Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T19:32:26.709Z Has data issue: false hasContentIssue false

1 - Cobordisms and topological quantum field theories

Published online by Cambridge University Press:  19 January 2010

Joachim Kock
Affiliation:
Université de Nice, Sophia Antipolis
Get access

Summary

Summary

In the first section we recall some basic notions of manifolds with boundary and orientations, and Morse functions. We introduce the slightly nonstandard notion of in-boundary and out-boundary, which is particularly convenient for the treatment of cobordisms.

Section 1.2 is devoted to the basic theory of oriented cobordisms. Roughly a cobordism between two closed (n − 1)-manifolds is an n-manifold whose boundary is made up of the two (n − 1)-manifolds.We describe what it means for two cobordisms to be equivalent. Next we introduce the decomposition of a cobordism, which amounts to cutting up along a closed codimension-1 submanifold, obtaining two cobordisms. Finally we state the axioms for a topological quantum field theory (TQFT) in the style of Atiyah [5]: it is a way of associating vector spaces and linear maps to (n − 1)-manifolds and cobordisms, respecting decompositions and disjoint union. A special decomposition of the cylinder shows that a vector space which is image of a TQFT comes equipped with a nondegenerate bilinear pairing, in a strong sense, which in particular forces the vector space to be finite dimensional.

In Section 1.3 we assemble the manifolds and cobordisms into a category nCob. In order to have a well defined composition we must pass to a quotient, identifying equivalent cobordisms. The identity arrows are the cylinder classes. Then we start discussing the monoidal structure: disjoint union of cobordisms. With this terminology we can define a TQFT as a (symmetric) monoidal functor from nCob to Vect K. (The definition and basic properties of monoidal categories are given in Chapter 3.)

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×