Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T21:35:02.874Z Has data issue: false hasContentIssue false

5 - Electrospinning of micro- and nanofibers

Published online by Cambridge University Press:  05 June 2014

Alexander L. Yarin
Affiliation:
University of Illinois, Chicago
Behnam Pourdeyhimi
Affiliation:
North Carolina State University
Seeram Ramakrishna
Affiliation:
National University of Singapore
Get access

Summary

This chapter deals with the mechanisms and electrohydrodynamic modeling of the physical processes resulting in electrospinning of nanofibers with cross-sectional diameters approximately in the range 100 nm to 1 µm. These involve the physical nature of fluids used in electrospinning, leaky dielectrics, discussed in Section 5.2, and the formation of the precursor of electrospun jets, the Taylor cone, described in Section 5.3. Polymer jets in electrospinning possess an initial straight section, which is discussed in Section 5.4. Experimental observations of the key element of the electrospinning process, the electrically driven bending instability, which is similar to the aerodynamically driven jet bending of Chapters 3 and 4, are covered in Section 5.5. Section 5.6 describes the theory of the bending instability in electrospinning. Multiple jet interaction in electrospinning and needleless electrospinning are discussed in Section 5.7. Co-electrospinning and emulsion electrospinning of core–shell fibers (Section 5.8) are based on similar physical principles to electrospinning of monolithic nanofibers. The electrostatic field-assisted assembly techniques developed with the aim of positioning and aligning individual nanofibers in arrays and ropes are discussed in Section 5.9. Melt electrospinning of polymer fibers is briefly outlined in Section 5.10.

Electrospinning of polymer solutions

Electrospinning of polymer solutions, liquid crystals, suspensions of solid particles and emulsions employs an electric field of the strength about 1 kV cm−1. The first US patent on electrospinning was issued to Formhals (1934), but interest in this process was dormant until electrified jets of polymer solutions and melts were investigated as routes to the manufacture of polymer nanofibers (Baumgarten 1971, Larrondo and Manley 1981a–c, Doshi and Reneker 1995, Reneker and Chun 1996). In electrospinning, the electric force results in an electrically charged jet flowing out from a pendant or sessile droplet (see Figure 5.1). After the jet flows away from the droplet in a nearly straight line, it bends into a complex path and other changes in shape occur, during which electrical forces stretch and thin it by very large ratios, quite similar to the effects of the aerodynamic forces in melt- and solution blowing discussed in Chapter 4. After the solvent evaporates, solidified nanofibers are left.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angeles, M., Cheng, H. L., Velankar, S. S., 2008. Emulsion electrospinning: composite fibers from drop breakup during electrospinning, Polym. Adv. Technol. 19, 728–733.CrossRefGoogle Scholar
Aref, H., Flinchem, E. P., 1984. Dynamics of a vortex filament in a shear flow. J. Fluid Mech. 148, 477–497.CrossRefGoogle Scholar
Arms, R. J., Hama, F. R., 1965. Localized-induction concept on a curved vortex and motion of an elliptic vortex ring. Phys. Fluids 8, 533–559.CrossRefGoogle Scholar
Batchelor, G. K., 2002. An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge.Google Scholar
Baumgarten, P. K., 1971. Electrostatic spinning of acrylic microfibers. J. Colloid. Interface Sci. 36, 71–79.CrossRefGoogle Scholar
Bazilevskii, A. V., Entov, V. M., Rozhkov, A. N., 1985. Elastic stresses in capillary jets of dilute polymer solutions. Fluid Dynam. 20, 169–175.CrossRefGoogle Scholar
Bazilevsky, A. V., Yarin, A. L., Megaridis, C. M., 2007. Co-electrospinning of core–shell nano/microfibers using a single nozzle technique, Langmuir 23, 2311–2314.CrossRefGoogle Scholar
