Published online by Cambridge University Press: 11 January 2010
Abstract
The paper classifies those locally finite groups having a proper nontrivial subgroup which is comparable with any other element of the subgroup lattice.
Introduction
Let G be a group and let L(G) denote its subgroup lattice. The description of groups G with L(G) a chain is well-known. In a chain, every element is comparable with the others. This raises the natural question of seeing what can be said about groups G having a proper nontrivial subgroup H with the property that for every subgroup X of G one has either X ≤ H or H ≤ X. Such a subgroup H will be called a breaking point for the lattice L(G). For the sake of convenience, we shall call these groups BP-groups.
Of course, BP-groups cannot be decomposed as nontrivial direct products. Moreover, if G is a BP-group with breaking point H, then every subgroup K of G strictly containing H is itself a BP-group with breaking point H. These simple considerations are valuable in what follows and we shall use them without any further reference.
Standard results from abelian group theory dispose of the structure of abelian BP-groups: these are cyclic p-groups in the finite case and Prüfer p-groups Z(p∞) in the infinite case. This focuses the discussion on nonabelian BP-groups.
As more exotic examples, the so-called extended Tarski groups, see Ol'shanskii [3], p. 344 are also BP-groups.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.