Auction and Markets, vol. 127. Minneapolis, USA, 27–44.Google Scholar
Day, R. 2013. The division of surplus in efficient combinatorial exchanges. Technical report, University of Connecticut.
Day, R., P., Cramton. 2012. Quadratic core-selecting payment rules for combinatorial auctions. Operations Research 60(3) 588–603.CrossRefGoogle Scholar
Day, R.,P., Milgrom. 2008. Core-selecting package auctions. International Journal of Game Theory 36 393–407.CrossRefGoogle Scholar
Day, R., S., Raghavan. 2007. Fair payments for efficient allocations in public sector combinatorial auctions. Management Science 53 1389–1406.CrossRefGoogle Scholar
de Vries, S., J., Schummer, R., Vohra. 2007. On ascending Vickrey auctions for heterogeneous objects. Journal of Economic Theory 132 95–118.CrossRefGoogle Scholar
Debreu, G., H., Scarf. 1963. A limit theorem on the core of an economy. International Economic Review 4(3) 235–246.CrossRefGoogle Scholar
Demange, G., D., Gale, M., Sotomayor. 1986. Multi-item auctions. Journal of Political Economy 94 863–872.CrossRefGoogle Scholar
Diebold, F., H., Aziz, M., Bichler, F. Matthes, A. Schneider. 2014. Course allocation via stable matching. Business & Information Systems Engineering 6(2) 97–110.CrossRefGoogle Scholar
Dobzinski, S., S., Dughmi. 2009. On the power of randomization in algorithmic mechanism design. In Foundations of Computer Science, FOCS'09, Proc. 50th Annual IEEE Symposium. IEEE, 505–514.Google Scholar
Dobzinski, S., R., Lavi, N., Nisan. 2012a. Multi-unit auctions with budget limits. Games and Economic Behavior 74(2) 486–503.CrossRefGoogle Scholar
Dobzinski, S., N., Nisan,M., Schapira. 2012b. Truthful randomized mechanisms for combinatorial auctions. Journal of Computer and System Sciences 78(1) 15–25.CrossRefGoogle Scholar
Dughmi, S.,T., Roughgarden, Q., Yan. 2011. From convex optimization to randomized mechanisms: toward optimal combinatorial auctions. In Proc. 43rd Annual ACM Symposium on the Theory of Computing. ACM, 149–158.Google Scholar
Dütting, P., V., Gkatzelis, T., Roughgarden. 2014. The performance of deferred-acceptance auctions. In Proc. 15th ACM Conference on Economics and Computation. ACM, 187–204.Google Scholar
Dütting, P., T., Kesselheim, E., Tardos. 2015. Algorithms as mechanisms: the price of anarchy of relax-and-round. In Proc. 16th ACM Conference on Economics and Computation. ACM, 187– 201. Google Scholar
Edelman, B., M., Ostrovsky, M., Schwarz. 2007. Internet advertising and the generalized secondprice auction: selling billions of dollars worth of keywords. American Economic Review 97(1) 242–259.CrossRefGoogle Scholar
Ehlers, L., B., Klaus. 2003. Coalitional strategy-proof and resource-monotonic solutions for multiple assignment problems. Social Choice and Welfare 21(2) 265–280.CrossRefGoogle Scholar
Ehlers, L., A., Erdil. 2010. Efficient assignment respecting priorities. Journal of Economic Theory 145(3) 1269–1282.CrossRefGoogle Scholar
Engelbrecht-Wiggans, R., E., Katok. 2008. Regret and feedback information in first-price sealedbid auctions. Management Science 54(4) 808–819.CrossRefGoogle Scholar
Erdil, A., H., Ergin. 2006. Two-sided matching with indifferences. Unpublished mimeo, Harvard Business School.