Bazilevsky, A. V., Yarin, A. L., Megaridis, C. M., 2008. Pressure-driven delivery through carbon tube bundles, Lab on a Chip 8, 152–160.CrossRefGoogle ScholarPubMed
Bockris, J. O. M., Reddy, A. K. N., 1970. Modern Electrochemistry, Volumes 1 and 2, Plenum Press, New York.Google Scholar
Carroll, C. P., Joo, Y. L., 2006. Electrospinning of viscoelastic Bodger fluids: modeling and experiments. Phys. Fluids 18, 053102.CrossRefGoogle Scholar
Castellanos, A., Perez, A. T., 2007. Electrohydrodynamic systems. Chapter C21 in Springer Handook of Experimental Fluid Mechanics (Eds. Tropea, C., Yarin, A. L. and Foss, J.), Springer, Berlin.Google Scholar
Chang, H., Lodge, A. S., 1972. Comparison of rubberlike-liquid theory with stress-growth data for elongation of a low-density branched polyethylene melt. Rheol. Acta 11, 127–129.CrossRefGoogle Scholar
Chang, H. -C., Yeo, L. Y., 2010. Electrokinetically Driven Microfluidics and Nanofluidics. Cambridge University Press, Cambridge.Google Scholar
Cheng, K. J., Miksis, M. J., 1989. Shape and stability of a drop on a conducting plane in an electric field. Physico-Chem. Hydrodyn., 11, 9–20.Google Scholar
Cherney, L. T., 1999a. Structure of Taylor cone-jets: limit of low flow rates. J. Fluid Mech. 378, 167–196.CrossRefGoogle Scholar
Cherney, L. T., 1999b. Electrohydrodynamics of electrified liquid menisci and emitted jets. J. Aerosol Sci. 30, 851–862.CrossRefGoogle Scholar
de Gennes, P. G., 1974. Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients. J. Chem. Phys. 60, 5030–5042.CrossRefGoogle Scholar
de Gennes, P. G., 1979. Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca, New York.Google Scholar
Deitzel, J. M., Kleinmeyer, J. D., Hirvonen, J. K., Tan, N. C. B., 2001. Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer 42, 8163–8170.CrossRefGoogle Scholar
Doshi, J., Reneker, D. H., 1995. Electrospinning process and applications of electrospun fibers. J. Electrostatics 35, 151–160.CrossRefGoogle Scholar
Dosunmu, O. O., Chase, G. G., Kataphinan, W., Reneker, D. H., 2006. Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface. Nanotechnology 17, 1123–1127.CrossRefGoogle ScholarPubMed
Driesel, W., Dietzsch, Ch., Muhle, R., 1996. In situ observation of the tip shape of AuGe liquid alloy ion sources using a high voltage transmission electrone microscope. J. Vac. Sci. Technol. B14, 3367–3380.CrossRefGoogle Scholar
Dror, Y., Salalha, W., Avrahami, R., Zussman, E., Yarin, A. L., Dersch, R., Greiner, A., Wendorff, J. H., 2007. One-step production of polymeric micro-tubes via co-electrospinning. Small 3, 1064–1073.CrossRefGoogle Scholar
Duft, D., Achtzehn, T., Muller, R., Huber, B. A., Leisner, T., 2003. Rayleigh jets from levitated microdroplets. Nature 421, 128–128.CrossRefGoogle ScholarPubMed
Dzhaugashtin, K. E., Yarin, A. L., 1977. Numerical simulation of nonself-similar wall jet. J. Eng. Phys. 32, 420–426.CrossRefGoogle Scholar
Feng, J. J., 2002. The stretching of an electrified non-Newtonian jet: A model for electrospinning. Phys. Fluids 14, 3912–3926.CrossRefGoogle Scholar
Feng, J. J., 2003. Stretching of a straight electrically charged viscoelastic jet. J. Non-Newton. Fluid Mech. 116, 55–70.CrossRefGoogle Scholar
Fernandez de la Mora, J., 1992. The effect of charge emission from electrified liquid cones. J. Fluid Mech. 243, 561–574.CrossRefGoogle Scholar
Feynman, R. P., Leighton, R. B., Sands, M., 2006. The Feynman Lectures on Physics. Vol. 2, Pearson/Addison-Wesley, San Francisco.Google Scholar
Filatov, Y., Budyka, A., Kirichenko, V., 2007. Electrospinning of Micro- and Nanofibers. Fundamentals and Applications in Separation and Filtration Processes. Begell House, New York.Google Scholar
Fong, H., Chung, I., Reneker, D. H., 1999. Beaded nanofibers formed during electrospinning. Polymer 40, 4585–4592.CrossRefGoogle Scholar
Fong, H., Reneker, D. H., 1999. Elastomeric nanofibers of styrene-butadiene-styrene triblock copolymer. J. Polym. Sci., Polym. Phys. Ed. 37, 3488–3493.3.0.CO;2-M>CrossRefGoogle Scholar
Formhals, A., 1934. Process and apparatus for preparing artificial threads. US Patent No. 1975504.
Frikrikh, S. V., Yu, J. H., Brenner, M. P., Rutledge, G. C., 2003. Controlling the fiber diameter during electrospinning. Phys. Rev. Lett. 90, 144502.CrossRefGoogle Scholar
Ganan-Calvo, A. M., 1997a. On the theory of electrohydrodynamically driven capillary jets. J. Fluid Mech. 335, 165–188.CrossRefGoogle Scholar
Ganan-Calvo, A. M., 1997b. Cone-jet analytical extension of Taylor’s electrostatic solution and the asymptotic universal scaling laws in electrospraying. Phys. Rev. Lett. 79, 217–220.CrossRefGoogle Scholar
Ganan-Calvo, A. M., 1999. The surface charge in electrospraying: its nature and its universal scaling laws. J. Aerosol Sci. 30, 863–872.CrossRefGoogle Scholar
Gill, S. J., Gavis, J., 1956. Tensile stress in jets of viscoelastic fluids. II. J. Polym. Sci. 21, 353–362.Google Scholar
Goren, S., Gavis, J., 1961. Transverse wave motion on a thin capillary jet of a viscoelastic liquid. Phys. Fluids 4, 575–579.CrossRefGoogle Scholar
Green, N. G., Ramos, A., Gonzales, A., Morgan, H., Castellanos, A., 2002. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. III. Observation of streamlines and numerical simulation. Phys. Rev. E 66, 026305.CrossRefGoogle ScholarPubMed
Han, T., Yarin, A. L., Reneker, D. H., 2008. Viscoelastic electrospun jets: initial stresses and elongational rheometry. Polymer 49, 1651–1658.CrossRefGoogle Scholar
Happel, J., Brenner, H., 1991. Low Reynolds Number Hydrodynamics. Kluwer, Dordrecht.Google Scholar
Harris, M. T., Basaran, O. A., 1993. Capillary electrohydrostatics of conducting drops hanging from a nozzle in an electric field. J. Colloid Interface Sci. 161, 389–413.CrossRefGoogle Scholar
Hayati, I., 1992. Eddies inside a liquid cone stressed by interfacial electrical shear. Colloids and Surfaces 65, 77–84.CrossRefGoogle Scholar
Higuera, F. J., 2003. Flow rate and electric current emitted by a Taylor cone. J. Fluid Mech. 484, 303–327.CrossRefGoogle Scholar
Hohman, M. M., Shin, M., Rutledge, G., Brenner, M. P., 2001a. Electrospinning and electrically forced jets: I. Stability theory. Phys. Fluids 13, 2201–2220.CrossRefGoogle Scholar
Hohman, M. M., Shin, M., Rutledge, G., Brenner, M. P., 2001b. Electrospinning and electrically forced jets: II. Applications. Phys. Fluids 13, 2221–2236.CrossRefGoogle Scholar
Hong, C. K., Yang, K. S., Oh, S. H., Ahn, J. H., Cho, B. H., Nah, C., 2008. Effect of blend composition on the morphology development of electrospun fibers based on PAN/PMMA blends, Polymer Int. 57, 1357–1362.CrossRefGoogle Scholar
Jeans, J., 1958. The Mathematical Theory of Electricity and Magnetism. Cambridge University Press, Cambridge.Google Scholar
Kim, C. W., Frey, M. W., Marquez, M., Joo, Y. L., 2005. Preparation of submicron-scale, electrospun cellulose fibers via direct dissolution. J. Polym. Sci., Part B: Polym. Phys. 43, 1673–1683.CrossRefGoogle Scholar
Kirichenko, V. M., Petrianov-Sokolov, I. V., Suprun, N. N., Shutov, A. A., 1986. Asymptotic radius of a slightly conducting liquid jet in an electric field. Sov. Phys. Doklady 31, 611–614.Google Scholar