Erdil, A., H., Ergin. 2008. What's the matter with tie-breaking? Improving efficiency in school choice. American Economic Review 98(3) 669–689.CrossRefGoogle Scholar
Erdil, A., P., Klemperer. 2010. A new payment rule for core-selecting package auctions. Journal of the European Economic Association 8(2–3) 537–547.CrossRefGoogle Scholar
Ergin, H. 2002. Efficient resource allocation on the basis of priorities. Econometrica 70(6) 2489– 2497.CrossRefGoogle Scholar
Fadaei, S., M., Bichler. 2017. Truthfulness with value-maximizing bidders: on the limits of approximation in combinatorial markets. European Journal of Operational Research 260(2) 767–777.CrossRefGoogle Scholar
Fang, H., S., Morris. 2006. Multidimensional private value auctions. Journal of Economic Theory 126(1) 1–30.CrossRefGoogle Scholar
Farrell, M. J. 1959. The convexity assumption in the theory of competitive markets. Journal of Political Economy 377–391.Google Scholar
Featherstone, C., M., Niederle. 2008. Ex ante efficiency in school choice mechanisms: an experimental investigation. Technical report, National Bureau of Economic Research.CrossRefGoogle Scholar
Fujishige, S. 2005. Submodular Functions and Optimization, vol. 58. Elsevier. Google Scholar
Gale, D., L. S., Shapley. 1962. College admissions and the stability of marriage. American Mathematical Monthly 69(1) 9–15. doi:10.2307/2312726.CrossRefGoogle Scholar
Garey, M. R., D. S., Johnson, eds. 1972. Computers and Intractability – A Guide to the Theory of NP-Completeness. W. H. Freeman.Google Scholar
Georgescu-Roegen, N. 1979. Methods in economic science. Journal of Economic Issues 13 317– 328.CrossRefGoogle Scholar
Gibbard, A. 1973. Manipulation of voting schemes: a general result. Econometrica 41 587– 601.CrossRefGoogle Scholar
Gibbard, A. 1977. Manipulation of schemes that mix voting with chance. Econometrica 45 665– 681.CrossRefGoogle Scholar
Gilboa, I., A., Postlewaite, L., Samuelson, D., Schmeidler. 2014. Economic models as analogies. Economic Journal 124(578) F513–F533. CrossRefGoogle Scholar
Goeree, J., C., Holt. 2002. Quantal response equilibrium and overbidding in private-value auctions. Journal of Economic Theory 104 247–272.CrossRefGoogle Scholar
Goeree, J., C., Holt. 2010. Hierarchical package bidding: a paper & pencil combinatorial auction. Games and Economic Behavior 70(1) 146–169.CrossRefGoogle Scholar
Goeree, J., Y., Lien. 2014. An equilibrium analysis of the simultaneous ascending auction. Journal of Economic Theory 153(153) 506–533.CrossRefGoogle Scholar
Goeree, J., Y., Lien. 2016. On the impossibility of core-selecting auctions. Theoretical Economics 11 41–52.CrossRefGoogle Scholar
Goetzendorff, A., M., Bichler, P., Shabalin, R., Day. 2015. Compact bid languages and core pricing in large multi-item auctions. Management Science 61(7) 1684–1703.CrossRefGoogle Scholar
Goossens, D. R., A. J. T., Maas, F., Spieksma, J. J., van de Klundert. 2007. Exact algorithms for procurement problems under a total quantity discount structure. European Journal of Operational Research 178 603–626.CrossRefGoogle Scholar
Green, J., J., Laffont. 1979. Incentives in Public Decision Making. North Holland. Google Scholar
Grimm, V., F., Riedel,E., Wolfstetter. 2003. Low price equilibrium in multi-unit auctions: the gsm spectrum auction in Germany. International Journal of Industrial Organization 21(10) 1557– 1569.CrossRefGoogle Scholar
Groves, T. 1973. Incentives in teams. Econometrica 41 617–631.CrossRefGoogle Scholar
Gul, F., E., Stacchetti. 1999. Walrasian equilibrium with gross substitutes. Journal of Economic Theory 87 95–124.CrossRefGoogle Scholar
Guler, K., M., Bichler, J., Petrakis. 2016. Ascending combinatorial auctions with risk aversion. INFORMS Group Decision and Negotiation 25(3) 609–639.Google Scholar
Halldórsson, M. M., J., Kratochvil, J. A. Telle. 2000. Independent sets with domination constraints. Discrete Applied Mathematics 99(1–3) 39–54.CrossRefGoogle Scholar
Halldórsson, M. M., R. W., Irving, K., Iwama, D. F., Manlove, S., Miyazaki, Y., Morita et al. 2003. Approximability results for stable marriage problems with ties. Theoretical Computer Science 306(1) 431–447.CrossRefGoogle Scholar
Hamada, K., K., Iwama, S., Miyazaki. 2011. The hospitals/residents problem with quota lower bounds. In C., Demetrescu, M., Halldorsson, eds., Proc. Annual European Symposium on Algorithms ESA 2011, Lecture Notes in Computer Science, vol. 6942. Springer, 180–191.Google Scholar
Harsanyi, J. C. 1967. Games with incomplete information played by “Bayesian” players. Parts I–III. Management Science 14 159–182. 320–324. 486–502.CrossRefGoogle Scholar
Hartline, J., R., Kleinberg, A., Malekian. 2015. Bayesian incentive compatibility via matchings. Games and Economic Behavior 92 401–429.CrossRefGoogle Scholar
Hatfield, J. W. 2009. Strategy-proof, efficient, and nonbossy quota allocations. Social Choice and Welfare 33(3) 505–515.CrossRefGoogle Scholar
Hogan, W. W., B. J., Ring. 2003. On minimum-uplift pricing for electricity markets. Electricity Policy Group.
Holmstrom, B. 1979. Groves' scheme on restricted domains. Econometrica 47 1137–1144.CrossRefGoogle Scholar
Holzman, R., N., Kfir-Dahav, D., Monderer, M., Tennenholtz. 2004. Bundling equilibrium in combinatorial auctions. Games and Economic Behavior 47(1) 104–123.Google Scholar
Hurwicz, L. 1972. On informationally decentralized systems. In C. B., McGuire, R., Radner, eds., Decisions and Organizations. North-Holland, 297–336.Google Scholar
Hylland, A., R., Zeckhauser. 1979. The efficient allocation of individuals to positions. Journal of Political Economy 87(2) 293–314.CrossRefGoogle Scholar
Innes, J., O., Thébaud, A., Norman-López, L., Little, J., Kung. 2014. Evidence of package trading in a mature multi-species ﹛ITQ﹜ market. Marine Policy 46 68–71.CrossRefGoogle Scholar
Irving, R. 1985. An efficient algorithm for the stable roommates problem. Journal of Algorithms 6(4) 577–595.CrossRefGoogle Scholar
Isaac, M., T., Salmon, A., Zillante. 2007. A theory of jump bidding in ascending auctions. Journal of Economic Behaviour and Organization 62 144–164.CrossRefGoogle Scholar
Jackson, M., A., Manelli. 1997. Approximately competitive equilibria in large finite economies. Journal of Economic Theory 77(2) 354–376.CrossRefGoogle Scholar
Janssen, M., V., Karamychev. 2016. Spiteful bidding and gaming in combinatorial clock auctions. Games and Economic Behavior 100(1), 186–207.CrossRefGoogle Scholar
Jaramillo, P., V., Manjunath. 2012. The difference indifference makes in strategy-proof allocation of objects. Journal of Economic Theory 147(5) 1913–1946.CrossRefGoogle Scholar
Jehiel, P., M., Meyer-ter Vehn, B., Moldovanu, W., Zame. 2006. The limits of ex post implementation. Econometrica 74(3) 585–610.CrossRefGoogle Scholar
Kagel, J., R. M., Marstad, D., Levin. 1987. Information impact and allocation rules in auctions with affiliated private values: a laboratory study. Econometrica 55 1275–1304.CrossRefGoogle Scholar
Kagel, J., Y., Lien, P., Milgrom. 2010. Ascending prices and package bids: an experimental analysis. American Economic Journal: Microeconomics 2(3).Google Scholar
Kahneman, D. 2003. Maps of bounded rationality: psychology for behavioral economics. The American Economic Review 93(5) 1449–1475.Google Scholar
Kahneman, D., A., Tversky. 1979. Prospect theory: an analysis of decision under risk. Econometrica: Journal of the Econometric Society 263–291.Google Scholar
Karloff, H., U., Zwick. 1997. A 7/8-approximation algorithm for max 3sat? In Foundations of Computer Science, Proc. 38th Annual Symposium. 406–415.Google Scholar
Karmarkar, N. 1984. A new polynomial-time algorithm for linear programming. In Proc. Sixteenth Annual ACM Symposium on the Theory of Computing. ACM, 302–311.Google Scholar
Kazumori, E. 2005. Auctions with package bidding: an experimental study. Technical report, The Center for Advanced Research in Finance, The University of Tokyo.Google Scholar
Kelly, F., R., Steinberg. 2000. A combinatorial auction with multiple winners for universal service. Management Science 46(4) 586–596.CrossRefGoogle Scholar
Kelso, A. S., V. P., Crawford. 1982. Job matching, coalition formation, and gross substitute. Econometrica 50 1483–1504.CrossRefGoogle Scholar
Kesten, O. 2010. School choice with consent. The Quarterly Journal of Economics 125(3) 1297–1348.CrossRefGoogle Scholar
Khachiyan, L. 1980. Polynomial algorithms in linear programming. USSR Computational Mathematics and Mathematical Physics 20(1) 53–72.CrossRefGoogle Scholar
Klemperer, P. 2002. What really matters in auction design. Journal of Economic Perspectives 16(1) 169–189.CrossRefGoogle Scholar
Koebberling, V. 2006. Strength of preference and cardinal utility. Economic Theory 27 375– 391. Google Scholar
Kokott, G., M., Bichler, P., Paulsen. 2017. The beauty of Dutch: equilibrium bidding strategies in ex-post split-award auctions. Technical University of Munich Working Paper.Google Scholar
Kraft, D., S., Fadaei, M., Bichler. 2014. Efficient convex decomposition for truthful social welfare approximation. In Proc. Conference on Web and Internet Economics. Springer, Cham 120–132.Google Scholar
Krishna, V., ed. 2009. Auction Theory. Elsevier Science.