Koombhongse, S., Liu, W., Reneker, D. H., 2001. Flat polymer ribbons and other shapes by electrospinning. J. Polym. Sci., Polym. Phys. Ed. 39, 2598–2606.CrossRefGoogle Scholar
Kowalewski, T. A., Blonski, S., Barral, S., 2005. Experiments and modeling of electrospinning process. Bull. Polish Acad. Sci. 53, 385–394.Google Scholar
Landau, L. D., Lifshitz, E. M., 1970. Theory of Elasticity. Pergamon Press, Oxford.Google Scholar
Landau, L. D., Lifshitz, E. M., 1984. Electrodynamics of Continuous Media. Pergamon, Oxford.Google Scholar
Larrondo, L., Manley, R. S. J., 1981a. Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. J. Polym. Sci., Polym. Phys. Ed. 19, 909–920.CrossRefGoogle Scholar
Larrondo, L., Manley, R. S. J., 1981b. Electrostatic fiber spinning from polymer melts. II. Examination of the flow field in an electrically driven jet. J. Polym. Sci., Polym. Phys. Ed. 19, 921–932.CrossRefGoogle Scholar
Larrondo, L., Manley, R. S. J., 1981c. Electrostatic fiber spinning from polymer melts. III. Electrostatic deformation of a pendant drop of polymer melt. J. Polym. Sci., Polym. Phys. Ed. 19, 933–940.CrossRefGoogle Scholar
Lembach, A., Tan, H. B., Roisman, I. V., Gambaryan-Roisman, T., Zhang, Y., Tropea, C., Yarin, A. L., 2010. Drop impact, spreading, splashing and penetration in electrospun nanofiber mats. Langmuir 26, 9516–9523.CrossRefGoogle ScholarPubMed
Levich, V. G., 1962. Physicochemical Hydrodynamics. Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
Li, D., McCann, J. T., Xia, Y., 2005. Use of electrospinning to directly fabricate hollow nanofibers with functionalized inner and outer surfaces. Small 1, 83–86.CrossRefGoogle ScholarPubMed
Li, D., Wang, Y., Xia, Y., 2004. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv. Mater. 16, 361–365.CrossRefGoogle Scholar
Li., D., Xia, Y., 2004a. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning, Nano Lett. 4, 933–938.CrossRefGoogle Scholar
Li, D., Xia, Y., 2004b. Electrospinning of nanofibers: reinventing the wheel?Adv. Mater. 16, 1151–1170.CrossRefGoogle Scholar
Li, H., Halsey, T. C., Lobkovsky, A., 1994. Singular shape of a fluid drop in an electric or magnetic field. Europhys. Lett. 27, 575–580.CrossRefGoogle Scholar
Li, X. H., Shao, C. L., Liu, Y. C., 2007. A simple method for controllable preparation of polymer nanotubes via a single capillary electrospinning, Langmuir 23, 10920–10923.CrossRefGoogle Scholar
Loitsyanskii, L. G., 1966. Mechanics of Liquids and Gases. Pergamon Press, Oxford (the English translation of the 2nd Russian edition), and the 3rd Russian edition published by Nauka, Moscow, 1970.Google Scholar
Loscertales, I. G., Barrero, A., Guerrero, I., Cortijo, R., Marquez, M., Ganan-Calvo, A. M., 2002. Micro/nano encapsulation via electrified coaxial liquid jets. Science 295, 1695–1698.CrossRefGoogle ScholarPubMed
Loscertales, I. G., Barrero, A., Marquez, M., Spretz, R., Velarde-Ortiz, R., Larsen, G., 2004. Electrically forced coaxial nanojets for one-step hollow nanofiber design, J. Am. Chem. Soc. 126, 5376–5377.CrossRefGoogle ScholarPubMed