Krishna, A., M., Ünver. 2008. Improving the efficiency of course bidding at business schools: field and laboratory studies. Marketing Science 27 262–282.CrossRefGoogle Scholar
Kroemer, C., M., Bichler, A., Goetzendorff. 2014. (Un) expected bidder behavior in spectrum auctions: about inconsistent bidding and its impact on efficiency in the combinatorial clock auction. Group Decision and Negotiation 25(1) 31–63.Google Scholar
Krysta, P., T., Michalak, T., Sandholm, M., Wooldridge. 2010. Combinatorial auctions with externalities. In Proc. 9th International Conference on Autonomous Agents and Multiagent Systems, vol. 1. International Foundation for Autonomous Agents and Multiagent Systems, 1471–1472.Google Scholar
Kuhn, H. W. 1955. The Hungarian method for the assignment problem. Naval Research Logistics Quarterly 2(1–2) 83–97.CrossRefGoogle Scholar
Kwanashie, A., D. F., Manlove. 2013. An integer programming approach to the hospital/residents problem with ties. In D., Huisman, I., Louwers, A., Wagelmans, eds., Proc. Conference on Operations Research 2013. Springer, Cham.Google Scholar
Kwasnica, T., J. O., Ledyard, D., Porter, C., DeMartini. 2005. A new and improved design for multiobjective iterative auctions. Management Science 51(3) 419–434.CrossRefGoogle Scholar
Lavi, R., C., Swamy. 2011. Truthful and near-optimal mechanism design via linear programming. Journal of the ACM (JACM) 58(6) 25.CrossRefGoogle Scholar
Lavi, R., A., Alem, N., Nisan. 2003. Towards a characterization of truthful combinatorial auctions. In Foundations of Computer Science, Proc. 44th Annual IEEE Symposium. IEEE, 574–583.Google Scholar
Ledyard, J., D., Porter, A., Rangel. 1997. Experiments testing multiobject allocation mechanisms. Journal of Economics and Management Strategy 6 639–675.CrossRefGoogle Scholar
Lehmann, D., L. I., O'Callaghan, Y., Shoham. 2002. Truth revelation in approximately efficient combinatorial auctions. Journal of the ACM (JACM) 49(5) 577–602.CrossRefGoogle Scholar
Lehmann, D., R., Mueller, T., Sandholm. 2006. The winner determination problem. In P., Cramton, Y., Shoham, R., Steinberg, eds., Combinatorial Auctions. MIT Press, Cambridge, MA. Google Scholar
Leonard, H. B. 1983. Elicitation of honest preferences for the assignment of individuals to positions. The Journal of Political Economy 461–479.Google Scholar
Levin, J., A., Skrzypacz. 2017. Properties of the combinatorial clock auction. American Economic Review 106(9) 2528–2551.Google Scholar
Leyton-Brown, K., E., Nudelman, Y., Shoham. 2009. Empirical hardness models: methodology and a case study on combinatorial auctions. Journal of the ACM 56 1–52.CrossRefGoogle Scholar
Li, S. 2015. Obviously strategy-proof mechanisms. Technical report, SSRN Working Paper. http://dx.doi.org/10.2139/ssrn.2560028. CrossRef
Lucier, B., A., Borodin. 2010. Price of anarchy for greedy auctions. In Proc. 21st Annual ACMSIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, 537–553.Google Scholar
Manlove, D. 2013. Algorithmics of Matching Under Preferences. Series on Theoretical Computer Science, World Scientific. CrossRefGoogle Scholar
Manlove, D., G., O'Malley. 2012. Paired and altruistic kidney donation in the UK: algorithms and experimentation. In Experimental Algorithms, Springer, 271–282.Google Scholar