Lukas, D., Sarkar, A., Pokorny, P., 2008. Self-organization of jets in electrospinning from free liquid surface: A generalized approach. J. Appl. Phys. 103, 084309.CrossRefGoogle Scholar
Lyons, J., Li, C.Ko, F., 2004. Melt-electrospinning part I: processing parameters and geometric properties. Polymer 45, 7597–7603.CrossRefGoogle Scholar
Melcher, J. R., Taylor, G. I., 1969. Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1, 111–146.CrossRefGoogle Scholar
Melcher, J. R., Warren, E. P., 1971. Electrohydrodynamics of a current-carrying semi-insulating jet. J. Fluid Mech. 47, 127–143.CrossRefGoogle Scholar
Michelson, D., 1990. Electrostatic Atomization. Adam Higler, Bristol and New York.Google Scholar
Miloh, T., Spivak, B., Yarin, A. L., 2009. Needleless electrospinning: electrically-driven instability and multiple jetting from the free surface of a spherical liquid layer. J. Appl. Phys. 106, 114910.CrossRefGoogle Scholar
Notz, P. K., Basaran, O. A., 1999. Dynamics of drop formation in an electric field. J. Colloid Interface Sci. 213, 218–237.CrossRefGoogle Scholar
Ostroumov, G. A., 1979. Interaction of the Electric and Hydrodynamic Fields. Nauka, Moscow (in Russian).Google Scholar
Pantano, C., Ganan-Calvo, A. M., Barrero, A., 1994. Zeroth-order, electrohydrostatic solution for electrospraying in cone-jet mode. J. Aerosol. Sci. 25, 1065–1077.CrossRefGoogle Scholar
Petras, D., Mares, L., Cmelik, J., Fiala, K., 2009. Device for production of nanofibers through electrostatic spinning of polymer solutions. US Patent Application 20090148547.
Pozrikidis, C., 1997. Introduction to Theoretical and Computational Fluid Dynamics. Oxford University Press, New York.Google Scholar
Ramos, A., Castellanos, A., 1994. Conical points in liquid-liquid interfaces subjected to electric fields. Phys. Lett. A184, 268–272.CrossRefGoogle Scholar
Rangkupan, R., Reneker, D. H., 2003. Electrospinning process of molten polypropylene in vacuum. J. Metals, Mater. Miner. 12, 81–87.Google Scholar
Reneker, D. H., Chun, I., 1996. Nanometer diameter fibers of polymer, produced by electrospinning. Nanotechnology 7, 216–223.CrossRefGoogle Scholar
Reneker, D. H., Kataphinan, W., Theron, A., Zussman, E., Yarin, A. L., 2002. Nanofiber garlands of polycaprolactone by electrospinning. Polymer 43, 6785–6794.CrossRefGoogle Scholar
Reneker, D. H., Yarin, A. L., 2008. Electrospinning jets and polymer nanofibers. Polymer 49, 2387–2425.CrossRefGoogle Scholar
Reneker, D. H., Yarin, A. L., Fong, H., Koombhongse, S., 2000. Bending instability of electrically charged liquid jets of polymer solutions in electospinning. J. Appl. Phys. 87, 4531–4547.CrossRefGoogle Scholar
Reneker, D. H., Yarin, A. L., Zussman, E., Xu, H., 2007. Electrospinning of nanofibers from polymer solutions and melts. Adv. Appl. Mech. 41, 43–195.CrossRefGoogle Scholar