Manlove, D., C. T. S., Sng. 2006. Popular matchings in the capacitated house allocation problem. In Y., Azar, T., Erlebach, eds., Proc. 14th Annual European Symposium on Algorithms, Lecture Notes in Computer Science, vol. 4168. Springer, 492–503.Google Scholar
Manlove, D., R., Irving, K., Iwama, S., Miyazaki, Y., Morita. 2002. Hard variants of stable marriage. Theoretical Computer Science 276(1) 261–279.CrossRefGoogle Scholar
Martin, A., J., Müller, S., Pokutta. 2014. Strict linear prices in non-convex European day-ahead electricity markets. Optimization Methods and Software 29(1) 189–221.CrossRefGoogle Scholar
Maskin, E., J., Riley. 1984. Optimal auctions with risk averse buyers. Econometrica 1473–1518.Google Scholar
May, K. O. 1952. A set of independent necessary and sufficient conditions for simple majority decision. Econometrica 680–684.Google Scholar
McAfee, R. P. 1992. A dominant strategy double auction. Journal of Economic Theory 56(2) 434–450.CrossRefGoogle Scholar
McAfee, R. P. 2008. The gains from trade under fixed price mechanisms. Applied Economics Research Bulletin 1(1) 1–10.Google Scholar
McAfee, R., P. J., McMillan. 1987. Auctions and bidding. Journal of Economic Literature 25 699–738.Google Scholar
McKelvey, R. D., A., McLennan. 1997. The maximal number of regular totally mixed Nash equilibria. Journal of Economic Theory 72(2) 411–425.CrossRefGoogle Scholar
Milgrom, P. 2000. Putting auction theory to work: the simultaneous ascending auction. Journal of Political Economy 108(21) 245–272.CrossRefGoogle Scholar
Milgrom, P. 2017. Discovering Prices: Auction Design in Markets with Complex Constraints. Columbia University Press.CrossRefGoogle Scholar
Milgrom, P., I., Segal. 2014. Deferred-acceptance auctions and radio spectrum reallocation. In Proc. 15th ACM Conference on Economics and Computation.
Milgrom, P. R., R. J., Weber. 1982. A theory of auctions and competitive bidding. Econometrica 50(5) 1089–1122.CrossRefGoogle Scholar
Mishra, D., D., Parkes. 2007. Ascending price Vickrey auctions for general valuations. Journal of Economic Theory 132 335–366.CrossRefGoogle Scholar
Moreton, P. S., P. T., Spiller. 1998. What's in the air: interlicense synergies in the Federal Communications Commission's broadband personal communication service spectrum auctions. Journal of Law and Economics 41(2) 677–716.CrossRefGoogle Scholar
Morgan, J., K., Steiglitz, G., Reis. 2003. The spite motive and equilibrium behavior in auctions. Contributions to Economic Analysis and Policy 2, article 5.Google Scholar
Moulin, H. 1991. Axioms of Cooperative Decision Making. Cambridge University Press.Google Scholar
Mueller, R. 2006. Tractable cases of the winner determination problem. In P., Cramton, Y., Shoham, R., Steinberg, eds., Combinatorial Auctions. MIT Press.Google Scholar
Muller, E.,M. A., Satterthwaite. 1977. The equivalence of strong positive association and strategyproofness. Journal of Economic Theory 14(2) 412–418.CrossRefGoogle Scholar
Myerson, R. B. 1981. Optimal auction design. Mathematics of Operations Research 6 58–73.CrossRefGoogle Scholar
Myerson, R., M., Satterthwaite. 1983. Efficient mechanisms for bilateral trading. Journal of Economic Theory 29(2) 265–281.CrossRefGoogle Scholar
Nemes, V., C. R., Plott, G., Stoneham. 2008. Electronic bushbroker exchange: designing a combinatorial double auction for native vegetation offsets. Available at SSRN 1212202.
Nemhauser, G. L., L. A., Wolsey. 1988. Integer and Combinatorial Optimization. Wiley- Interscience Series in Discrete Mathematics and Optimization.
Nguyen, T., R., Vohra. 2014. Near feasible stable matchings with complementarities. Technical report, PIER Working Paper.
Nguyen, T., A., Peivandi, R., Vohra. 2016. Assignment problems with complementarities. Journal of Economic Theory 165 209–241.CrossRefGoogle Scholar
Nisan, N. 2006. Bidding languages. In P., Cramton, Y., Shoham, R., Steinberg, eds., Combinatorial Auctions. MIT Press.Google Scholar
Nisan, N. 2007. Introduction to mechanism design (for computer scientists). In N., Nisan, T., Roughgarden, E., Tardos, V., Vazirani, eds., Algorithmic Game Theory. Cambridge University Press.CrossRefGoogle Scholar
Nisan, N., A., Ronen. 2001. Algorithmic mechanism design. Games and Economic Behavior 35 166–196.CrossRefGoogle Scholar
Nisan, N., A., Ronen. 2007. Computationally feasible vcg mechanisms. J. Artif. Intell. Res.(JAIR) 29 19–47.Google Scholar
Nisan, N., I., Segal. 2006. The communcation requirements of efficient allocations and supporting prices. Journal of Economic Theory 129 192–224.CrossRefGoogle Scholar
Nobel Prize. 2012. The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2012. www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2012/. [Online; accessed 19 August 2014].
O'Neill, R., P., Sotkiewicz, B., Hobbs, M., Rothkopf, W., Stewart. 2005. Efficient market-clearing prices in markets with nonconvexities. European Journal of Operational Research 1(164) 269– 285.Google Scholar
Osborne, M. J. 2004. An Introduction to Game Theory, vol. 3. Oxford University Press.Google Scholar
Ostrovsky, M., M., Schwarz. 2011. Reserve prices in internet advertising auctions: a field experiment. In Proc. 12th ACM Conference on Electronic Commerce. ACM, 59–60.
Oxley, J. G. 1992. Matroid Theory. Oxford University Press.Google Scholar
Pai, M., R. V., Vohra. 2008. Optimal auctions with financially constrained bidders. pdf.
Papadimitriou, C., ed. 1993. Computational Complexity. Addison Wesley.
Papadimitriou, P., H., Garcia-Molina. 2011. Data leakage detection. IEEE Transactions on Knowledge and Data Engineering, 23(1) 51–63.
Papadimitriou, C., M., Schapira, Y., Singer. 2008. On the hardness of being truthful. In Proc. Foundations of Computer Science, 2008, IEEE 49th Annual IEEE Symposium. IEEE, 250– 259.Google Scholar
Pápai, S. 2001. Strategyproof and nonbossy multiple assignments. Journal of Public Economic Theory 3(3) 257–271.CrossRefGoogle Scholar
Parkes, D. 2001. Iterative combinatorial auctions: achieving economic and computational efficiency. Ph.D. thesis, University of Pennsylvania.Google Scholar
Parkes, D., L. H., Ungar. 2000. Iterative combinatorial auctions: theory and practice. In Proc. 17th National Conference on Artificial Intelligence. 74–81.Google Scholar
Petrakis, I., G., Ziegler, M., Bichler. 2012. Ascending combinatorial auctions with allocation constraints: on game theoretical and computational properties of generic pricing rules. Information Systems Research 24(3) 768–786.Google Scholar
Porter, D., V., Smith. 2006. FCC license auction design: a 12-year experiment. Journal of Law Economics and Policy 3 63–88.Google Scholar
Porter, D., S., Rassenti, A., Roopnarine, V., Smith. 2003. Combinatorial auction design. Proceedings of the National Academy of Sciences of the USA (PNAS) 100 11153–11157.Google ScholarPubMed
Pycia, M., U., Ünver. 2015. Incentive compatible allocation and exchange of discrete resources. Technical report. Available at SSRN 1079505.
Rassenti, S., V. L., Smith, R. L., Bulfin. 1982. A combinatorial auction mechanism for airport time slot allocations. Bell Journal of Economics 13 402–417.CrossRefGoogle Scholar
Roberts, D., A., Postlewaite. 1976. The incentives for price-taking behavior in large exchange economies. Econometrica 115–127.Google Scholar
Roberts, K. 1979. The characterization of implementable choice rules. In J., Laffont, ed., Aggregation and Revelation of Preferences. North-Holland, 321–349.Google Scholar
Robinson, M. S. 1985. Collusion and the choice of auction. Rand Journal of Economics 16 141– 145.CrossRefGoogle Scholar
Roth, A. E. 1982a. The economics of matching: stability and incentives. Mathematics of Operations Research 7(4) 617–628.