Reznik, S. N., Yarin, A. L., Theron, A., Zussman, E., 2004. Transient and steady shapes of droplets attached to a surface in a strong electric field. J. Fluid Mech. 516, 349–377.CrossRefGoogle Scholar
Reznik, S. N., Yarin, A. L., Zussman, E., Bercovici, L., 2006. Evolution of a compound droplet attached to a core–shell nozzle under the action of a strong electric field. Phys. Fluids 18, 062101.CrossRefGoogle Scholar
Russel, W. B., Saville, D. A., Schowalter, W. R., 1989. Colloidal Dispersions. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Saville, D. A., 1971. Stability of electrically charged viscous cylinders. Phys. Fluids 14, 1095–1099.CrossRefGoogle Scholar
Saville, D. A., 1997. Electrohydrodynamics: The Taylor-Melcher leaky dielectric model. Annu. Rev. Fluid Mech. 29, 27–64.CrossRefGoogle Scholar
Schlichting, H., 1979. Boundary Layer Theory, McGraw-Hill, New York.Google Scholar
Sherwood, J. D., 1991. The deformation of a fluid drop in an electric field: a slender-body analysis. J. Phys. A24, 4047–4053.Google Scholar
Shrimpton, J., 2009. Charge Injection Systems: Physical Principles, Experimental and Theoretical Work. Springer, Berlin.CrossRefGoogle Scholar
Sinha-Ray, S., Pelot, D. D., Zhou, Z. P., Rahman, A., Wu, X. -F., Yarin, A. L., 2012. Encapsulation of self-healing materials by coelectrospinning, emulsion electrospinning and solution blowing and intercalation. J. Mater. Chem. 22, 9138–9146.CrossRefGoogle Scholar
Smythe, W. R., 1989. Static and Dynamic Electricity. McGraw-Hill, New York.Google Scholar
Srikar, R., Yarin, A. L., Megaridis, C. M., 2009. Fluidic delivery of homogeneous solutions through carbon tube bundles, Nanotechnology 20, 275706.CrossRefGoogle ScholarPubMed
Stelter, M., Brenn, G., Yarin, A. L., Singh, R. P., Durst, F., 2000. Validation and application of a novel elongational device for polymer solutions. J. Rheol. 44, 595–616.CrossRefGoogle Scholar
Sternberg, E., Koiter, W. T., 1958. The wedge under a concentrated couple: a paradox in the two-dimensional theory of elasticity. J. Appl. Mech. 25, 575–581.Google Scholar
Stone, H. A., Lister, J. R., Brenner, M. P., 1999. Drops with conical ends in electric and magnetic fields. Proc. R. Soc. Lond. A455, 329–347.CrossRefGoogle Scholar
Sun, Z., Zussman, E., Yarin, A. L., Wendorff, J. H., Greiner, A., 2003. Compound core/shell polymer nanofibers by co-electrospinning. Adv. Mater. 15, 1929–1932.CrossRefGoogle Scholar
Sundaray, B., Subramanian, V., Natarajan, T. S., Xiang, R. Z., Chang, C. C., Fann, W. S., 2004. Electrospinning of continuous aligned polymer fibers. Appl. Phys. Lett. 84, 1222–1224.CrossRefGoogle Scholar
Taylor, G. I., 1964. Disintegration of water drops in an electric field. Proc. Roy. Soc. London A280, 383–397.CrossRefGoogle Scholar
Taylor, G. I., 1969. Electrically driven jets. Proc. Roy. Soc. London A 313, 453–475.CrossRefGoogle Scholar
Taylor, G. I., McEwan, A. D., 1965. The stability of a horizontal fluid interface in a vertical electric field. J. Fluid Mech. 22, 1–15.CrossRefGoogle Scholar