Roth, A. E. 1982b. Incentive compatibility in a market with indivisible goods. Economics Letters 9(2) 127–132.
Roth, A. E. 1984. The evolution of the labor market for medical interns and residents: a case study in game theory. Journal of Political Economy 92 991–1016.CrossRefGoogle Scholar
Roth, A. E. 2002. The economist as engineer: game theory, experimental economics and computation as tools of design economics. Econometrica 70 1341–1378.CrossRefGoogle Scholar
Roth, A. E, T., Sönmez, M. U., Ünver. 2005. Pairwise kidney exchange. Journal of Economic Theory 125(2) 151–188.CrossRefGoogle Scholar
Rothkopf, M. H. 2007. Thirteen reasons why the Vickrey–Clarke–Groves process is not practical. Operations Research 55 191–197.CrossRefGoogle Scholar
Rothkopf, M. H., A., Pekec, R. M., Harstad. 1998. Computationally manageable combinatorial auctions. Management Science 44 1131–1147.CrossRefGoogle Scholar
Saban, D., J., Sethuraman. 2013. House allocation with indifferences: a generalization and a unified view. In Proc. 14th ACM Conference on Electronic Commerce. ACM, 803–820.Google Scholar
Salant, D. J. 1997. Up in the air: GTE's experience in the MTA auction for personal communication services licenses. Journal of Economics & Management Strategy 6(3) 549–572.CrossRefGoogle Scholar
Samuelson, P. A. 1938. A note on the pure theory of consumer's behaviour. Economica 5(17) 61–71.Google Scholar
Samuelson, P. A. 1948. Foundations of economic analysis. Science and Society 13(1) 93–95.Google Scholar
Sandholm, T. 2006. Optimal winner determination algorithms. In P., Cramton, Y., Shoham, R., Steinberg, eds., Combinatorial Auctions. MIT Press.Google Scholar
Sandholm, T. 2007. Expressive commerce and its application to sourcing: how we conducted $35 billion of generalized combinatorial auctions. AI Magazine 28(3) 45.Google Scholar
Sandholm, T. 2012. Very-large-scale generalized combinatorial multi-attribute auctions: lessons from conducting $60 billion of sourcing. The Handbook of Market Design. Oxford University Press.Google Scholar
Sandholm, T., S., Suri. 2006. Side constraints and non-price attributes in markets. Games and Economic Behaviour 55 321–330.CrossRefGoogle Scholar
Sano, R. 2011. Incentives in core-selecting auctions with single-minded bidders. Games and Economic Behavior 72(2) 602–606.CrossRefGoogle Scholar
Satterthwaite, M. A. 1975. Strategy-proofness and arrow's conditions. Existence and correspondence theorems for voting procedures and social welfare functions. Journal of Economic Theory 10(2) 187–217.CrossRefGoogle Scholar
Scheffel, T., A., Pikovsky, M., Bichler, K., Guler. 2011. An experimental comparison of linear and non-linear price combinatorial auctions. Information Systems Research 22 346–368.CrossRefGoogle Scholar
Scheffel, T., A., Ziegler, M., Bichler. 2012. On the impact of package selection in combinatorial auctions: an experimental study in the context of spectrum auction design. Experimental Economics 15 667–692.CrossRefGoogle Scholar
Schneider, S., P., Shabalin, M., Bichler. 2010. On the robustness of non-linear personalized price combinatorial auctions. European Journal on Operational Research 206 248–259.CrossRefGoogle Scholar
Shapley, L. S., H., Scarf. 1974. On cores and indivisibility. Journal of Mathematical Economics 1(1) 23–37.CrossRefGoogle Scholar
Shapley, L. S., M., Shubik. 1971. The assignment game i: the core. International Journal of Game Theory 1(1) 111–130.CrossRefGoogle Scholar
Shoham, Y., K., Leyton-Brown. 2009. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press.Google Scholar
Shoham, Y., K., Leyton-Brown. 2011. Multi Agent Systems – Applications, Game-Theoretic, and Logical Foundations. Cambridge University Press.Google Scholar
Shubik, M. 1974. The dollar auction game: a paradox in noncooperative behavior and escalation. Journal of Conflict Resolution 47 209–221.Google Scholar