Theron, S. A., Yarin, A. L., Zussman, E., Kroll, E., 2005. Multiple jets in electrospinning: experiment and modeling. Polymer 46, 2889–2899.CrossRefGoogle Scholar
Theron, A., Zussman, E., Yarin, A. L., 2001. Electrostatic field-assisted alignment of electrospun nanofibers. Nanotechnology 12, 384–390.CrossRefGoogle Scholar
Theron, A., Zussman, E., Yarin, A. L., 2003. Measurements of the governing parameters in the electrospinning of polymer solutions. Polymer Preprints 44, 61–62.Google Scholar
Theron, S. A., Zussman, E., Yarin, A. L., 2004. Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 45, 2017–2030.CrossRefGoogle Scholar
Thompson, C. J., Chase, G. G., Yarin, A. L., Reneker, D. H., 2007. Effect of parameters on nanofiber diameter determined from electrospinning model. Polymer 48, 6913–6922.CrossRefGoogle Scholar
Weber, C., 1931. Zum Zerfall eines Flussigkeitsstrahles. Z. Angew. Math. und Mech. 11, 136–154.CrossRefGoogle Scholar
Wohlhuter, F. K., Basaran, O. A., 1992. Shapes and stability of pendant and sessile dielectric drops in an electric field. J. Fluid Mech. 235, 481–510.CrossRefGoogle Scholar
Xu, H., Reneker, D. H., 2006. Chapter 3 in Polymer Nanofibers, ACS Symposium Series 918 (Ed. Reneker, D. H. and Fong, H.), American Chemical Society, Washington, DC.Google Scholar
Xu, H., Yarin, A. L., Reneker, D. H., 2003. Characterization of fluid flow in jets during electrospinning. Polymer Preprints 44, 51–52.Google Scholar
Xu, X. L., Zhuang, X. L., Chen, X. S., Wang, X., Yang, L., Jing, X., 2006. Preparation of core-sheath composite nanofibers by emulsion electrospinning. Macromol. Rapid Commun. 27, 1637–1642.CrossRefGoogle Scholar
Yan, F., Farouk, B., Ko, F., 2003. Numerical modeling of an electrically driven liquid meniscus in the cone-jet mode. Aerosol Sci. 34, 99–116.CrossRefGoogle Scholar
Yarin, A. L., 1979. Stability of a jet of viscoelastic liquid in the presence of a mass flux at its surface. J. Eng. Phys. 37, 904–910.CrossRefGoogle Scholar
Yarin, A. L., 1990. Strong flows of polymeric liquids: 1. Rheological behavior. J. Non-Newton. Fluid Mech. 37, 113–138.CrossRefGoogle Scholar
Yarin, A. L., 1993. Free Liquid Jets and Films: Hydrodynamics and Rheology. Longman Scientific & Technical and John Wiley & Sons, Harlow, New York.Google Scholar
Yarin, A. L., 1995. Surface-tension-driven low Reynolds number flows arising in optoelectronic technology. J. Fluid Mech. 286, 173–200.CrossRefGoogle Scholar
Yarin, A. L., 1997. On the mechanism of turbulent drag reduction in dilute polymer solutions: dynamics of vortex filaments. J. Non-Newton. Fluid Mech. 69, 137–153.CrossRefGoogle Scholar
Yarin, A. L., 2007. Self-similarity. Section 2.3 in Springer Handbook of Experimental Fluid Mechanics (Eds. Tropea, C., Yarin, A. L., Foss, J.), Springer, Berlin, pp. 57–82.Google Scholar
Yarin, A. L., 2011 Coaxial electrospinning and emulsion electrospinning of core–shell fibers. Polym. Adv. Technol. 22, 310–317.CrossRefGoogle Scholar
Yarin, A. L., Kataphinan, W., Reneker, D. H., 2005. Branching in electrospinning of nanofibers. J. Appl. Phys. 98, 064501.CrossRefGoogle Scholar