Simon, H. A. 1996. The Sciences of the Artificial. MIT Press.Google Scholar
Sng, C. T. S. 2008. Efficient algorithms for bipartite matching problems with preferences. Ph.D. thesis, University of Glasgow.Google Scholar
Sönmez, T., M. U., Ünver. 2010. Course bidding at business schools. International Economic Review 51(1) 99–123.CrossRefGoogle Scholar
Syrgkanis, V., E., Tardos. 2013. Composable and efficient mechanisms. In Proc. 45th Annual ACM Symposium on Theory of Computing. ACM, 211–220.Google Scholar
Teo, C., J., Sethuraman. 2000. On a cutting plane heuristic for the stable roommates problem and its applications. European Journal of Operational Research 123(1) 195–205.CrossRefGoogle Scholar
Ueda, S., D., Fragiadakis, A., Iwasaki, P., Troyan, M., Yokoo. 2012. Strategy-proof mechanisms for two-sided matching with minimum and maximum quotas. In Proc. 11th International Conference on Autonomous Agents and Multiagent Systems, vol. 3. International Foundation for Autonomous Agents and Multiagent Systems, 1327–1328.Google Scholar
Van Vyve, M. et al. 2011. Linear prices for non-convex electricity markets: models and algorithms. Technical report, Catholic University of Louvain, Center for Operations Research and Econometrics.
Varian, H. 2006. Revealed preference. In M., Szenberg, L., Ramrattan, A. A., Gottesman, eds., Samuelsonian Economics and the Twenty-First Century, chapter 6. Oxford University Press, 99–115.Google Scholar
Varian, H., C., Harris. 2014. The vcg auction in theory and practice. American Economic Review 104(5) 442–445.CrossRefGoogle Scholar
Vazirani, V. 2003. Approximation Algorithms. Springer Science & Business Media.CrossRefGoogle Scholar
Vickrey, W. 1961. Counterspeculation, auctions, and competitive sealed tenders. The Journal of Finance 16(1) 8–37.CrossRefGoogle Scholar
Vohra, R. 2004. Advanced Mathematical Economics. Routledge.Google Scholar
Vohra, R. 2011. Mechanism Design: A Linear Programming Approach, vol. 47. Cambridge University Press.Google Scholar
Von Neumann, J. 1953. A certain zero-sum two-person game equivalent to the optimal assignment problem. Contributions to the Theory of Games 2 5–12.Google Scholar
Von Neumann, J., O., Morgenstern. 1947. Theory of games and economic behavior. Princeton University Press.Google Scholar
Walsh, W., M., Wellman, F., Ygge. 2000. Combinatorial auctions for supply chain formation. In Proc. 2nd ACM Conference on Electronic Commerce. ACM, 260–269. doi:10.1145/352871. 352900.CrossRef
Wang, X., H., Kopfer. 2014. Collaborative transportation planning of less-than-truckload freight. OR Spectrum 36(2) 357–380. doi:10.1007/s00291-013-0331-x.CrossRefGoogle Scholar
Westkamp, A. 2013. An analysis of the German university admissions system. Economic Theory 53(3) 561–589.CrossRefGoogle Scholar
Wilson, R. 1987. Game-theoretic analyses of trading processes. Advances in Economic Theory: Fifth World Congress. Cambridge University Press, 33–70.Google Scholar
Zhang, W., S., Yuan, J., Wang. 2014. Optimal real-time bidding for display advertising. In Proc. 20th ACM SIGKDD. ACM, 1077–1086.Google Scholar
Zhou, L. 1990. On a conjecture by Gale about one-sided matching problems. Journal of Economic Theory 52(1) 123–135.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Martin Bichler, Technische Universität München
  • Book: Market Design
  • Online publication: 08 December 2017
  • Chapter DOI: https://doi.org/10.1017/9781316779873.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Martin Bichler, Technische Universität München
  • Book: Market Design
  • Online publication: 08 December 2017
  • Chapter DOI: https://doi.org/10.1017/9781316779873.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Martin Bichler, Technische Universität München
  • Book: Market Design
  • Online publication: 08 December 2017
  • Chapter DOI: https://doi.org/10.1017/9781316779873.015
Available formats
×