Yarin, A. L., Koombhongse, S., Reneker, D. H., 2001a. Bending instability in electrospinning of nanofibers. J. Appl. Phys. 89, 3018–3026.CrossRefGoogle Scholar
Yarin, A. L., Koombhongse, S., Reneker, D. H., 2001b. Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J. Appl. Phys. 90, 4836–4846.CrossRefGoogle Scholar
Yarin, A. L., Weiss, D. A., 1995. Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J. Fluid Mech. 283, 141–173.CrossRefGoogle Scholar
Yarin, A. L., Zussman, E., 2004. Upward needleless electrospinning of multiple nanofibers. Polymer 45, 2977–2980.CrossRefGoogle Scholar
Yarin, A. L., Zussman, E., Wendorff, J. H., Greiner, A., 2007. Material encapsulation in core–shell micro/nanofibers, polymer and carbon nanotubes and micro/nanochannels. J. Mater. Chem. 17, 2585–2599.CrossRefGoogle Scholar
Yarin, L. P., 2012. The Pi-Theorem. Applications to Fluid Mechanics and Heat and Mass Transfer. Springer, Berlin.Google Scholar
Yazdani, M., Seyed-Yagoobi, J., 2009. Electrically induced dielectric liquid film flow based on electric conduction phenomenon. IEEE Trans. Dielectr. Electr. Insul. 16, 768–777.CrossRefGoogle Scholar
Yu, J. H., Fridrikh, S. V., Rutledge, G. C., 2004. Production of submicrometer diameter fibers by two-fluid electrospinning. Adv. Mater. 16, 1562–1566.CrossRefGoogle Scholar
Yu, P. Y., Cardona, M., 2010. Fundamentals of Semiconductors. Physics and Material Properties. Springer, Berlin.CrossRefGoogle Scholar
Zel’dovich, Ya. B., 1992. Limiting laws of freely rising convective currents. Selected Works of Ya.B. Zel’dovich, Vol. 1. Chemical Physics and Hydrodynamics. Princeton University Press, Princeton (first published in 1937).Google Scholar
Zhang, J. F., Yang, D. Z., Xu, F., Zhang, Z. P., Yin, R. X., Nie, J., 2009. Electrospun core- shell structure nanofibers from homogeneous solution of poly(ethylene oxide)/chitosan. Macromolecules 42, 5278–5284.CrossRefGoogle Scholar
Zhang, X., Basaran, O. A., 1996. Dynamics of drop formation from a capillary in the presence of an electric field. J. Fluid Mech. 326, 239–263.CrossRefGoogle Scholar
Zhang, Y., Huang, Z. M., Xu, X., Lim, C. T., Ramakrishna, S., 2004. Preparation of core–shell structured PCL-r-Gelatin bi-component nanofibers by coaxial electrospinning, Chem. Mater. 16, 3406–3409.CrossRefGoogle Scholar
Ziabicki, A., 1976. Fundamentals of Fibre Formation. John Wiley & Sons, London.Google Scholar
Zussman, E., Rittel, D., Yarin, A. L., 2003a. Failure modes of electrospun nanofibers. Appl. Phys. Lett. 82, 3958–3960.CrossRefGoogle Scholar
Zussman, E., Theron, A., Yarin, A. L., 2003. Formation of nanofiber crossbars in electrospinning. Appl. Phys. Lett. 82, 973–975.CrossRefGoogle Scholar
Zussman, E., Yarin, A. L., Bazilevsky, A. V., Avrahami, R., Feldman, M., 2006. Electrospun Polyacrylonitrile/Poly(methyl methacrylate)-derived carbon micro-/nanotubes. Adv. Mater. 18, 348–353.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×